3-D Virtual Moon Browser from Kaguya Data

JAXA, the Japan Aerospace Exploration Agency has released all the data from the Kaguya mission to the public. One of the ways to view the data is through a very nifty 3-D virtual brower. It only is available in Japanese for now (English version by the end of November, they say) so it is a little difficult to navigate, but once you figure it out, prepare yourself for loads of fun. First, you need Java. Then…

go to this page and download the browser. (If you don’t have Java, when you try to open the download it will ask you if you want to add Java.) When you get everything downloaded and the page opens up, (screenshot of page, above) look for the blue buttons on the top right. If you have a modern PC or laptop, click on the left blue button. If you have an old pre-Intel Mac, click the right blue button. Then again, it takes a while for the data to download. On the left are different data sets you can view from the different instruments. Unless you are familiar with the different instruments, it is kind of a crap shoot as far as what each one is; so just click one and see what comes up. The top one is for Clementine data, but the rest are from the different instruments on Kaguya. The Moon globe will fill in with data, and you can spin around and check out virtually any location on the Moon. It’s pretty wild, and addictive. If you still have a hard time figuring it out, you’ll have to wait for the English version. Or you can go to this page, which is a form where you can request what data you want to see. Enjoy!

Continue reading “3-D Virtual Moon Browser from Kaguya Data”

Found: Theoretical Supernova Actually Exists

A new kind of supernova. Credit: Tony Piro

[/caption]

Astronomers have identified a type of supernova that appears to be a type predicted in theory but never actually observed before. Two years ago Lars Bildsten from UC Santa Barbara and his colleagues predicted a new type of supernova in distant galaxies which they dubbed the “.Ia” (point one a) mechanism, involving a helium detonation on a white dwarf, ejecting a small envelope of material. This theoretical explosion would be fainter than most other supernovae and its brightness would rise and fall in only a few weeks. Dovi Poznanski from Berkeley went back and looked at seven-year-old observations and found this unusual kind of supernova. Poznanski and colleagues say supernova 2002bj belongs in its own category, as its spectra suggest that it evolved extremely fast and produced an unusual combination of elements.

Supernovae are usually classified based on tell-tale lines in the spectrum of radiation they emit. The two main types are thought to develop from exploding white dwarfs and collapsing massive stars.

However, Bildsten’s theory said that in rare instances, there is a binary star system where helium flows from one white dwarf onto another and accumulates on the more massive white dwarf.

It is this rare occurrence that leads to unique conditions of the explosive thermonuclear ignition and complete ejection of the accumulated helium ocean. The plethora of unusual radioactive elements made in the rapid fusion leads to a bright light show from the freshly synthesized matter that lasts a few weeks.
The “usual” explosions of white dwarfs are referred to as “Type Ia supernova.” They are brighter than a whole galaxy for more than a month and are quite useful in cosmological studies. The predicted “.Ia” supernovae are only one-tenth as bright for one-tenth the time.

Poznanski and his team say 2002bj fits the bill for this never-seen-before type of supernova.

“This is the fastest evolving supernova we have ever seen,” said Poznanski. “It was three to four times faster than a standard supernova, basically disappearing within 20 days. Its brightness just dropped like a rock.”

Poznanski told Universe Today that he was actually looking at Type II supernovae for another purpose when he hit the spectrum of 2002bj. “My first reaction was great confusion,” he said. “My second reaction, after showing it to other experts was greater confusion. After matching it against every object we know of, and finding nothing the confusion was topped with a lot of excitement. This kept rising until the .Ia idea came up and matched pretty well.”

Then Poznanski and his team re-analyzed their data to make sure, and the rest is history.

This explosion was nothing like a regular Type Ia explosion, said team member Alex Filippenko, because the white dwarf survives the detonation of the helium shell. In fact, it has similarities to both a nova and a supernova. Novas occur when matter – primarily hydrogen – falls onto a star and accumulates in a shell that can flare up as brief thermonuclear explosions. SN 2002bj is a “super” nova, generating about 1,000 times the energy of a standard nova, he said.

“As we have talked about our work over the last years, most astronomers in the audience reminded us that they had never seen such an event,” said Bildsten. “We told them to keep looking! With the sky the limit, the observers are usually ahead of theory, so I am really happy that we were able to make a prediction that allowed for a rapid interpretation of a new phenomena. Even though the supernova was observed in 2002, it took the keen eye of Dovi Poznanski to appreciate its import and relevance.”

Source: Science

High School Students Get Published in Astrophysics Journal

From the left: Klaus Beuermann (group leader), Jens Diese (back,teacher), and the high-school students Joshua Zachmann (front), Alexander-Maria Ploch (back), Sang Paik (front). JD, JZ, and AMP are from the Max-Planck-Gymnasium, SP is from the Felix-Klein-Gymnasium.

High school students from Germany have now done what many scientists strive for: had their research work published by a science journal. The Astronomy & Astrophysics science journal published a paper co-authored by three students who observed the light variations of the faint (19th magnitude) cataclysmic variable EK Ursae Majoris (EK UMa) over two months. Led by astronomer Klaus Beuermann from the University of Göttingen, and the students’ high school physics teacher, the team made use of a remotely-controlled 1.2-meter telescope in Texas. Astronomy & Astrophysics says the team “presents an accurate, long-term ephemeris,” and that “they participated in all the steps of a real research program, from initial observations to the publication process, and the result they obtained bears scientific significance.”

The students, Joshua Zachmann, Alexander-Maria Ploch, Sang Paik and their teacher, Jens Diese, made observations, analyzed the CCD images, produced and interpreted light curves, and looked at archival satellite data. Beuermann, the astronomer they worked with said, “Although it is fun to perform one’s own remote observations with a professional telescope from the comfort of a normal school classroom, it is even more satisfying to be involved in a project that provides new and publishable results rather than to perform experiments with predictable outcomes.”

Cataclysmic variable research is a field where the contributions of small telescopes has a long tradition. Cataclysmic variables are extremely close binary systems containing a low-mass star whose material is being stripped off by the gravitational pull of a white dwarf companion. Due to the transfer of matter between the stars, these systems vary dramatically in brightness on timescales in the whole range between seconds and years. This largely unpredictable variability makes them ideal targets for school projects, particularly since professional observatories are generally unable to provide enough observation time for regular monitoring.

An accurate ephemeris is needed to keep track of the orbital motions of the two stars, but none was available because EK UMa is faint in the optical range and requires a long-term observation of the light variations. The strong magnetic field of the white dwarf turns the light of the hot matter striking the surface of the white dwarf into two “lighthouse” beams. By measuring the times of the minimum between the beams, the group was able to determine an orbital period accurate enough to keep track of the eclipse that took place in 1985, over 100 000 cycles earlier. By combining their own measurements with those made by the Einstein, ROSAT, and EUVE satellites, they estimated the orbital period over 137 000 cycles to an accuracy of a tenth of a millisecond. Surprisingly, the orbital period is extremely stable, although the period of such very close binaries is expected to vary due to the presence of third bodies and magnetic activity cycles on the companion star.

The team’s paper: (not yet available) A long-term optical and X-ray ephemeris of the polar EK Ursae Majoris, by K. Beuermann, J. Diese, S. Paik, A. Ploch, J. Zachmann, A.D. Schwope, and F.V. Hessman.

Source: Astronomy & Astrophysics

STS-129 Behind the Scenes: How to Put on the “Pumpkin Suit”

NASA has been creating some behind-the-scenes videos as the STS-129 crew prepares for their upcoming mission to the International Space Station. Astronaut Mike Massimino, of the HST servicing mission fame, hosts and records the videos, and this one is pretty interesting: what it takes to put on the orange launch and entry suits, also known as the Pumpkin Suits. It’s not just the suit itself, but several layers of necessary garments underneath that make suiting up a chore, especially in the microgravity environment of space. Here, commander of STS-129, Charlie Hobaugh (a.k.a. “Scorch”) practices putting on the Pumpkin Suit. You’ll also get to see how the astronauts make their drinks on the space shuttle. Check out the other “behind-the-scenes” videos on the NASATelevision You Tube site; they’ll be adding more as preparations for the flight continues. Launch is currently scheduled for Nov. 16 at 2:28 p.m. EST.

Hubble Unveils Stunning Star Birth in M83

It appears Hubble’s new Wide Field Camera 3 (WFC3) is working. And how! The new camera installed during Servicing Mission 4 in May has delivered the most detailed view of star birth in the graceful, curving arms of the nearby spiral galaxy M83. Nicknamed the Southern Pinwheel, M83 is undergoing more rapid star formation than our own Milky Way galaxy, especially in its nucleus. The sharp “eye” of WFC3 has captured hundreds of young star clusters, ancient swarms of globular star clusters, and hundreds of thousands of individual stars, mostly blue supergiants and red supergiants.

M83 from ESO and Hubble. Credit for Hubble Image: NASA, ESA, R. O'Connell (University of Virginia), B. Whitmore (Space Telescope Science Institute), M. Dopita (Australian National University), and the Wide Field Camera 3 Science Oversight Committee
M83 from ESO and Hubble. Credit for Hubble Image: NASA, ESA, R. O'Connell (University of Virginia), B. Whitmore (Space Telescope Science Institute), M. Dopita (Australian National University), and the Wide Field Camera 3 Science Oversight Committee

The image at right is Hubble’s close-up view of the myriad stars near the galaxy’s core, the bright whitish region at far right. An image of the entire galaxy, taken by the European Southern Observatory’s Wide Field Imager on the ESO/MPG 2.2-meter telescope at La Silla, Chile, is shown at left. The white box outlines Hubble’s view.

WFC3’s broad wavelength range, from ultraviolet to near-infrared, reveals stars at different stages of evolution, allowing astronomers to dissect the galaxy’s star-formation history.

Now that’s the birth of a star!

See more views of M83 and a video at the HubbleSite

How Long Does it Take Uranus to Orbit the Sun?

Uranus, seen by Voyager 2. Image credit: NASA/JPL

[/caption]
Uranus orbits the Sun much further than the Earth, and so it takes much longer to orbit the Sun. How much longer? Uranus takes 84.3 years to complete its orbit around the Sun. Uranus was only discovered in 1781 by Sir William Herschel. Since a year takes just over 83 Earth years, it completed its first orbit since discovery in 1865, and then its second in 1949. It’ll only complete its 3rd orbit around the Sun since its discovery in 2033.

Unlike most of the planets, which have slightly tilted orbits, Uranus is completely tilted over on its side. It kind of looks like it’s rolling its way around as it orbits the Sun. What this means is that one of Uranus’ hemispheres is completely in sunlight for half of its orbit, and then its other hemisphere is in sunlight for the rest of its orbit. Each pole gets 42 years of continual sunlight, followed by 42 years of continual darkness.

The orbit of Uranus is about the same length as the average life expectancy for a human being. In other words, if you were born on Uranus, you would only experience a single birthday, if you were lucky, after living for more than 84 Earth years. And nobody would experience two birthdays.

We have written many articles about Uranus for Universe Today. Here’s an article about how many rings Uranus has, and here’s an article about the atmosphere of Uranus.

If you’d like more information on Uranus, check out Hubblesite’s News Releases about Uranus. And here’s a link to the NASA’s Solar System Exploration Guide to Uranus.

We have also recorded an entire episode of Astronomy Cast just about Uranus. Listen here, Episode 62: Uranus.

How Long Does it Take Mercury to Orbit the Sun?

Mosaic of Mercury. Credit: NASA / JHUAPL / CIW / mosaic by Jason Perry

[/caption]
Mercury is the closest planet to the Sun, and so it’s the fastest to orbit the Sun. In fact, Mercury only takes 88 days to orbit the Sun. In other words, Mercury’s orbit only takes 24% as long as Earth’s orbit.

If you were born on Mercury, you would have celebrated 4 times as many birthdays as you do on Earth. In other words, if you’re 10 here on Earth, you’d be 40 in Mercury years. Now that’s a possible way to grow up more quickly.

Mercury orbits the Sun at an average distance of only 57.9 million km. Compare this with Earth’s average orbital distance of 150 million km.

Unlike the other planets in the Solar System, Mercury doesn’t really experience any seasons. This is because Mercury has no atmosphere to trap heat from the Sun. Whichever side of Mercury is currently facing the Sun experience temperatures of up to 700 Kelvin. And then the side of the planet that’s in the shade dips down to only 100 Kelvin; that’s well below freezing. Even though Mercury is close, you would experience incredibly cold temperatures if you lived on the surface.

The orbit of Mercury was actually a great puzzle to astronomers until the 20th century. They couldn’t explain why the point of Mercury’s furthest orbit of the Sun was slowly drifting at a rate of 43 arcseconds per century. But this strange motion was finally explained perfectly by predictions made by Albert Einstein with his Theory of Relativity.

We have written many articles about Mercury for Universe Today. Here’s an article about Mercury giving up more secrets to the MESSENGER spacecraft, and here’s a massive mosaic image of Mercury.

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We have also recorded an entire episode of Astronomy Cast just about Mercury. Listen here, Episode 49: Mercury.

NASA May Drop Ares I-Y Test Flight

Artist concept of Ares I. Image Credit: NASA

[/caption]
Just one week after the first test flight test of the Ares I-X rocket, NASA says it may decide to cancel a follow-up launch called Ares 1-Y, which wasn’t scheduled until 2014. Reportedly, program managers recommended dropping the flight because, currently, there isn’t the funding to get an upper stage engine ready in time. The test flight may be replaced with a new, still undefined test flight in 2012 or 2013. “It simply does not fit where we are headed,” said Jeff Hanley, Constellation Program manager was quoted in NASA’s Constellation Blog. “The test vehicle was intended to meet evolving needs but the current configuration is too different from what the program requires to certify the Ares/Orion vehicle systems.”

Depending on whether the Obama administration decides to continue the Ares I program, this decision may be moot. Earlier this week Sen. Bill Nelson said Obama may make a decision on NASA’s future path, based on the report by the Augustine Commission, by the end of November.

At a press conference last week Hanley said the team continually assesses their flight test program. This week managers met and decided that the Ares I-Y flight fell too late in the vehicle development phase to provide useful information and lacks key elements to make it a true validation of the flight vehicle’s systems.

Originally, the I-Y test was planned for 2012. It was to be a suborbital flight to test a five-segment booster, a flight production upper stage, a functional command module and launch abort system and a simulated encapsulated service module, but without a J-2X engine.

By fall 2008, program managers were already looking at changing direction for the Ares I-Y test to improve the overall program’s chances of flying a full test vehicle by 2014. Now, with the Constellation Program nearing its preliminary design review and with maturing vehicles and systems, managers agree the I-Y test objectives can be achieved through other tests already in the manifest.

NASA is now studying the costs and benefits of going ahead with a 2012 launch previously called “Ares I-X prime” that would flight-test a full five-segment Ares I solid-fuel first stage and the Orion crew exploration vehicle launch abort system at high altitude.

Stay tuned.

Sources: NASA Constellation Blog, Aviation Week

Going Up? Top Floor, Space Elevator Games 2009

BREAKING NEWS: LaserMotive successfully qualified for the $900,000 prize! Their official speed was 3.72 m/s. Way to go! See more below.

Though it’s unlikely that anyone will be pressing the elevator button labeled ‘Space’ on one of the competitors’ vehicles this year at the 2009 Space Elevator Games, there is hope that a winner will walk away with the $1.1 million prize. Three different teams will compete to see if any can send a laser powered vehicle up a thin but strong ribbon 1km (.6 miles) into the sky. Italian readers can bet on this game using any of the online casinos that offer these odds – many of which can be found on our recommended casino resource Stranieri.com. Stranieri offers the best online casino reviews for betting on things like markets and slots, as well as space events like this one as well as other Air Force events.

This is the 5th year of the games, which started in 2005. The games are part of NASA’s Centennial Challenges program, which awards monetary prizes in the attempt to spur new technologies. This is a busy week for the program; as we covered earlier today, the Northrop Grumman Lunar X-prize announced two winners, and is part of the Centennial Challenge program.

To win the $1.1 million prize, one of the teams must propel their vehicle 1 km (.6 miles) into the sky at an average of at least 5 m/s (16.4ft/s). A second place prize of $900,000 will be awarded to any team that can go the 1km at an average of 2m/s (6.6 ft/s). The games this year will run from November 4th-6th, with each team getting the chance to launch their laser powered vehicles during a pre-determined 45-minute window for each day of the competition. The event takes place at NASA’s Dryden Flight Research Center at Edwards Air Force Base near Mojave, California.

Three teams have qualified to enter this year’s event: The Kansas City Space Pirates, LaserMotive, and the University of Saskatchewan Space Design Team (USST). The entire event will be live broadcast on Ustream, and updates will be provided on the official site.

For each test, a helicopter brings the elevator up the cable to a fixed starting point. The team is then given a go to calibrate their laser, and start beaming power to the craft. Each elevator uses small wheels to grip the ribbon, which is held aloft by a balloon tethered by three guy wires.

For a taste of what these elevators look like, check out this video:

Here’s a breakdown of what happened so far today: The Kansas City Space Pirates gave it three tries. In the first attempt, their elevator failed to take off. After fixing the problem, they were able to get the craft to move, but it then stopped. During the third, it started to climb the ribbon but they were unable to keep the laser locked on the elevator to power it, and it wasn’t able to climb the 1km to the top of the ribbon and brought back down.

LaserMotive had much better luck, despite a no-go on their initial attempt. Their elevator was lifted to the start by the helicopter, but failed to move despite repeated lasing attempts. After bringing it down for a tweak or two, the elevator was again placed at the start. It took off, making the first 300m (985ft) in a little under a minute, which met the 5m/s goal. The speed tapered off towards the top, but they bumped up against the 1km mark at approximately 4 minutes, making them the first to successfully claim the minimum 2km/s prize! While watching the live feed of this fantastic feat, I overheard a transmission from LaserMotive saying, “This is LaserMotive requesting permission to breathe.”

USST will not launch today, as there are no more open windows where satellites overhead will not be accidentally hit by the intense lasers used as power sources for the elevators. They will go tomorrow, November 5th, at 7am PST. Be sure to check back with us at Universe Today for more coverage, or head over to the official site for live streaming.

Source: Physorg, Space Games Live Feed

How Long Does it Take Pluto to Orbit the Sun?

Hubble image of Pluto and some of its moons, Charon, Nix and Hydra. Image Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST Pluto Companion Search Team

[/caption]

Because Pluto orbits much further from the Sun than Earth, it takes much longer to orbit the Sun. In fact, Pluto takes 248 years to orbit the Sun. That’s because Pluto orbits at an average distance of 5.9 billion km from the Sun, while Earth only orbits at 150 million km. In fact, it takes so long for Pluto to orbit that Sun, that the dwarf planet hasn’t even completed a third of an orbit from when it was discovered back in February 18th, 1930.

Pluto has a highly elliptical orbit. Its distance from the Sun varies from 4.4 billion km to 7.4 billion km. And during this orbital period, Pluto goes through a few interesting changes. You might be surprised to learn that Pluto has an atmosphere. When it’s at its closest point to the Sun, Pluto’s atmosphere evaporates from the surface and surrounding the dwarf planet. And then when it gets further away, the atmosphere freezes again, coating the surface in a thin layer.

Pluto was only discovered in 1930 by Clyde W. Tombaugh. Because it takes 248 years to orbit the Sun, Pluto won’t have completed a full orbit until the year 2178.

We have written many articles about Pluto for Universe Today. Here’s an article about why Pluto isn’t a planet any more, and here’s an article about methane discovered in Pluto’s atmosphere.

If you’d like more information on Pluto, check out Hubblesite’s News Releases about Pluto, and here’s a link to NASA’s Solar System Exploration Guide to Pluto.

We’ve also recorded several episodes of Astronomy Cast just about Pluto. Listen here, Episode 64: Pluto and the Icy Outer Solar System.