Friday Night Lights: Fireball Lights Up the U.S. East Coast

Visibility map of the Manhattan meteor (American Meteor Society)

Last night a bright meteor was spotted up and down the northern mid-Atlantic United States from Maryland to Manhattan to Massachusetts. Streaking across the sky just before 8 p.m. EDT, the fireball was witnessed by thousands — the American Meteor Society alone has so far received over 630 reports on its website from the event. (Update 3/25: The AMS has received now over 1170 reports of the meteor.)

While many false images of the meteor quickly began circulating online, the video above is real — captured from a security camera in Thurmont, MD and uploaded to YouTube by Kim Fox (courtesy of Alan Boyle’s article on NBC News’ Cosmic Log.)

So what’s up with all these meteors lately?

According to NASA meteor specialist Bill Cooke, Friday’s fireball — which has become known as the “Manhattan meteor” — was likely caused by a boulder-sized asteroid about 3 feet (0.9 meters) wide entering Earth’s atmosphere. While bolides of this size sometimes result in meteorites that land on the ground, the last reports of the Manhattan meteor have it miles over the Atlantic… any pieces that survived entry and disintegration probably ended up in the ocean.

Here’s another video of the event from a Massachusetts news station.

And if you’re concerned about an apparent increase in the rate of meteors being spotted around the world, don’t be alarmed. Remember — spring is fireball season, after all.

“We’ve known about this phenomenon for more than 30 years. It’s not only fireballs that are affected. Meteorite falls–space rocks that actually hit the ground–are more common in spring as well.”

– Bill Cooke,  NASA’s Meteoroid Environment Center

So keep an eye on the sky over the next few weeks — you never know when we’ll be treated to another show!

The Story of Earth (in 2 Minutes and 20 Seconds)

How old is the Earth, how long did it take for life to appear, and how long would it take for your hair to grow to the Moon? Find out in this video from MinuteEarth (a new project by MinutePhysics’ Henry Reich):

(Because you always wanted to know how long it would take for your hair to grow to the Moon — admit it.)

And be sure to check out MinuteEarth’s newest video Why Are Leaves Green? Part 1 and Part 2.

Powerful Private Rocket Crucial to ISS Set for Maiden April Blast Off from Virginia – Launch Pad Gallery

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The first stage of the privately developed Antares rocket stands erect at newly constructed Launch Pad 0-A at NASA’s Wallops Flight Facility during exclusive launch complex tour by Universe Today. Maiden Antares test launch is scheduled for mid-April 2013. Later operational flights are critical to resupply the ISS.
Credit: Ken Kremer (kenkremer.com)
See Antares photo gallery below[/caption]

The most powerful rocket ever to ascend near major American East Coast population centers is slated to blast off soon from the eastern Virginia shore on its inaugural test flight in mid April.

And Universe Today took an exclusive inspection tour around the privately developed Antares rocket and NASA Wallops Island launch complex just days ago.

NASA announced that the maiden flight of the commercial Antares rocket from Orbital Sciences is slated to soar to space between April 16 to 18 from the newly constructed seaside launch pad dubbed 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility in Virginia.

The two stage Antares rocket is absolutely pivotal to NASA’s plans to ship essential cargo to the International Space Station (ISS) in the wake of the shutdown of the Space Shuttle program in July 2011.

No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager! Credit: Ken Kremer (kenkremer.com)
No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager. Credit: Ken Kremer (kenkremer.com)

Antares stands 131 feet tall and serves as the launcher for the unmanned commercial Cygnus cargo spacecraft.

Both Antares and Cygnus were developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle’s. The goal is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).

I visited NASA Wallops for an up close personal tour of the impressive Antares 1st stage rocket erected at the launch pad following the successful 29 second hot fire engine test that cleared the last hurdle to approve the maiden flight of Antares. Umbilical lines were still connected to the rocket.

Antares rocket 1st stage and umbilicals at NASA Wallops Flight Facility.  Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and umbilical lines at NASA Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The pads protective seawall was rebuilt following significant damage from Hurricane Sandy, NASA Wallops spokesman Keith Koehler told me.

Launch Complex 0-A sits just a few hundred yards (meters) from Virginia’s eastern shore line on the Atlantic Ocean. It’s hard to believe just how close the low lying pad complex is to the beach and potentially destructive tidal surges.

Barely 400 meters (1300 feet) away lies the adjacent Launch Pad 0-B – from which Orbital’s new and unflown solid fueled Minotaur 5 rocket will boost NASA’s LADEE lunar science probe to the Moon in August 2013 – see my upcoming article.

The maiden Antares test flight is called the A-One Test Launch Mission. It will validate the medium class rocket for the actual follow-on flights to the ISS topped with the Cygnus cargo carrier starting later this year with a demonstration docking mission to the orbiting lab complex.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
1st stage of private Antares rocket erect at new Launch Pad 0-A at NASA’s Wallops Flight Facility. This rocket will be rolled back to the hanger to make way for the complete Antares booster due to blast off in mid-April 2013. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 680,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

The launch window opens at 3 p.m. and extends for a period of time since this initial test flight is not docking at the ISS, Orbital spokesman Barry Boneski told Universe Today.

Antares will boost a simulated version of the Cygnus carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares A-One will fly on a southeast trajectory and the Cygnus dummy will be instrumented to collect flight and payload data.

The simulated Cygnus will separate from the upper stage 10 minutes after liftoff for orbital insertion.

“All launches are to the south away from population centers. Wildlife areas are nearby,” said Koehler.

The goal of the ambitious A-One mission is to fully demonstrate every aspect of the operational Antares rocket system starting from rollout of the rocket and all required functions of an operational pad from range operation to fueling to liftoff to payload delivery to orbit.

Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). Credit: Ken Kremer (kenkremer.com)
Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). . Credit: Ken Kremer (kenkremer.com)

Antares/Cygnus will provide a cargo up mass service similar to the Falcon 9/Dragon system developed by SpaceX Corporation – which has already docked three times to the ISS during historic linkups in 2012 and earlier this month following the tension filled March 1 liftoff of the SpaceX CRS-2 mission.

The Dragon is still docked to the ISS and is due to make a parachute assisted return to Earth on March 26.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and huge water tower at NASA’s Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

Orbital has eight commercial resupply missions manifested under a $1.9 Billion contact with NASA to deliver approximately 20,000 kilograms of supplies and equipment to the ISS, Orbital spokesman Barry Boneski told me.

Tens of millions of American East Coast residents in the Mid-Atlantic and Northeast regions have never before had the opportunity to witness anything as powerful as an Antares rocket launch in their neighborhood.

Watch for my continuing reports through liftoff of the Antares A-One Test flight.

Ken Kremer

NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore.  Only a few hundred feet separate the pad from the Atlantic Ocean. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore. Only a few hundred feet of beach sand and a low sea wall separate the pad from the Atlantic Ocean and Mother Nature. Credit: Ken Kremer (kenkremer.com)

Sequester Cancels NASA Outreach

 

Well, it looks like it’s finally happened: the U.S. sequester — a “series of across-the-board cuts to government agencies totaling $1.2 trillion over 10 years” (CNN) — has finally hit NASA… right where it hurts, too: in public outreach and STEM programs. (UPDATE: some clarifications as to what this means — namely, that nothing’s actually been “canceled” but rather subject to review and possibly suspension — can be found at the end of this article. –JM)

In an internal memo issued on the evening of Friday, March 22, the Administration notes that “effective immediately, all education and public outreach activities should be suspended, pending further review. In terms of scope, this includes all public engagement and outreach events, programs, activities, and products developed and implemented by Headquarters, Mission Directorates, and Centers across the Agency, including all education and public outreach efforts conducted by programs and projects.”

Bummer.

Read the full memo from NASA Public Affairs below:

Subject: Guidance for Education and Public Outreach Activities Under Sequestration

As you know, we have taken the first steps in addressing the mandatory spending cuts called for in the Budget Control Act of 2011. The law mandates a series of indiscriminate and significant across-the-board spending reductions totaling $1.2 trillion over 10 years.

As a result, we are forced to implement a number of new cost-saving measures, policies, and reviews in order to minimize impacts to the mission-critical activities of the Agency. We have already provided new guidance regarding conferences, travel, and training that reflect the new fiscal reality in which we find ourselves. Some have asked for more specific guidance at it relates to public outreach and engagement activities. That guidance is provided below.

Effective immediately, all education and public outreach activities should be suspended, pending further review. In terms of scope, this includes all public engagement and outreach events, programs, activities, and products developed and implemented by Headquarters, Mission Directorates, and Centers across the Agency, including all education and public outreach efforts conducted by programs and projects.

The scope comprises activities intended to communicate, connect with, and engage a wide and diverse set of audiences to raise awareness and involvement in NASA, its goals, missions and programs, and to develop an appreciation for, exposure to, and involvement in STEM. Audiences include employees, partners, educators, students, and members of the general public. The scope encompasses, but is not limited to:

– Programs, events, and workshops.
– Permanent and traveling exhibits, signage, and other materials.
– Speeches, presentations, and appearances, with the exception of technical presentations by researchers at scientific and technical symposia.
– Video and multimedia products in development (and renewal of existing products).
– Web and social media sites in development (excludes operational sites).
– External and internal publications, with the exception of Scientific and Technical Information as defined by NPD 2200.1B.
– Any other activity whose goal is to reach out to external and internal stakeholders and the public concerning NASA, its programs, and activities.

Additional information regarding the waiver and review process will be issued by the Associate Administrators for Communications and Education. The Agency has already made tough choices about conferences and travel. For those activities planned to be held between the date of this memorandum through April 30, 2013, that your organization deems to be Agency mission-critical, the Headquarters Offices of Communications and Education will conduct a waiver process to promptly evaluate those specific efforts.

For future activities, the Offices of Communications and Education have established a process to assess and determine, in light of the current budget situation, what education and public outreach activities should be determined Agency mission critical and thereby be continued or implemented. We are requesting Mission Directorates and Headquarters organizations submit a summary of activities, including those planned by their respective programs and projects. We are also requesting that Centers submit a summary of Center-sponsored or supported activities. For public outreach activities, these should be submitted to David Weaver, Associate Administrator for Communications, no later than April 15, 2013. For education activities, these should be submitted to Leland Melvin, Associate Administrator for Education, also no later than April 15, 2013. Required summary and waiver documentation is being provided for distribution to Mission Directorates, Centers, programs, and projects through the Communications and Education Coordinating Councils. The Headquarters Office of Communications, working in conjunction with the Office of Education, will review the requested data and will make a timely and appropriate determination regarding what activities will go forward as planned.

This guidance is to be applied to all NASA employees, civil servants, and contractors (working through their contract officers). Leadership in our Centers, Mission Directorates, as well as individual program and project managers are responsible for ensuring that all public engagement activities, including the education and public outreach efforts conducted by programs and projects, are suspended and submitted to the review process. This guidance applies to existing and future efforts at least through the end of FY2013.

As our budgetary situation evolves over the coming months, NASA senior managers will continue to review this guidance and adjust, as appropriate. We appreciate your cooperation during this challenging fiscal period. Any questions on this guidance should be directed to David Weaver, Associate Administrator for Communications, Leland Melvin, Associate Administrator for Education. Dr. Elizabeth Robinson, Chief Financial Officer, or David Radzanowski, Chief of Staff.

Source: SpaceRef.com and NASA Watch

Note: hopefully this is more a sign of the formation of an internal review process than an all-out moratorium on programs… stay tuned for more news regarding this. Updates to be posted below.

Update: SpaceRef has posted an additional memo regarding exemptions from immediate suspension, notably “mission announcement media events and products, breaking news activities, and responses to media inquiries.” See the full memo here.

Update #2: According to an article on AmericaSpace, the Administration’s popular NASA Socials will still be held — events where select social media followers of various NASA accounts are invited to participate in public events and behind-the-scenes VIP tours — plus other social activities will still be taking place. (Although neither the article above nor the original one on SpaceRef specifically mentioned cancellation of the Socials, the memo’s bullet list does seem to imply as much.) This according to Deputy Associate Administrator for Communications Bob Jacobs. Read the full article here.

Also, Scott Lewis has an article up regarding this and the importance of NASA’s outreach programs to the public… check it out on his site KnowTheCosmos.com.

Update #3 3/23: After discussing this online today with Bob Jacobs, Deputy Associate Administrator for Communications, I learned that while most expenditures will now be critically reviewed first, it’s not like NASA is simply canceling all their programs wholesale.

“There’s a waiver process in place and there will be exemptions for mission activities…most activities will continue, I am confident of that,” Bob said. “But there are always things you can do better or more efficient, and these cuts are going to force the entire government to reduce services.”

“The more money saved the more likely you can avoid furloughs and maintain safe mission operations, which is the agency’s priority,” Bob added.

 

Meet Hopper: A Key Player in the Planck Discovery Story

The cabinets containing the Grace Hopper Cray XE6 supercomputer. (Credit: LBNL/Dept of Energy).

Behind every modern tale of cosmological discovery is the supercomputer that made it possible. Such was the case with the announcement yesterday from the European Space Agencies’ Planck mission team which raised the age estimate for the universe to 13.82 billion years and tweaked the parameters for the amounts dark matter, dark energy and plain old baryonic matter in the universe.

Planck built upon our understanding of the early universe by providing us the most detailed picture yet of the cosmic microwave background (CMB), the “fossil relic” of the Big Bang first discovered by Penzias & Wilson in 1965. Planck’s discoveries built upon the CMB map of the universe observed by the Wilkinson Microwave Anisotropy Probe (WMAP) and serves to further validate the Big Bang theory of cosmology.

But studying the tiny fluctuations in the faint cosmic microwave background isn’t easy, and that’s where Hopper comes in. From its L2 Lagrange vantage point beyond Earth’s Moon, Planck’s 72 onboard detectors observe the sky at 9 separate frequencies, completing a full scan of the sky every six months. This first release of data is the culmination of 15 months worth of observations representing close to a trillion overall samples. Planck records on average of 10,000 samples every second and scans every point in the sky about 1,000 times.

That’s a challenge to analyze, even for a supercomputer. Hopper is a Cray XE6 supercomputer based at the Department of Energy’s National Energy Research Scientific Computing center (NERSC) at the Lawrence Berkeley National Laboratory in California.  Named after computer scientist and pioneer Grace Hopper,  the supercomputer has a whopping 217 terabytes of memory running across 153,216 computer cores with a peak performance of 1.28 petaflops a second. Hopper placed number five on a November 2010 list of the world’s top supercomputers. (The Tianhe-1A supercomputer at the National Supercomputing Center in Tianjin China was number one at a peak performance of 4.7 petaflops per second).

One of the main challenges for the team sifting through the flood of CMB data generated by Planck was to filter out the “noise” and bias from the detectors themselves.

“It’s like more than just bugs on a windshield that we want to remove to see the light, but a storm of bugs all around us in every direction,” said Planck project scientist Charles Lawrence. To overcome this, Hopper runs simulations of how the sky would appear to Planck under different conditions and compares these simulations against observations to tease out data.

“By scaling up to tens of thousands of processors, we’ve reduced the time it takes to run these calculations from an impossible 1,000 years to a few weeks,” said Berkeley lab and Planck scientist Ted Kisner.

But the Planck mission isn’t the only data that Hopper is involved with. Hopper and NERSC were also involved with last year’s discovery of the final neutrino mixing angle. Hopper is also currently involved with studying wave-plasma interactions, fusion plasmas and more. You can see the projects that NERSC computers are tasked with currently on their site along with CPU core hours used in real time. Maybe a future descendant of Hopper could give Deep Thought of Hitchhiker’s Guide to the Galaxy fame competition in solving the answer to Life, the Universe, and Everything.

Also, a big congrats to Planck and NERSC researchers. Yesterday was a great day to be a cosmologist. At very least, perhaps folks won’t continue to confuse the field with cosmetology… trust us, you don’t want a cosmologist styling your hair!

MESSENGER Sees a Smoother Side of Mercury

A high-resolution view of a "silky" surface on Mercury

During its two years in orbit around Mercury — as well as several more years performing flybys — the MESSENGER spacecraft has taken over 150,000 images of the innermost planet, giving us a look at its incredibly rugged, Sun-scoured surface like never before. But not all areas on Mercury appear so harsh — it has its softer sides too, as seen above in an image released earlier today.

Here we see the smooth walls, floor and upper surfaces around an irregular depression on Mercury in high definition. The velvety texture is the result of widespread layering of fine particles, because unlike many features on Mercury’s  ancient surface this rimless depression wasn’t caused by an impact from above but rather explosively escaping lava from below — this is the rim of a volcanic vent, not a crater!

Previous images have been acquired of this irregularly-shaped depression but this is the highest resolution view MESSENGER has captured to date — about 26 meters per pixel.

A wide-angle view of the same depression, captured in July 2012
A wide-angle view of the same depression, captured by MESSENGER in July 2012

The full depression, located northeast of the Rachmaninoff basin, is about 36 km (22 miles) across at its widest. It’s surrounded by a smooth blanket of high-reflectance material — explosively ejected volcanic particles from a pyroclastic eruption that spread over the surface like snow.

Other similar vents have been found on Mercury, like this heart-shaped one in Caloris basin. The smooth, bright surface material is a telltale sign of a volcanic outburst, as are the rimless, irregular shapes of the vents.

The numerous small craters that are seen inside the vent and on the smooth surrounding surfaces would be from meteorite impacts that occurred well after the eruption.

On March 17, 2011, MESSENGER became the first spacecraft ever to orbit the planet Mercury. It is capable of continuing orbital operations until early 2015. Find out more about the mission here.

Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

 

Planck’s Cosmic Map Reveals Universe Older, Expanding More Slowly

Like archaeologists sifting through the dust of ancient civilizations, scientists with the ESA Planck mission today showed a map of the oldest light in the Universe. The first cosmology results of the mission suggest our Universe is slightly older and expanding more slowly than previously thought.

Planck’s new estimate for the age of the Universe is 13.82 billion years.

The map also appears to show more matter and dark matter and less dark energy, a hypothetical force that is causing an expansion of the Universe.

“We are measuring the oldest light in the Universe, the cosmic microwave background,” says Paul Hertz, director of astrophysics with NASA. “It is the most sensitive and detailed map ever. It’s like going from standard television to a new high definition screen. The new details have become crystal clear.”

Overall, the cosmic background radiation, the afterglow of the Universe’s birth, is smooth and uniform. The map, however, provides a glimpse of the tiny temperature fluctuations that were imprinted on the sky when the Universe was just 370,000 years old. Scientists believe the map reveals a fossil, an imprint, of the state of the Universe just 10 nano-nano-nano-nano seconds after the Big Bang; just a tiny fraction of the time it took to read that sentence. The splotches in the Planck map represent the seeds from which the stars and galaxies formed.

The colors in the map represent different temperatures; red for warmer, blue for cooler. The temperature differences being only 1/100 millionth of a degree. “The contrast on the map has been turned way up,” says Charles Lawrence, the US project scientist for Planck at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

Planck, launched in 2009 from the Guiana Space Center in French Guiana, is a European Space Agency mission with significant contribution from NASA. The two-ton spacecraft gathers the ancient glow of the Universe’s beginning from a vantage more than 1 million miles from Earth.

735692main_pia16874-43_946-710
This graphic shows the evolution of satellites designed to measure the light left over from the Big Bang that created our Universe about 13.8 billion years ago. Called the cosmic background radiation, the light reveals information about the early Universe. The three panels show the same 10-square-degree patch of sky as seen by NASA’s Cosmic Background Explorer, or COBE, NASA’s Wilkinson Microwave Anisotropy Probe, or WMAP, and Planck. Planck has a resolution about 2.5 times greater than WMAP. Credit: NASA/JPL-Caltech/ESA

This is not the first map produced by Planck. In 2010, Planck produced an all-sky radiation map. Scientists, using supercomputers, have removed not only the bright emissions from foreground sources, like the Milky Way, but also stray light from the satellite itself.

As the light travels, matter scattered throughout the Universe with its associated gravity subtly bends and absorbs the light, “making it wiggle to and fro,” said Martin White, a Planck project scientist with the University of California, Berkeley and the Lawrence Berkeley National Laboratory.

“The Planck map shows the impact of all matter back to the edge of the Universe,” says White. “It’s not just a pretty picture. Our theories on how matter forms and how the Universe formed match spectacularly to this new data.”

“This is a treasury of scientific data,” said Krzysztof Gorski, a member of the Planck team with JPL. “We are very excited with the results. We find an early Universe that is considerably less rigged and more random than other, more complex models. We think they’ll be facing a dead-end.”

An artists animation depicting the “life” of a photon, or a particle light, as it travels across space and time from the beginning of the Universe to the detectors of the Planck telescope. Credit: NASA

Planck scientists believe the new data should help scientists refine many of the theories proposed by cosmologists that the Universe underwent a sudden and rapid inflation.

Apollo Rocket Engines Recovered from Atlantic Ocean Floor

Apollo F-1 Thrust Chamber on ocean floor. Credit: Bezos Expeditions

Last year, Amazon.com founder Jeff Bezos announced that he had located some of the Apollo F-1 rocket engines and planned to recover them. He and his Bezos Expedition team were successful in recovering engines that helped power Apollo astronauts to the Moon and have now brought “a couple of your F-1s home,” Bezos said in a message to NASA. On the Bezos Expedition website, Bezos called the recovery “an incredible adventure.”

Here are some pictures and a video of the recovery:

NASA was happy about the recovery as well.

“This is a historic find and I congratulate the team for its determination and perseverance in the recovery of these important artifacts of our first efforts to send humans beyond Earth orbit,” said NASA Administrator Charlie Bolden in a statement. “We look forward to the restoration of these engines by the Bezos team and applaud Jeff’s desire to make these historic artifacts available for public display.”

There is no indication so far from Bezos of which flight these engines were from. Last year when Bezos made his announcement, he said they had found the engines from Apollo 11, but it may be been difficult to determine exactly which flight the ones found were from. In total, NASA launched 65 F-1 engines, five per flight, on 13 Saturn V boosters between 1967 and 1973. Supposedly there would be serial numbers to make the identification of which flight these engines were from. Bezos indicated on his blog they were still on the ship, so perhaps the identification will come later.

Five F-1 engines were used in the 138-foot-tall S-IC, or first stage, of each Saturn V, which depended on the five-engine cluster for the 7.5 million pounds of thrust needed to lift it from the launch pad. Each of the engines stands 19 feet tall by 12 feet wide and weigh over 18,000 pounds.

F-1 Thrust Chamber. Credit: Bezos Expeditions
F-1 Thrust Chamber. Credit: Bezos Expeditions

Bezos and his team spent three weeks at sea, working almost 3 miles below the surface. “We found so much,” Bezos wrote. “We’ve seen an underwater wonderland – an incredible sculpture garden of twisted F-1 engines that tells the story of a fiery and violent end, one that serves testament to the Apollo program. We photographed many beautiful objects in situ and have now recovered many prime pieces. Each piece we bring on deck conjures for me the thousands of engineers who worked together back then to do what for all time had been thought surely impossible.”

Gas Generator and Manifold. Credit: Bezos Expeditions
Gas Generator and Manifold. Credit: Bezos Expeditions
Thrust Chamber and Fuel Manifold. Credit: Bezos Expeditions
Thrust Chamber and Fuel Manifold. Credit: Bezos Expeditions
Nozzle on the ocean floor. Credit: Bezos Expeditions
Nozzle on the ocean floor. Credit: Bezos Expeditions
Saturn V Stage Structure. Credit: Bezos Expeditions.
Saturn V Stage Structure. Credit: Bezos Expeditions.

See more images and descriptions at the Bezos Expeditions website.

Keeping up with Comet PANSTARRS through the end of March

Multiple exposures of Comet PANSTARRS taken on March 19 were stacked to create this amazing image. The field of view is about 6 by 4 degrees. Details: Leica-Apo180mm lens at f/4. Click to enlarge. Credit: Michael Jaeger

Wow – what an image! Michael Jaeger’s photo of Comet C/2011 L4 PANSTARRS on March 19 resembles those taken by the orbiting Stereo-B spacecraft. Check out this video (and the one below) to see what I mean. Most  observers using binoculars and telescopes are seeing the comet’s head, bright false nucleus and a single plume-like tail.

Michael Jaeger of Stixendorf, Austria has been shooting beautiful comet images since 1982. Credit: Michael Jaeger
Michael Jaeger of Stixendorf, Austria has been shooting beautiful comet images since 1982. Credit: Michael Jaeger

Careful photography like Jaeger’s reveals so much more – two bright, broad dust tails and three shorter spikes. One of the dust tails peels off to the left of the comet’s head, the other extends upward feather-like before splitting into two separate streamers. There are also several narrow, spike-like tails due to various excited elements and gas emissions from the comet’s icy nucleus.

Video of Comet PANSTARRS made from pictures taken by NASA’s STEREO-B spacecraft on March 13, one of two spacecraft that orbit ahead and behind Earth monitoring solar activity on the sun’s farside.

Michael Jaeger of Austria has been shooting pictures of comets since 1982. His images always reveal details that entice visual observers to go out and look for more than what first meets the eye. Last night I got my first look at the comet through a telescope and was delighted at the sight of its smooth, luminous tail and brilliant yellow false-nucleus. The false nucleus is the bright spot visible in the center of the PANSTARRS’ head; in 10×50 binoculars it looks like a star. Through a telescope it’s a fuzzy, yellow pea. Buried deep within the false nucleus is the icy comet nucleus itself, vaporizing in the sun’s heat and shrouded by its own dust.

Comet PANSTARRS last night March 19, 2013 in a setting with white pines. Details: 300mm lens, f/2.8, ISO 800 and 3-second exposure. Credit: Bob King
Comet PANSTARRS last night March 19, 2013 in the company of white pines. Details: 300mm lens, f/2.8, ISO 800 and 3-second exposure. Credit: Bob King

The comet has faded in the past week or two from 1st magnitude – equal to some of the brightest stars – to about magnitude 2.5 or somewhat fainter than the stars of the Big Dipper. In very clear skies, it was still dimly visible with the naked eye about 40 minutes after sunset low in the northwestern sky. I only knew where to look after first finding the comet in 10×50 binoculars. The tail points straight up and stretches nearly 2 degrees in length once the sky gets dark enough to increase contrast and before PANSTARRS sinks too low. I kept it in view for nearly an hour from a wind-whipped location north of Duluth, Minn.

The comet at 64x through a 15-inch (37cm) telescope on March 19, 2013. The pale yellow false nucleus highlights the smooth, curved tail. Illustration: Bob King
The comet at 64x through a 15-inch (37cm) telescope on March 19, 2013. The pale yellow false nucleus highlights the smooth, curved tail. Illustration: Bob King

Through the telescope the nucleus blazed yellow from sunlit dust. Set inside the comet’s sleek, smooth head it reminded me of a lighthouse beacon shining through the mist. Gorgeous! The tail trailed bent back to the northeast with a slight arc. I highly recommend setting up your telescope for a look at PANSTARRS, if for no other reason than to see the beauty of the false-nucleus within the finger-like tail.

Use this map to find Comet PANSTARRS now through March 31. It depicts the sky facing west-northwest 30 minutes after sunset. The comet’s height remains fairly steady at about 10-14 degrees but it moves steadily northward (to the right). The yellow circles represent the sun’s position every 3 days. It also moves northward but more slowly. One fist equals about 10 degrees of sky. Created with Chris Marriott’s SkyMap software
Use this map to find Comet PANSTARRS now through March 31. It depicts the sky facing west-northwest 30-40 minutes after sunset. The comet’s height remains fairly steady at about 10-14 degrees but it moves steadily northward (to the right). The yellow circles represent the sun’s position every 3 days. It also moves northward but more slowly. One fist equals about 10 degrees of sky. Created with Chris Marriott’s SkyMap software

You can use the chart to help you find the comet for the remainder of the month. It shows the comet’s position every 3 days now through March 31 from mid-northern latitudes, specially 42 degrees north (Chicago, Ill.). If you live in the northern U.S., the comet will be in approximately the same positions but slightly higher in the sky; in the southern U.S. it will be a little lower. Notice the “15 degree” altitude line. If you set the bottom of your fist flat on the horizon, the 15 degree line is a fist and a half above that level.

Boulder Panstarrs from Patrick Cullis on Vimeo.

Time lapse video made by Patrick Cullis showing Comet PANSTARRS setting behind the Flatirons of Boulder, Col. on March 19. As you watch, notice how the comet appears against the sky background and the direction it moves toward the horizon – both clues to help you find it.

The map compensates for the sun rising later each night and shows the comet’s height above the horizon when the sun is 7.5 degrees below the horizon. 7.5 degrees corresponds to about 30 minutes after sunset. Notice that the sun moves northward (to the right) just like the comet does over the next couple weeks but more slowly.

A compass has two sets of markings. One shows the basic directions N, S, etc. Those directions are subdivided into degrees of azimuth seen in the outer ring. Credit: Wikipedia
A compass has two sets of markings. One shows the basic directions N, S, etc. Those directions are subdivided into degrees of azimuth seen in the outer ring. Credit: Wikipedia

See those yellow numbers along the map’s horizon? Those are compass bearings called azimuths. If you have a compass, dig it out and give it a look. Every compass is marked in degrees of azimuth. 270 degrees is due west, 285 degrees is a fist and a half to the right of due west, 315 degrees is exactly halfway between due west and due north. North can be either 360 degrees or 0 degrees. Azimuths are simple way to subdivide directions to make them more precise.

Comet PANSTARRS very low in the northwestern sky shortly before setting last night March 19. Details: 300mm lens, f2.8, ISO 3200 and about 4 seconds.  Credit: Bob King
Comet PANSTARRS very low in the northwestern sky shortly before setting last night March 19. Details: 300mm lens, f2.8, ISO 3200 and about 4 seconds exposure. Credit: Bob King

The next time it’s clear, bring your binoculars and a compass (if needed) and find a location with a great view of the western sky preferably down to the horizon. Use the map along with the compass bearings to guide your eyes in the right direction. You can also use the sun’s position below the horizon to point you to the comet by angling up from the lingering glow at the sunset point. Remember to first focus your binoculars on the moon, cloud bank or star before attempting to find PANSTARRS. There’s nothing more frustrating than sweeping for a fuzzy comet with an out-of-focus instrument.

Astrophoto: Stunning Northern Norway Aurora

A panorama of eight images stitched together showing the aurora over the Rødsand-nordlys region of Norway on March 19, 2013. Credit and copyright: Frank Olsen.

Photographer Frank Olsen from Norway was feeling left out of the recent auroral activity from the Sun’s activity last Friday, as his region in northern Norway was socked in with clouds. “I really envied those Alaska guys that brought home amazing pictures,” he said on his Flickr page. But he was rewarded with an awesome view of the aurora last night (March 19, 2013) and took this beautiful panorama of 8 images. pictures. “A half moon lit up the sky just perfectly,” he said. “To the right, the small town of Sortland, and to the left the even smaller town of Stokmarknes. In between Langøya (long) island.” Click on the image to see a larger version, and Frank has a 20 MB version, too.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.