New Research may Explain how Supermassive Black Holes in the Early Universe Grew so Fast

An artist's illustration of a supermassive black hole (SMBH.) The JWST has revealed SMBHs in the early Universe that are much more massive than our scientific models can explain. Could primordial black holes have acted as "seeds" for these massive SMBHs? Image Credit: ESA

Not long ago, the James Webb Space Telescope (JWST) peered into Cosmic Dawn, the cosmological period when the first galaxies formed less than one billion years after the Big Bang. In the process, it discovered something rather surprising. Not only were there more galaxies (and brighter ones, too!) than expected, but these galaxies had supermassive black holes (SMBH) much larger than cosmological models predicted. For astronomers and cosmologists, explaining how these galaxies and their SMBHs (aka. quasars) could have grown so large less than a billion years after the Big Bang has become a major challenge.

Several proposals have been made, ranging from optical illusions to Dark Matter accelerating black hole growth. In a recent study, an international team led by researchers from the National Institute for Astrophysics (INAF) analyzed a sample of 21 quasars, among the most distant ever discovered. The results suggest that the supermassive black holes at the center of these galaxies may have reached their surprising masses through very rapid accretion, providing a plausible explanation for how galaxies and their SMBHs grew and evolved during the early Universe.

Continue reading “New Research may Explain how Supermassive Black Holes in the Early Universe Grew so Fast”

The Surprising Source of Radiation Coming From Black Holes

A visualization of how turbulent plasma moves through a black hole accretion disk threaded with strong magnetic fields. Image credit: Jani Narhi.
A visualization of how turbulent plasma moves through a black hole accretion disk threaded with strong magnetic fields. Image credit: Jani Närhi.

Black holes are famous for sucking in everything that crosses their event horizons, including light. So, why do astronomers see energetic radiation coming from the environment of a black hole in an X-ray binary system? It’s a good question that finally has an answer.

Continue reading “The Surprising Source of Radiation Coming From Black Holes”

X-Ray Telescopes Could Study Exoplanets Too

Jupiter seen in X-rays

Exoplanets are often discovered using the transit method (over three quarters of those discovered have been found this way.) The same transit technique can be used to study them, often revealing detail about their atmosphere. The observations are typically made in visible light or infrared but a new paper suggests X-rays may be useful too. Stellar wind interactions with the planet’s atmosphere for example would lead to X-ray emissions revealing information about the atmosphere. As we further our exploration of exoplanets we develop our understanding of our own Solar System and ultimately, the origins of life in the Universe. 

Continue reading “X-Ray Telescopes Could Study Exoplanets Too”

These Three Neutron Stars Shouldn't Be So Cold

Artist's impression of a neutron star, with white/blue filaments are streaming out from its polar regions, representing magnetic field lines. Credit: ESA

Neutron stars are among the densest objects in the Universe, second only to black holes. Like black holes, neutron stars are what remains after a star reaches the end of its life cycle and undergoes gravitational collapse. This produces a massive explosion (a supernova), in which a star sheds its outer layers and leaves behind a super-compressed stellar remnant. In fact, scientists speculate that matter at the center of the star is compressed to the point that even atoms collapse and electrons merge with protons to create neutrons.

Traditionally, scientists have relied on the “Equation of State” – a theoretical model that describes the state of matter under a given set of physical conditions – to understand what physical processes can occur inside a neutron star. But when a team led by scientists from the Spanish National Research Council (CSIC) examined three exceptionally young neutron stars, they noticed they were 10-100 times colder than other neutron stars of the same age. For this, the researchers concluded that these three stars are inconsistent with most of the proposed equations of state.

Continue reading “These Three Neutron Stars Shouldn't Be So Cold”

After Swirling Around a Black Hole, Matter Just Falls Straight In

On the left, an optical image from the Digitized Sky Survey shows Cygnus X-1, outlined in a red box. Cygnus X-1 is located near large active regions of star formation in the Milky Way, as seen in this image that spans some 700 light years across. An artist's illustration on the right depicts what astronomers think is happening within the Cygnus X-1 system. Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star. New studies with data from Chandra and several other telescopes have determined the black hole's spin, mass, and distance with unprecedented accuracy.

The physics surrounding black holes is just plain weird. A gravitational well so strong that not even light can escape can do some pretty strange things to normal matter. Over the decades, plenty of theories have been put forward about what those strange things might be. And now, a new paper from physicists at the University of Oxford has proved that, once again, Einstein’s theory of gravity was right. 

Continue reading “After Swirling Around a Black Hole, Matter Just Falls Straight In”

First Light from Einstein Probe: A Supernova Remnant

Supernova remnant Puppis A

On 9 January 2024, the Einstein probe was launched, its mission to study the night sky in X-rays. The first image from the probe that explores the Universe in these energetic wavelengths has just been released. It shows Puppis A, the supernova remnant from a massive star that exploded 4,000 years ago. The image showed the expanding cloud of ejecta from the explosion but now, Einstein will continue to scan the skies for other X-ray events. 

Continue reading “First Light from Einstein Probe: A Supernova Remnant”

Stellar Winds Coming From Other Stars Measured for the First Time

Infrared image of the shockwave created by the massive giant star Zeta Ophiuchi in an interstellar dust cloud. Credit: NASA/JPL-Caltech; NASA and The Hubble Heritage Team (STScI/AURA); C. R. O'Dell, Vanderbilt University

An international research team led by the University of Vienna has made a major breakthrough. In a study recently published in Nature Astronomy, they describe how they conducted the first direct measurements of stellar wind in three Sun-like star systems. Using X-ray emission data obtained by the ESA’s X-ray Multi-Mirror-Newton (XMM-Newton) of these stars’ “astrospheres,” they measured the mass loss rate of these stars via stellar winds. The study of how stars and planets co-evolve could assist in the search for life while also helping astronomers predict the future evolution of our Solar System.

Continue reading “Stellar Winds Coming From Other Stars Measured for the First Time”

This Black Hole is a Total Underachiever

Anyone can be an underachiever, even if you’re an astronomical singularity weighing over four billion times the mass of the Sun. At least the quasar H1821+643 doesn’t have parents to be disappointed in it. But its underachievement could shed light on how quasars, a potent type of black hole, can come to influence entire clusters of galaxies, as described in a new paper from researchers at the University of Nottingham and Harvard.

Continue reading “This Black Hole is a Total Underachiever”

Half the Entire Sky, Seen in X-Rays

This image show half of the X-ray sky, projected onto a circle with the center of the Milky Way on the left and the galactic plane running horizontally. Photons have been colour-coded according to their energy (red for energies 0.3-0.6 keV, green for 0.6-1 keV, blue for 1-2.3 keV). Credit: MPE, J. Sanders for the eROSITA consortium
This image show half of the X-ray sky, projected onto a circle with the center of the Milky Way on the left and the galactic plane running horizontally. Photons have been colour-coded according to their energy (red for energies 0.3-0.6 keV, green for 0.6-1 keV, blue for 1-2.3 keV). Credit: MPE, J. Sanders for the eROSITA consortium

There’s an old trope in science fiction about someone suddenly getting X-ray vision and looking through solid objects. It turns out to be a physical impossibility with our Mark I eyeballs. However, astronomers have found a way around that challenge that lets us study the Universe with X-ray vision.

Continue reading “Half the Entire Sky, Seen in X-Rays”

Chinese Rocket Lofts the Einstein Probe and its “Lobster Eyes”

Einstein Probe Launch

Any astronomical instrument dubbed “Lobster Eyes” is bound to grab attention. It’s actually unlike scientists to give anything creative names, take the big red coloured storm on Jupiter which resembles a spot…aka the Great Red Spot! Lobster Eyes is the name adtoped by the X-ray telescope that just been launched from China and will scan the sky looking for X-rays coming from high-energy transients. 

Continue reading “Chinese Rocket Lofts the Einstein Probe and its “Lobster Eyes””