Advanced Optics Could Help Us Find Earth 2.0

NASA has long been interested in building bigger and better space telescopes. Its Institute for Advanced Concepts (NIAC) has funded several methods for building and deploying novel types of telescopes for various purposes. Back in 2019, one of the projects they funded was the Dual Use Exoplanet Telescope (DUET), which would use an advanced form of optics to track down a potential Earth 2.0.

Continue reading “Advanced Optics Could Help Us Find Earth 2.0”

Astronomy Generates Mountains of Data. That’s Perfect for AI

A drone's view of the Rubin Observatory under construction in 2023. The 8.4-meter telescope is getting closer to completion and first light in 2025. The telescope will create a vast amount of data that will require special resources to manage, including AI. Image Credit: Rubin Observatory/NSF/AURA/A. Pizarro D

Consumer-grade AI is finding its way into people’s daily lives with its ability to generate text and images and automate tasks. But astronomers need much more powerful, specialized AI. The vast amounts of observational data generated by modern telescopes and observatories defies astronomers’ efforts to extract all of its meaning.

Continue reading “Astronomy Generates Mountains of Data. That’s Perfect for AI”

NASA Takes Six Advanced Tech Concepts to Phase II

From a lunar railway to a space telescope with a liquid lens, the 2024 NIAC Phase Two awardees are developing some fascinating concepts. This collage of artist concepts highlights the novel approaches proposed by the Phase Two awardees for possible future missions. Credits: NASA, From left: Edward Balaban, Mary Knapp, Mahmooda Sultana, Brianna Clements, Ethan Schaler

It’s that time again. NIAC (NASA Innovative Advanced Concepts) has announced six concepts that will receive funding and proceed to the second phase of development. This is always an interesting look at the technologies and missions that could come to fruition in the future.

Continue reading “NASA Takes Six Advanced Tech Concepts to Phase II”

Ultrablack Coating Could Be Ideal for Telescopes

The team’s ultrablack coating can be applied to curved surfaces and magnesium alloys to trap nearly all light.

If you, like me, have dabbled with telescope making you will know what a fickle friend light can be. On one hand you want to capture as much as you can (but only from the object, not from nearby lights) and want to reflect or refract it to the point of observation or study.  What you most certainly don’t want is stray light to be bounced around inside the telescope so components (except the mirror!) are sprayed as black as possible. Unfortunately black paints tend to be quite susceptible to damage and struggle to cope with the harsh conditions and cold temperatures telescopes are subjected to. A team has recently developed a new atomic-layer deposition method which absorbs 99.3% of light and is durable too. 

Continue reading “Ultrablack Coating Could Be Ideal for Telescopes”

The LIFE Telescope Passed its First Test: It Detected Biosignatures on Earth.

LIFE will have five separate space telescopes that fly in formation and work together to detect biosignatures in exoplanet atmospheres. Image Credit: LIFE, ETH Zurich

We know that there are thousands of exoplanets out there, with many millions more waiting to be discovered. But the vast majority of exoplanets are simply uninhabitable. For the few that may be habitable, we can only determine if they are by examining their atmospheres. LIFE, the Large Interferometer for Exoplanets, can help.

Continue reading “The LIFE Telescope Passed its First Test: It Detected Biosignatures on Earth.”

What Kinds of Astronomy Could Be Done With a Telescope on the Moon?

An illustration of a lunar telescope inside a crater. Credits: Saptarshi Bandyopadhyay/NIAC.

For decades, astronomers have said that one of the most optimal places to build large telescopes is on the surface of the Moon. The Moon has several advantages over Earth- and space-based telescopes that make it worth considering as a future home for giant observatories. A new paper lists all the advantages, including how telescopes on the lunar surface wouldn’t be blocked by an atmosphere or impacted by wind, and how the low gravity would allow gigantic structures to be built that could be upgraded over time by astronauts.

“Progress on the big questions in astronomy, such as life on certain exoplanets or dark matter, will ultimately require high angular resolution, a large collecting area and access to the full optical spectrum,” write French astronomers Jean Schneider, Pierre Kervella, and Antoine Labeyrie. “All astronomy will benefit from the advantages provided by the localization on the Moon.”  

And even though it might be decades before we have a permanent presence on the Moon, the astronomers suggest we should start with small telescopes now.

Continue reading “What Kinds of Astronomy Could Be Done With a Telescope on the Moon?”

The Extremely Large Telescope’s Dome is on the Move

A webcam image of the construction of the Extremely Large Telescope (ELT) located on Cerro Armazones in the Chilean Atacama Desert, on January 29, 2024. Credit: ESO.

Construction of the Extremely Large Telescope (ELT) reached a milestone, with the structure of the dome completed just enough where engineers were able to rotate the dome’s skeleton for the first time.

ESO released a timelapse video this week of the dome’s movement, sped up from the actual snail’s pace of 1 centimeter per second. When the telescope is completed – currently set for sometime in 2028 — the rotation of the dome will allow the telescope to track objects in the night sky over the Chilean Atacama desert. The final operating speed will be at pace of 5 kilometers per hour.

Take note of the size of the humans moving about on the video. They appear like tiny ants compared to the immense size of the aptly named ELT.

Continue reading “The Extremely Large Telescope’s Dome is on the Move”

Review: Unistellar’s eQuinox 2 Telescope and New Smart Solar Filter

The Sun on November 27, 2023, observed using the Unistellar eQuinox 2 and the new smart solar filter. Credit: Nancy Atkinson and Unistellar.
The Sun on November 27, 2023, observed using the Unistellar eQuinox 2 and the new smart solar filter. Credit: Nancy Atkinson and Unistellar.

I recently had the chance to try out one of Unistellar’s smart telescopes, the eQuinox 2. Unparalleled in its ease of use, I was literally viewing distant nebula, galaxies, and star clusters within 15 minutes of opening the box.

I also had the opportunity to try out Unistellar’s new Smart Solar Filter, which I’ll discuss more below. But first, more about the telescope itself:

Continue reading “Review: Unistellar’s eQuinox 2 Telescope and New Smart Solar Filter”

Telescopes Didn’t Always Play Nicely with Each Other. That’s About to Change

This composite image of the GOODS-South field — the result of an extremely deep survey using two of the four giant 8.2-metre telescopes composing ESO’s Very Large Telescope (VLT) and a unique custom-built filter — shows some of the faintest galaxies ever seen.
Composite image of the GOODS-South field, result of a deep survey using two 8.2-metre telescopes (Credit : ESO/M Hayes)

Those readers who have dabbled with astronomical imaging will be familiar with the technique of taking multiple images and then stacking them together to improve the strength of the signal, yielding better images. Taking this technique further many research projects require date of the same object spanning longer time frames than a nights observing. This data is usually captured from different locations and under different conditions. The problem has been matching the observations across all these survey runs. Researchers have shared a new approach to calculate if separate images of the same object will yield additional signals or just generate useless noise.

Continue reading “Telescopes Didn’t Always Play Nicely with Each Other. That’s About to Change”

Next Generation Space Telescopes Could Use Deformable Mirrors to Image Earth-Sized Worlds

The Roman Space Telescope Coronagraph during assembly of the static optics at NASA’s Jet Propulsion Laboratory Credits: Dr. Eduardo Bendek

Observing distant objects is no easy task, thanks to our planet’s thick and fluffy atmosphere. As light passes through the upper reaches of our atmosphere, it is refracted and distorted, making it much harder to discern objects at cosmological distances (billions of light years away) and small objects in adjacent star systems like exoplanets. For astronomers, there are only two ways to overcome this problem: send telescopes to space or equip telescopes with mirrors that can adjust to compensate for atmospheric distortion.

Since 1970, NASA and the ESA have launched more than 90 space telescopes into orbit, and 29 of these are still active, so it’s safe to say we’ve got that covered! But in the coming years, a growing number of ground-based telescopes will incorporate adaptive optics (AOs) that will allow them to perform cutting-edge astronomy. This includes the study of exoplanets, which next-generation telescopes will be able to observe directly using coronographs and self-adjusting mirrors. This will allow astronomers to obtain spectra directly from their atmospheres and characterize them to see if they are habitable.

Continue reading “Next Generation Space Telescopes Could Use Deformable Mirrors to Image Earth-Sized Worlds”