NASA is Working on Technology to 3D Print Circuits in Space

Image of a 3D-printed circuit on display during the Goddard Field Day event that launched on the Suborbital Technology Experiment Carrier-9 (SubTEC-9) technology test flight from NASA's Wallops Flight Facility in April 2023. (Credit: NASA/Karl B. Hille)

A collaboration of engineers from NASA and academia recently tested hybrid printed electronic circuits near the edge of space, also known as the Kármán line. The space-readiness test was demonstrated on the Suborbital Technology Experiment Carrier-9, or (SubTEC-9), sounding rocket mission, which was launched from NASA’s Wallops Flight Facility on April 25 and reached an altitude of approximately 174 kilometers (108 miles), which lasted only a few minutes before the rocket descended to the ground via parachute.

Continue reading “NASA is Working on Technology to 3D Print Circuits in Space”

The State of Suborbital Space Science

Virgin Galactic's SpaceShipTwo during a test flight. Suborbital science experiments fly aboard this craft, as well as Blue Origin's New Shepard, and other suborbital flights, providing scientists, students, and others with valuable microgravity access. Credit: Virgin Galactic

Think there’s nothing to learn through suborbital flight and that space science is only done in orbit? Think again. Recently, a group of school students in Canada asked the question: do Epi-Pens work in space? These are epinephrine-loaded injectors used to help people with allergies survive a severe attack. To get an answer, the class at St Brother André Elementary School worked with NASA, the University of Ottawa, and the non-profit Cubes in Space program to launch some Epi-Pens on suborbital flights aboard a rocket and a high-altitude balloon. The result? Post-flight analysis showed that the pens lost their efficacy in space. It was a surprise to NASA as well as to the students.

Continue reading “The State of Suborbital Space Science”

The Future Could Bring Pinpoint Deliveries From Orbit

Credit: SpaceWorks

Since the dawn of the Space Age, considerable progress has been made with launch vehicles. From single stage to multistage rockets and spaceplanes to reusable launch vehicles, we have become very good at sending payloads to space. But when it comes to returning payloads to Earth, our methods really haven’t evolved much at all. Some seventy years later, we are still relying on air friction, heatshields, and parachutes and landing at sea more often than not.

Luckily, there are many solutions that NASA and commercial space companies are currently investigating. For example, SpaceWorks Enterprises, Inc (SEI) is currently working on an orbital delivery system known as Reentry Device (RED) capsules. With support provided by NASA, they are gearing up for a test run this October where one of their capsules gets dropped from an altitude of 30 km (19 mi).

Continue reading “The Future Could Bring Pinpoint Deliveries From Orbit”

Stephen Hawking Is Going To The Edge Of Space

The VMS Eve (Virgin Mother Ship) carrys VSS Unity (Virgin Spaceship) for its first flight ever over Mojave, CA on Thursday September 8, 2016. Image: Virgin Galactic

Stephen Hawking has spent decades theorizing about the Universe. His thinking on black holes, quantum gravity, quantum mechanics, and a long list of other topics, has helped shape our understanding of the cosmos. Now it looks like the man who has spent most of his adult life bound to a wheel-chair will travel to the edge of space.

In an interview with Good Morning Britain, Hawking said “Richard Branson has offered me a seat on Virgin Galactic, and I said yes immediately.” Hawking added that his “three children have brought me great joy—and I can tell you what will make me happy, to travel in space.”

Stephen Hawking is one of the premier physicists and theorists of our time. Here he is being presented by his daughter Lucy Hawking at the lecture he gave for NASA’s 50th anniversary. Credit: NASA/Paul Alers

It’s all thanks to Richard Branson and his VSS Unity spaceship, which is still under development by The Spaceship Company. The Unity is designed to launch not from a rocket pad, but from underneath a carrier aircraft. By eliminating enormously expensive rocket launches from the whole endeavour, Branson hopes to make space more accessible to more people.

Virgin Spaceship Unity (VSS Unity) glides for the first time after being released from Virgin Mothership Eve (VMS Eve) over the Mojave Desert on 3rd, December 2016. Image: Virgin Galactic

The Virgin Galactic spacecraft is carried to an altitude of about 50,000 feet, then released from its carrier aircraft. Its rocket fires for about 1 minute, which accelerates the craft to three-and-a-half times the speed of sound, then is shut off. Then, according to Virgin Galactic, passengers will experience a “dramatic transition to silence and to true weightlessness.”

As the video shows, the spacecraft is still in glide testing phase, where it is carried to altitude, then released. There is no rocket burn, and the craft glides down and lands at its base.

This spaceflight won’t be Hawking’s first experience with weightlessness, however. To celebrate his 65th birthday, Hawking travelled on board Zero Gravity Corp’s modified Boeing 727 in 2007. At the time, that zero-g flight was in preparation for a trip into sub-orbital space with Virgin Galactic in 2009. But the development of Virgin Galactic’s spacecraft has suffered setbacks, and the 2009 date was not attainable.

Hawking has experienced zero gravity before, when he flew on Zero Gravity Corp’s modified Boeing 727 in 2007. Image: By Jim Campbell/Aero-News Network – http://www.flickr.com/photos/39735679@N00/475109138/ / http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=31873, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3655144

Virgin Galactic’s stated aim is to “democratize space,” albeit at a cost of US $250,000 per person. But somehow I doubt that Hawking will be paying. If anyone has earned a free trip into space, it is Dr. Stephen Hawking.

Update: NTSB Confirms SpaceShipTwo feathering was Prematurely Unlocked

NTSB Acting Chairman Christopher Hart shown explaining details of the investigation during a Monday Press Conference at Mojave Air & Space Port. (Photo Credit: NTSB)

In a Monday afternoon press conference, acting NTSB chairman Christopher Hart confirmed that the safety lock on Virgin Galactic’s SpaceShipTwo feathering mechanism was prematurely unlocked moments before breakup. Hart also quickly stated that this would be the last on-site press conference. The NTSB is nearing the completion of data gathering and the team will be returning to Washington DC with the data to undertake the facts compilation followed by the analysis.

Hart reiterated that the test flight was rich in telemetry. He said that the supply of data could expedite the analysis but he cautioned that they still expect the investigation to take 12 months to conclude and release a final report. He also added that as analysis proceeds, the NTSB would provide updates and he encouraged interested parties including the public at-large to undertake analysis of the available data; however, he emphasized that the conclusions drawn would be based on NTSB analysis alone.

From the data released and statements by Hart during the press conference, it is now clear that the NTSB recognizes that the feathering was not to be deployed until SpaceShipTwo achieved mach 1.4. The statement that acting chairman Hart made appeared to be explicitly referencing the Flight Card – the plan of actions and constraints for the flight. If this was the specific wording on the Flight Card, then it would have permitted a pilot to interpret it in various ways.

Sunday, it was reported that SpaceShipTwo was flying at about Mach 1.2 when break up occurred. As a private pilot familiar with the impact that flight conditions have on operations of an aircraft, I would add that the SpaceShipTwo constraint of mach 1.4 for executing feathering is likely intended to be viewed by the pilots-in-control as the descent speed after SpaceShipTwo had achieved maximum altitude during a flight to the edge of the atmosphere. During descent, mach 1.4 would be achieved at a much higher altitude where the air density is much lower and stresses from the feathering would also be much lower; SpaceShipTwo is designed to feather with those environmental conditions. During previous tests of SpaceShipTwo when feathering was tested at low altitude, the vehicle was flying far below mach 1, i.e., subsonic. The vehicle in that flight regime had no difficulty withstanding stresses during the test of feathering. It should be emphasized that the strict rules under which the NTSB proceeds with an investigation do not allow the investigators to inject assumptions based on their past experience.

A timeline of events leading up to catastrophic breakup of SpaceShipTwo was stated by the NTSB acting chairman:

10:07:19: SpaceShipTwo is released from the carrier craft, WhiteKnightTwo
10:07:21  SpaceShipTwo’s engine starts
10:07:29  SpaceShipTwo reaches mach 0.94
10:07:31: SpaceShipTwo exceeds the speed of sound – mach 1.02. Between 10:07:29 and 10:07:31, the feathering safety was unlocked.

10:0 7:34: All telemetry was lost

The NTSB has also created a new team responsible for evaluating the Human-Machine Interface (HMI) on SpaceShipTwo. HMI is a discipline that has gained increased interest within several manufacturing sectors, particularly in aircraft cockpit design. The performance of modern aircraft, places greater demand on human performance. The formulation of a Human performance team evaluating the HMI of SpaceShipTwo indicates that the NTSB wants to assess the quality of the cockpit control panels and whether the configuration of switches contributed to pilot error.

While most of the debris is confined to a 5 mile swath of desert, Hart stated that debris has now been found as far as 30 to 35 miles from the immediate debris field.

Besides the apparent focus by the NTSB on the unplanned feathering, Hart stated that they are checking the subsystems of the spacecraft for integrity – pneumatics, flight control, electrical, and so on.

Hart concluded the press conference by taking questions from reporters.

Q. Had the pilot been interviewed?
A. Not yet and not until he is fit to be interviewed.

Q. Was the Flight Card reviewed?
A. The NTSB has reviewed the flight card for procedures and constraints.
According to Hart, the card stated not to release the safety lock of the feathering mechanism until mach 1.4. The Flight Card describes the steps that a flight crew is to take to complete a successful mission.
Q/A. Hart confirmed that 2 pilot actions were necessary for feathering. 1) Unlock the safety, and 2) engage feathering lever. U.T. – Hart could not say if both pilots were necessary, that is, shared the two step process.
Q/A. A reporter contentiously asked Hart who was in the right seat. Hart stated that he did not know and also was unwilling to assume that it was the co-pilot, Alsbury. The reporter probing him further asked about his statements from Sunday. Hart agreed that he was mistaken to have assumed on Sunday that it was the copilot.

Finally, a review of the NTSB press conference video, placed on YouTube, presented a clarification as text on video. It stated that the co-pilot was residing in the right seat and was responsible for unlocking the feathering. At this preliminary stage of the investigation, it would appear that Alsbury’s death in the accident was due to his premature unlocking of the feathering mechanism. Hart did not state this but the circumstantial evidence so far is pointing in that direction.

Reference:

NTSB Press Conference Video, November 3, 2014

NASA’s Independence Day Fireworks from Wallops Investigates Earth’s Global Daytime Dynamo Current

July 4 Morning Fireworks from NASA. A NASA Black Brant V Sounding Rocket launches in support of the Daytime Dynamo Mission on July 4, 2013 from NASA Wallops Flight Facility, VA, Credit NASA/J. Eggers

July 4 Morning Fireworks from NASA!
A NASA Black Brant V Sounding Rocket launches in support of the Daytime Dynamo Mission on July 4, 2013 from NASA Wallops Flight Facility, VA. Credit: NASA/J. Eggers[/caption]

WALLOPS ISLAND, VA – Today, July 4, NASA celebrated America’s Independence Day with a spectacular fireworks display of a dynamic duo of sounding rockets – blasting off barely 15 seconds apart this morning from the agencies NASA Wallops Island facility on the Eastern Shore of Virginia on a science experiment to study the ionosphere.

The goal of the two rocket salvo was an in depth investigation of the electrical currents in Earth’s ionosphere – called the Daytime Dynamo.

The Dynamo electrical current sweeps through the ionosphere, a layer of charged particles that extends from about 30 to 600 miles above Earth.

Disruptions in the ionosphere can scramble radio wave signals for critical communications and navigations transmissions that can impact our every day lives.

The launches suffered multiple delays over the past 2 weeks due to weather, winds, errant boats and unacceptable science conditions in the upper atmosphere.

A Black Brant V launches first in support of Daytime Dynamo. Terroer improved Orion (at right) followed 15 seconds later from NASA Wallops on July 4, 2013. Credit:  NASA/P. Black
A Black Brant V launches first in support of Daytime Dynamo. Terroer improved Orion (at right) followed 15 seconds later from NASA Wallops on July 4, 2013. Credit: NASA/P. Black

At last, the Fourth of July was the irresistible charm.

The liftoff times were 10:31:25 a.m. for the Black Brant V and 10:31:40 a.m. (EDT) for the Terrier-Improved Orion.

The experiment involved launching two suborbital rockets and also dispatching a NASA King Air airplane to collect a stream of airborne science measurements.

Daytime Dynamo is a joint project between NASA and the Japanese Space Agency, or Japan Aerospace Exploration Agency, or JAXA, said Robert Pfaff to Universe Today in an exclusive interview inside Mission Control at Wallops. Pfaff is the principle investigator for the Dynamo sounding rocket at NASA’s Goddard Space Flight Center in Greenbelt, Md.

“The dynamo changes during the day and varies with the season,” Pfaff told me.

But they only have one chance to launch. So the science team has to pick the best time to meet the science objectives.

“We would launch every month if we could and had the funding, in order to even more fully characterize the Dynamo.”

Two rocket salvo comprising a Black Brant V (left) and a Terrier-Improved Orion (right) sit ready to launch as part of the Daytime Dynamo mission in this panoramic view from NASA Wallops Flight Facility at Virginia’s Eastern Shore.  Credit:  Ken Kremer
Two rocket salvo comprising a Black Brant V (left) and a Terrier-Improved Orion (right) sit ready to launch as part of the Daytime Dynamo mission in this panoramic view from NASA Wallops Flight Facility at Virginia’s Eastern Shore. Credit: Ken Kremer/kenkremer.com

The 35 foot tall single-stage Black Brant V launched first. It carried a 600 pound payload to collect the baseline data to characterize the neutral and charged ionospheric particles as it blasted skyward.

The 33 foot tall two-stage Terrier-Improved Orion took off just 15 seconds later in the wake of the exhaust of the Black Brant V.

Exhaust trails from Black Brant V and a Terrier-Improved Orion launched in support of Daytime Dynamo mission on July 4, 2013. Credit: NASA P. Black
Exhaust trails from Black Brant V and a Terrier-Improved Orion launched in support of Daytime Dynamo mission on July 4, 2013. Credit: NASA/P. Black

The Terrier-Improved Orion successfully deployed a lengthy trail of lithium gas from a pressurized canister that created a chemical tracer to track how the upper atmospheric winds vary with altitude. These winds are believed to be the drivers of the dynamo currents.

Both rockets fly for about five minutes to an altitude of some 100 miles up in the ionosphere. They both splashed down in the ocean after about 15 minutes.

NASA’s King Air aircraft was essential to the mission. I toured the airplane on the Wallops runway for an up-close look inside. It is outfitted with a bank of precisely aimed analytical instruments peering through the aircraft windows to capture the critical science data – see my photos herein.

“The King Air launches about an hour before the scheduled liftoff time,” Pfaff told me.

“It uses special cameras and filters to collect visible and infrared spectroscopic data from the lithium tracer to characterize the daytime dynamo.”

The science instruments are newly developed technology to make the daytime measurements of the lithium tracer and were jointly created by NASA, JAXA and scientists at Clemson University.

“Everything worked as planned,” Pfaff announced from Wallops Mission Control soon after the magnificent Fourth of July fireworks show this morning.

Ken Kremer

Black Brant V (left) and a Terrier-Improved Orion (right) rockets sit on launch pads as part of the Daytime Dynamo mission in this up close  view from NASA Wallops Flight Facility at Virginia’s Eastern Shore.  Credit: Ken Kremer/kenkremer.com
Black Brant V (left) and Terrier-Improved Orion (right) rockets sit on launch pads as part of the Daytime Dynamo mission in this up close view from NASA Wallops Flight Facility at Virginia’s Eastern Shore. Credit: Ken Kremer/kenkremer.com

Inside cabin view of NASA King Air aircraft outfitted with science instrument mounts to support a of cameras to capture visible and infrared spectroscopic measurements in support of Daytime Dynamic launches on July 4, 2013.  Credit: Ken Kremer/kenkremer.com
Inside cabin view of NASA King Air aircraft outfitted with science instrument mounts to support a bank of cameras to capture visible and infrared spectroscopic measurements in support of Daytime Dynamic launches on July 4, 2013. Credit: Ken Kremer/kenkremer.com

Robert Pfaff (right), Science Principle Investigator and Ken Kremer of Universe Today (left) discuss NASA’s Daytime Dynamo mission inside NASA Wallop’s Mission Control.  Credit: Ken Kremer/kenkremer.com
Robert Pfaff (right), Science Principle Investigator and Ken Kremer of Universe Today (left) discuss NASA’s Daytime Dynamo mission inside NASA Wallop’s Mission Control. Credit: Ken Kremer/kenkremer.com

Spectacular Night Launch from NASA Wallops Shines Bright Beacon on Star Formation in Early Universe

Night time blast off of 4 stage NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload to study when the first stars and galaxies formed in the universe. The Black Brant soars above huge water tower at adjacent Antares rocket launch pad at NASA Wallops. Credit: Ken Kremer- kenkremer.com

Night time blast off of 4 stage NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload to study when the first stars and galaxies formed in the universe. The Black Brant soars above huge water tower at adjacent Antares rocket launch pad at NASA Wallops. Credit: Ken Kremer- kenkremer.com
Updated with more photos[/caption]

WALLOPS ISLAND, VA – The spectacular night time launch of a powerful Black Brant XII suborbital rocket from NASA’s launch range at the Wallops Flight Facility on Virginia’s Eastern Shore at 11:05 p.m. June 5 turned darkness into day as the rocket swiftly streaked skyward with the Cosmic Infrared Background ExpeRiment (CIBER) on a NASA mission to shine a bright beacon for science on star and galaxy formation in the early Universe.

A very loud explosive boom shook the local launch area at ignition that was also heard by local residents and tourists at distances over 10 miles away, gleeful spectators told me.

“The data looks good so far,” Jamie Bock, CIBER principal investigator from the California Institute of Technology, told Universe Today in an exclusive post-launch interview inside Mission Control at NASA Wallops. “I’m very happy.”

Ignition of NASA Black Brant XII suborbital rocket following night time launch at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility at the eastern Virginia shoreline. The launch pad sits in front of the Antares rocket Launch Complex 0A dominated by the huge water tower.  The rocket carried the CIBER astronomy payload to an altitude of approximately 358 miles above the Atlantic Ocean to study when the first stars and galaxies formed in the universe and how brightly they burned their nuclear fuel.  Credit: Ken Kremer- kenkremer.com
Ignition of NASA Black Brant XII suborbital rocket following night time launch at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility at the eastern Virginia shoreline. The launch pad sits in front of the Antares rocket Launch Complex 0A dominated by the huge water tower. The rocket carried the CIBER astronomy payload to an altitude of approximately 358 miles above the Atlantic Ocean to study when the first stars and galaxies formed in the universe and how brightly they burned their nuclear fuel. Credit: Ken Kremer- kenkremer.com

The four stage Black Brant XII is the most powerful sounding rocket in America’s arsenal for scientific research.

“I’m absolutely thrilled with this launch and this is very important for Wallops,” William Wrobel, Director of NASA Wallops Flight Facility, told me in an exclusive interview moments after liftoff.

Wallops is rapidly ramping up launch activities this year with two types of powerful new medium class rockets – Antares and Minotaur V- that can loft heavy payloads to the International Space Station (ISS) and to interplanetary space from the newly built pad 0A and the upgraded, adjacent launch pad 0B.

“We have launched over 16,000 sounding rockets.”

“Soon we will be launching our first spacecraft to the moon, NASA’s LADEE orbiter. And we just launched the Antares test flight on April 21.”

I was delighted to witness the magnificent launch from less than half a mile away with a big group of cheering Wallops employees and Wallops Center Director Wrobel. See my launch photos and time lapse shot herein.

Everyone could hear piercing explosions as each stage of the Black Brant rocket ignited as it soared to the heavens to an altitude of some 358 miles above the Atlantic Ocean.

Seconds after liftoff we could see what looked like a rain of sparkling fireworks showing downward towards the launch pad. It was a fabulous shower of aluminum slag and spent ammonium perchlorate rocket fuel.

A powerful NASA Black Brant XII suborbital rocket streaks into the night sky following its launch at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility at the eastern Virginia shoreline. The launch pad sits in front of the Antares rocket Launch Complex 0A dominated by the huge water tower.  The rocket carried the Cosmic Infrared Background ExpeRiment (CIBER) to an altitude of approximately 358 miles above the Atlantic Ocean to study when the first stars and galaxies formed in the universe and how brightly they burned their nuclear fuel.  Credit: Ken Kremer - kenkremer.com
A powerful NASA Black Brant XII suborbital rocket streaks spectacularly into the night sky following its launch at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility at the eastern Virginia shoreline. The launch pad sits in front of the Antares rocket Launch Complex 0A dominated by the huge water tower. The rocket carried the Cosmic Infrared Background ExpeRiment (CIBER) to an altitude of approximately 358 miles above the Atlantic Ocean to study when the first stars and galaxies formed in the universe and how brightly they burned their nuclear fuel. Side firing thrusters have ignited to impart stabilizing spin as rocket ascends above launch rail. Credit: Ken Kremer- kenkremer.com

The awesome launch took place on a perfectly clear night drenched with brightly shining stars as the Atlantic Ocean waves relentlessly pounded the shore just a few hundred feet away.

The rocket zoomed past the prominent constellation Scorpius above the Atlantic Ocean.

In fact we were so close that we could hear the spent first stage as it was plummeting from the sky and smashed into the ocean, perhaps 10 miles away.

After completing its spectral collection to determine when did the first stars and galaxies form and how brightly did they shine burning their nuclear fuel, the CIBER payload splashed down in the Atlantic Ocean and was not recovered.

Time lapse view of night launch of NASA Black Brant XII suborbital rocket zooming past constellation Scorpius (left) at 11:05 p.m. EDT above Atlantic Ocean on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com
Time lapse view of night launch of NASA Black Brant XII suborbital rocket zooming past constellation Scorpius (left) at 11:05 p.m. EDT above Atlantic Ocean on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com

Night time launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com
Night time launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: Ken Kremer- kenkremer.com

NASA said the launch was seen from as far away as central New Jersey, southwestern Pennsylvania and northeastern North Carolina.

One of my astronomy friends Joe Stieber, did see the launch from about 135 miles away in central New Jersey and captured beautiful time lapse shots (see below).

Time lapse view of June 5 launch of Blank Brant XII sounding rocket from Wallops Island as seen from Carranza Field in Wharton State Forest, NJ (about 135 miles north from Wallops). Scorpius is above the trees at the far left. Credit: Joe Stieber- sjastro.com
Time lapse view of June 5 launch of Blank Brant XII sounding rocket from Wallops Island as seen from Carranza Field in Wharton State Forest, NJ (about 135 miles north from Wallops). Scorpius is above the trees at the far left. Credit: Joe Stieber- sjastro.com

Everything with the rocket and payload went exactly as planned.

“This was our fourth and last flight of the CIBER payload,” Bock told me. “We are still analyzing data from the last 2 flights.”

“CIBER first flew in 2009 atop smaller sounding rockets launched from White Sands Missile Range, N.M. and was recovered.”

“On this flight we wanted to send the experiment higher than ever before to collect more measurements for a longer period of time to help determine the brightness of the early Universe.”

CIBER is instrumented with 2 cameras and 2 spectrometers.

“The payload had to be cooled to 84 Kelvin with liquid nitrogen before launch in order for us to make the measurements,” Bock told me.

“The launch was delayed a day from June 4 because of difficulty both in cooling the payload to the required temperature and in keeping the temperature fluctuations to less than 100 microkelvins,” Bock explained

The CIBER experiment involves scientists and funding from the US and NASA, Japan and South Korea.

Bock is already thinking about the next logical steps with a space based science satellite.

Space.com has now featured an album of my CIBER launch photos – here

Night  launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from NASA Wallops Flight Facility, VA carrying CIBER astronomy payload. Credit: Ken Kremer
Night launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT on June 5, 2013 from NASA Wallops Flight Facility, VA carrying CIBER astronomy payload. Credit: Ken Kremer

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations

June 11: “Send your Name to Mars on MAVEN” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.

June 12: “Send your Name to Mars on MAVEN” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Aerial view of NASA Wallops launch site on Virginia shore shows launch pads for both suborbital and orbital rockets. This photo was snapped from on top of Pad 0B that will soon launch NASA‘s LADEE orbiter to the Moon. Credit: Ken Kremer- kenkremer.com
Aerial view of NASA Wallops launch site on Virginia shore shows launch pads for both suborbital and orbital rockets. CIBER’s Black Brant XII rocket blasted off just behind the Pad 0A water tower. This photo was snapped from on top of Pad 0B that will soon launch NASA‘s LADEE orbiter to the Moon. Credit: Ken Kremer- kenkremer.com

NASA’s CIBER experiment seeks clues to the formation of the first stars and galaxies. CIBER blasted off on June 5 from the NASA  Wallops Flight Facility, Virginia. It will study the total sky brightness, to probe the component from first stars and galaxies using spectral signatures, and searches for the distinctive spatial pattern seen in this image, produced by large-scale structures from dark matter. This shows a numerical simulation of the density of matter when the universe was one billion years old. Galaxies formation follows the gravitational wells produced by dark matter, where hydrogen gas coalesces, and the first stars ignite.  Credit: Volker Springel/Virgo Consortium.
NASA’s CIBER experiment seeks clues to the formation of the first stars and galaxies. CIBER blasted off on June 5 from the NASA Wallops Flight Facility, Virginia. It will study the total sky brightness, to probe the component from first stars and galaxies using spectral signatures, and searches for the distinctive spatial pattern seen in this image, produced by large-scale structures from dark matter. This shows a numerical simulation of the density of matter when the universe was one billion years old. Galaxies formation follows the gravitational wells produced by dark matter, where hydrogen gas coalesces, and the first stars ignite. Credit: Volker Springel/Virgo Consortium.

NASA Time lapse view shows multiple stages firing during night launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT above Atlantic Ocean on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: NASA/Jamie Adkins
NASA Time lapse view shows multiple stages firing during night launch of NASA Black Brant XII suborbital rocket at 11:05 p.m. EDT above Atlantic Ocean on June 5, 2013 from the NASA Wallops Flight Facility carrying the CIBER astronomy payload. Credit: NASA/Jamie Adkins

NASA Black Brant XII suborbital rocket streaks skyward after blastoff at 11:05 p.m. EDT on June 5, 2013 from NASA Wallops Flight Facility, VA carrying CIBER astronomy payload. Credit: Ken Kremer
NASA Black Brant XII suborbital rocket streaks skyward after blastoff at 11:05 p.m. EDT on June 5, 2013 from NASA Wallops Flight Facility, VA carrying CIBER astronomy payload. Credit: Ken Kremer

SpaceShipTwo Fires Rocket Engines for First Ever Supersonic Test Flight- Photos & Video

SpaceShipTwo fires her rocket motor in flight for 1st time on April 29, 2013. Credit: MarsScientific.com

SpaceShipTwo fires her rocket motor in flight for 1st time on April 29, 2013. Credit: MarsScientific.com
Updated with more Photos & Video[/caption]

In a momentous and long awaited day in spaceflight, Virgin Galactic’s SpaceShipTwo (SS2) commercial spaceliner named “Enterprise” lit up her hybrid rocket engines in flight and reached supersonic speeds for the first time in history, today, Monday, April 29, 2013 – in the skies over the Mojave Desert in California.

“What a feeling to be on the ground with all the team in Mojave to witness Virgin Galactic go faster than the speed of sound,” wrote Virgin Galacic founder and owner, billionaire Sir Richard Branson, a short while ago.

Branson wants to bring the incomparable joys of human spaceflight– including weightlessness and spectacular views of the Earth’s curvature- to the masses. Thus making science fiction fantasies of the future like “2001: A Space Odyssey” and “Star Trek” a reality – TODAY!

“This is a momentous day and the single most important flight test to date for our Virgin Galactic program,” said Branson from the Mojave Air and Space Port. “What a feeling to be on the ground with all the team in Mojave to witness Virgin Galactic go faster than the speed of sound.”

ShaceShipTwo from Virgin Galactic fires its rocket engines for the first time in history on April 29, 2013 to achieve supersonic speed. Credit: Virgin Galactic
ShaceShipTwo from Virgin Galactic fires its rocket engines for the first time in history on April 29, 2013 to achieve supersonic speed. Credit: Virgin Galactic

The SpaceShipTwo test of Virgin Spaceship Enterprise was conducted by builder Scaled Composites, led by famed aerospace engineer Burt Rutan, and Virgin Galactic.

With Scaled Composites test pilots Mark Stucky and Mike Alsbury at the helm, the engine burn lasted about 16 seconds, exactly as planned and achieved a speed of Mach 1.2 – breaking the sound barrier!

Watch this video of today’s SS2 rocket test flight:

The test flight began at about 7:02 a.m. local California time as SpaceShipTwo took off from Mojave strapped to the belly of the WhiteKnightTwo (WK2) mothership.

SS2 was released from the mothership at an altitude of 47,000 feet (14 km) some 45 minutes into the flight.

“The pilots triggered ignition of the rocket motor, causing the main oxidizer valve to open and igniters to fire within the fuel case. At this point, SS2 was propelled forward and upward to a maximum altitude of 55,000 feet [17 km],” said Virgin Galactic in a statement.

SS2 is powered by RocketMotorTwo, developed by Sierra Nevada Corporation – which is also constructing the manned DreamChaser mini shuttle ‘space taxi’ under contract to NASA and aiming to restart launches of American astronauts from American soil to low Earth orbit and the ISS.

Boom camera shot of SpaceShipTwo breaking the sound barrier.  Credit: Virgin Galactic
Boom camera shot of SpaceShipTwo breaking the sound barrier. Credit: Virgin Galactic

“The first powered flight of Virgin Spaceship Enterprise was without any doubt, our single most important flight test to date,” said Branson, who watched the flight from the grounds of Mojave.

The entire fight lasted about an hour with SS2 gliding back for a safe landing at the Mojave Air and Space Port to conclude the history making flight.

Until today’s engine firing, the SS2/WK2 aerial test flight program had been limited to captive carry and landing drop tests.

Branson’s near term goal is for SpaceShipTwo to fly to space – commonly defined as 62 miles (100 km) altitude – for the first time before year’s end, validate the vehicle with a rigorous test flight program of gradually expanding the flight envelope to insure full operability and safety and then carry the first revenue paying passengers to space thereafter from Spaceport America in New Mexico.

“For the first time, we were able to prove the key components of the system, fully integrated and in flight. Today’s supersonic success opens the way for a rapid expansion of the spaceship’s powered flight envelope, with a very realistic goal of full space flight by the year’s end. We saw history in the making today and I couldn’t be more proud of everyone involved.”

Rumors that this rocket firing test flight was imminent had reached a fever pitch over the past few days, stoked by broad hints in open messages from Branson himself. So, a large group of Virgin employees and space enthusiasts were present today to witness the momentous event (see photos).

Sir Richard Branson hugs designer Burt Rutan as they are surrounded by employee's of Virgin Galactic, The SpaceShip Company and Scaled Composites watch as Virgin Galactic's SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt's wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its "mothership", WhiteKnight2 over the Mojave, CA area, April 29, 2013 at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.
Sir Richard Branson hugs designer Burt Rutan as they are surrounded by employee’s of Virgin Galactic, The SpaceShip Company and Scaled Composites watch as Virgin Galactic’s SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt’s wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its “mothership”, WhiteKnight2 over the Mojave, CA area, April 29, 2013 at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.

In the not too distant future, the purpose of SS2 is for everyday folks – not just highly trained astronauts – to experience spaceflight and out of this world views of the Earth below and the heavens above.

Eventually, human spaceflight could be as commonplace as flying aboard a commercial jetliner is today.

SpaceShipTwo can carry 8 people total; including a crew of two pilots and six passengers on suborbital missions to space.

Although SS2 cannot go into Earth orbit, Branson hopes that future varients will achieve orbit.

Branson himself will fly aboard the first commercial SS2 flight. Over 500 people have already plucked down over $200,000 to reserve the unprecedented choice seats.

“Like our hundreds of customers from around the world, my children and I cannot wait to get on board this fantastic vehicle for our own trip to space and am delighted that today’s milestone brings that day much closer,” said Branson.

The Commercial Spaceflight Federation quickly lauded the Virgin Galactic team and issued this statement:

“The Commercial Spaceflight Federation congratulates the team at Virgin Galactic and Scaled Composites for the first powered test flight of SpaceShipTwo today,” said CSF President Michael Lopez-Alegria.

“This incredible achievement is the direct result of the hard work and dedication by these two companies, as well as by RocketMotorTwo developer Sierra Nevada Corporation. Because of their efforts, we are one step closer to achieving safe, routine, and cost-effective access to space that will create abundant opportunities for space-based research and that will inspire the next generation of engineers and scientists. I applaud the team at Virgin Galactic and Scaled Composites for their accomplishment, and the team at Mojave Air & Space Port for their efforts in creating a professional and safe testing environment.”

In this era of stingy federal funding and slashes to NASA’s budget, commercial spaceflight will play a major and increasing role in bringing down the high costs of access to space as well as enabling an expanding science exploration program and private commercial space exploitation programs to open up the High Frontier.

Other private companies like SpaceX and Orbital Sciences are already leading the charge with regards to the commercial space exploration race with their Falcon 9 and Antares commercial rockets – now launching crucial cargo for NASA to the International Space Station (ISS) since the retirement of the Space Shuttle orbiters in 2011.

Ken Kremer

HI-C Returns Most Detailed Images Ever of the Sun’s Corona

NASA’s High Resolution Coronal Imager (Hi-C) mission, launched Wednesday, July 11 from White Sands Missile Range in New Mexico, successfully returned (as promised!) the highest-resolution images of the Sun’s corona ever acquired. These images of the dynamic million-degree region of the Sun’s atmosphere will provide scientists with more information on the complex activity found near the Sun’s surface and how it affects space weather throughout the Solar System.

Launched aboard a 58-foot-tall (17 meter) Black Brant sounding rocket, Hi-C was equipped with exceptionally well-made mirrors — some of the finest ever made, according to the mission report. These mirrors allowed Hi-C to image a section of the Sun’s corona in extreme ultraviolet light with a resolution of 0.1 arcsec/pixel, distinguishing features as small as 135 miles (217 km) across. That’s five times the resolution of SDO images, or any previous space telescope for that matter.

That’s like the difference between watching a program on a tube television and an HD flatscreen monitor.

The image below shows the same region as seen by SDO’s AIA array and Hi-C’s innovative mirror-and-“light-maze” system:

Read: NASA to Launch the Finest Mirrors Ever Made

“These revolutionary images of the sun demonstrate the key aspects of NASA’s sounding rocket program, namely the training of the next generation of principal investigators, the development of new space technologies, and scientific advancements,” said Barbara Giles, director for NASA’s Heliophysics Division at NASA Headquarters in Washington.

During its 620-second suborbital flight, Hi-C took 165 images of a section of the Sun’s corona 135,000 miles (271,000 km) across, capturing wavelengths of light at 193 Angstroms emitted by the Sun’s super-hot 1.5 million kelvin corona. The images were focused on a large sunspot region, whose position was accurately predicted 27 days prior to launch.

“We have an exceptional instrument and launched at the right time,” said Jonathan Cirtain, senior heliophysicist at NASA’s Marshall Space Flight Center in Huntsville. “Because of the intense solar activity we’re seeing right now, we were able to clearly focus on a sizeable, active sunspot and achieve our imaging goals.”

Even though Hi-C’s flight only lasted ten minutes, of which 330 seconds were used for acquiring images, the amount of data gathered will be used by researchers for months.

“Even though this mission was only a few minutes long, it marks a big breakthrough in coronal studies,” said Leon Golub, lead investigator from the Harvard-Smithsonian Center for Astrophysics. “The Hi-C flight might be the most productive five minutes I’ve ever spent.”

Watch a 10-second video of the region shown above, seen from both Hi-C and SDO:

Read more about the Hi-C mission results here.

Image credits: NASA

Brazilian Band Soars to New Heights with a NASA-Inspired Video


Popular Brazilian rock band Fresno recently released a new video for their new song, “Infinito”, and it really rises above the rest — literally!

It’s a story of four guys who take their childhood dream of launching a package up into space and, after years apart, come back together to make it a reality. Along the way we get to see some great views from a camera that the band members actually sent up to the edge of space via weather balloon — an accomplishment that came with its fair share of challenges.

Fresno lead member Lucas Silveira shared some behind-the-scenes info with Universe Today. “We wasted two cameras. One of them landed on a military base — exactly in the middle of a mine field — and the other simply disappeared… completely lost due to the lack of cellular signal on the landing spot.”

And even on a successful third try there were some technical difficulties.

“In our third attempt we used a different balloon, with more capacity, and it managed to fly for over 3.5 hours… but our camera only survived for around 2.5 hours. So we had to send a smaller balloon just to capture the ‘popping up’ moment, and added it to the ‘main balloon ride’ on post production.”

Still, the results — a dizzying view of Earth from 35 km up — are well worth it, and the story is an inspiring one… inspired, in fact, by NASA.

“I wrote this song after watching a video by NASA in which they zoom out from the Himalayas to the edge of the universe, showing the areas that still yet to be mapped. We are so infinitely small in the middle of all this greatness, and suddenly our problems get as tiny in our heads as our lucky existence here. It’s about searching for better days, creating a better future through proactivity and not letting others letting you down.”

When you soar that high it’s hard to feel let down.

Video courtesy of Fresno. Technical and launch assistance provided by ACRUX Aerospace Technologies. Band photo by Gustavo Vara.