Artificial Gravity Tests on Earth Could Improve Astronaut Health in Space

The centrifuge at the MEDES center. Credit: MEDES–R. Gaboriaud

They’re affectionately known as “pillownauts,” volunteers who commit to spending weeks in bed to advance research into astronaut health. While bedridden, the pillownauts will lie with their heads tilted at 6° below the horizontal with their feet up to increase blood flow to their heads. They also perform work-related tasks, are subject to regular medical exams, and take their meals, showers, and bathroom breaks, all while remaining in bed. The purpose of this research is to simulate the effects of weightlessness on the human body, including muscle atrophy, bone density loss, and cognitive effects.

The European Space Agency (ESA) recently kicked off another round of pillownaut research, the Bed Rest with Artificial gravity and Cycling Exercise (BRACE) study, at the Institute for Space Medicine and Physiology (MEDES) in Toulouse, France. For this study, twelve volunteers will remain inclined (with their heads below their feet) for sixty days and exercise using cycles adapted to their beds and centrifuges that simulate gravity. Beyond measuring the effects of microgravity on astronaut health, this study also aims to measure the effectiveness of countermeasures used to address them.

Continue reading “Artificial Gravity Tests on Earth Could Improve Astronaut Health in Space”

What if Titan Dragonfly had a Fusion Engine?

Artist's Impression of Dragonfly on Titan’s surface. Credits: NASA/Johns Hopkins APL

In a little over four years, NASA’s Dragonfly mission will launch into space and begin its long journey towards Titan, Saturn’s largest moon. As part of the New Frontiers program, this quadcopter will explore Titan’s atmosphere, surface, and methane lakes for possible indications of life (aka. biosignatures). This will commence in 2034, with a science phase lasting for three years and three and a half months. The robotic explorer will rely on a nuclear battery – a Multi-Mission Radioisotope Thermal Generator (MMRTG) – to ensure its longevity.

But what if Dragonfly were equipped with a next-generation fusion power system? In a recent mission study paper, a team of researchers from Princeton Satellite Systems demonstrated how a Direct Fusion Drive (DFD) could greatly enhance a mission to Titan. This New Jersey-based aerospace company is developing fusion systems that rely on the Princeton Field-Reversed Configuration (PFRC). This research could lead to compact fusion reactors that could lead to rapid transits, longer-duration missions, and miniature nuclear reactors here on Earth.

Continue reading “What if Titan Dragonfly had a Fusion Engine?”

The State of Suborbital Space Science

Virgin Galactic's SpaceShipTwo during a test flight. Suborbital science experiments fly aboard this craft, as well as Blue Origin's New Shepard, and other suborbital flights, providing scientists, students, and others with valuable microgravity access. Credit: Virgin Galactic

Think there’s nothing to learn through suborbital flight and that space science is only done in orbit? Think again. Recently, a group of school students in Canada asked the question: do Epi-Pens work in space? These are epinephrine-loaded injectors used to help people with allergies survive a severe attack. To get an answer, the class at St Brother André Elementary School worked with NASA, the University of Ottawa, and the non-profit Cubes in Space program to launch some Epi-Pens on suborbital flights aboard a rocket and a high-altitude balloon. The result? Post-flight analysis showed that the pens lost their efficacy in space. It was a surprise to NASA as well as to the students.

Continue reading “The State of Suborbital Space Science”

A Human Migration to Space is NOT so Inevitable, says New Research

Artist's depiction of a pair of O'Neill cylinders. Credit: Rick Guidice/NASA Ames Research Center

“It is possible even with existing technology, if done in the most efficient ways. New methods are needed, but none goes beyond the range of present-day knowledge. The challenge is to bring the goal of space colonization into economic feasibility now, and the key is to treat the region beyond Earth not as a void but as a culture medium, rich in matter and energy. Then, in a time short enough to be useful, the exponential growth of colonies can reach the point at which the colonies can be of great benefit to the entire human race.”

-Gerard K. O’Neill, The Colonization of Space, 1974

During the 1960s and 70s, coinciding with the height of the Space Age, scientists pondered how human beings could one day live in space. Among the many benefits, the migration of humans and industry to other celestial bodies and orbiting habitats presented a possible solution to overpopulation and environmental degradation. As O’Neill suggested in his writings, the key was to make this migration an economically feasible venture. Given the renewed efforts to explore space that are now underway and the rise of commercial space (NewSpace), there is a growing sense that humanity’s migration to space is within reach – and even inevitable.

But to paraphrase famed British historian AJP Taylor, “nothing is inevitable until it happens.” In a new study, Cornell graduate researcher Morgan A. Irons and Norfolk Institute co-founder and executive director Lee G. Irons reviewed a century of scientific studies to develop the Pancosmorio (“World Limit”) theory. They concluded that specific life-sustaining conditions on Earth that are available nowhere else in the Solar System could be the very thing that inhibits our expansion into space. Without an Earth-like “self-restoring order, capacity, and organization,” they argue, space settlements would fail to be sustainable and collapse before long.

Continue reading “A Human Migration to Space is NOT so Inevitable, says New Research”

An Earthworm Robot Could Help Us Explore Other Worlds

This new soft robot is inspired by earthworms and can crawl thanks to soft actuators that elongate or squeeze when air passes through them or is drawn out. Image Credit: IIT-Istituto Italiano di Tecnologia

Evolution is a problem-solver, and one of the problems it solved in many different ways is locomotion. Birds fly. Fish swim. Animals walk.

But earthworms found another way to move around the niche they occupy. Can we copy them to explore other worlds?

Continue reading “An Earthworm Robot Could Help Us Explore Other Worlds”

Rolls-Royce Reveals a Nuclear Reactor That Could Provide Power on the Moon

For space agencies and the commercial space industry, the priorities of the next two decades are clear. First, astronauts will be sent to the Moon for the first time since the Apollo Era, followed by the creation of permanent infrastructure that will allow them to say there for extended periods. Then, the first crewed missions will be sent to Mars, with follow-up missions every 26 months, culminating in the creation of surface habitats (and maybe a permanent base). To meet these objectives, space agencies are investigating next-generation propulsion, power, and life support systems.

This includes solar-electric propulsion (SEP), where solar energy is used to power extremely fuel-efficient Hall-Effect thrusters. Similarly, they are looking into nuclear thermal propulsion (NTP) and compact nuclear reactors, allowing for shorter transit times and providing a steady power supply for Lunar and Martian habitats. Beyond NASA, the UK Space Agency (UKSA) has partnered with Rolls-Royce to develop nuclear systems for space exploration. In a recent tweet, the international auto and aerospace giant provided a teaser of what their “micro-reactor” will look like.

Continue reading “Rolls-Royce Reveals a Nuclear Reactor That Could Provide Power on the Moon”

Exploring the Outer Solar System Takes Power, Here’s a Way to Miniaturize Nuclear Batteries for Deep Space

Color-enhanced image of Pluto from NASA’s New Horizons spacecraft taken in July 2015. More thorough exploration of the outer Solar System will require efficient power systems for spacecraft. (Credit: NASA / Johns Hopkins University Applied Physics Laboratory (JHUAPL) / Southwest Research Institute (SwRI))

As science and technology advance, we’re asking our space missions to deliver more and more results. NASA’s MSL Curiosity and Perseverance rovers illustrate this fact. Perseverance is an exceptionally exquisite assemblage of technologies. These cutting-edge rovers need a lot of power to fulfill their tasks, and that means bulky and expensive power sources.

Continue reading “Exploring the Outer Solar System Takes Power, Here’s a Way to Miniaturize Nuclear Batteries for Deep Space”

“To Boldy Go”: The Nichelle Nichols Foundation Continues Actress’ Legacy of Inspiration

The Nichelle Nichols Foundation carries on the actress' legacy of inspiring young women and people of color to reach for the stars! Credit: Nichelle Nichols Foundation

“Science is not a boy’s game, it’s not a girl’s game. It’s everyone’s game. It’s about where we are and where we’re going. Space travel benefits us here on Earth. And we ain’t stopped yet. There’s more exploration to come.”

Nichelle Nichols (1932-2022)

This past summer, the world said goodbye to Nichelle Nichols, the famous actress, activist, and musician who portrayed Lt. Nyota Uhura in the Star Trek franchise. This iconic role was one she popularized in the original series (1966 to 1969), six feature films (1979 to 1991), and multiple television specials. But for those familiar with the life and times of Nichols, her legacy as an activist and inspirational figure are what many will truly remember her for. In honor of her tireless work and advocacy, her family, friends, and fans have come together to launch the Nichelle Nichols Foundation (NNF).

Continue reading ““To Boldy Go”: The Nichelle Nichols Foundation Continues Actress’ Legacy of Inspiration”

Want to Colonize Space? Unleash the Power of Microbes

Researchers at Penn State University are developing a way to use microbes to turn human waste into food on long space voyages. Image: Yuri Gorby, Rensselaer Polytechnic Institute
Microbes play a critical role on Earth. Why not harness their power for space colonization? Image: Yuri Gorby, Rensselaer Polytechnic Institute

If space colonization is in our future, we’ll have to use the resources available there. But we won’t be able to bring our established industrial methods and processes from Earth into space. Transporting heavy mining machinery to the Moon, Mars, or anywhere else in space is not feasible. And each of those environments is wildly different from Earth. We’ll need novel approaches to solve all of the problems facing us, and the approaches will have to be sustainable.

Terrestrial microbes are the foundation of Earth’s biosphere, and they could play an outsized role in space colonization.

Continue reading “Want to Colonize Space? Unleash the Power of Microbes”

JAXA’s Ambitious Mission to Phobos Will Even Have European-Built Rover

Phobos, a moon of Mars.
Japan is sending a spacecraft to Phobos to study it and collect samples for return to Earth. A German rover will be part of the fun. Image Credit: NASA/JPL-Caltech/University of Arizona

Japan and Germany have a history of collaboration in scientific and technological endeavours. The countries have a Joint Committee on Cooperation in Science Technology that has met many times over the decades. Both countries have advanced, powerful economies and sophisticated technological know-how, so it makes sense they’d collaborate on scientific activities.

This time, their cooperation concerns a small, potato-shaped chunk of rock: Mars’ moon Phobos.

Continue reading “JAXA’s Ambitious Mission to Phobos Will Even Have European-Built Rover”