A Remote Surgical Robot is Going to the International Space Station

Shane Farritor, Co-Founder and Chief Technology Officer of Virtual Incision. Credit: Craig Chandler/UNL

In the near future, NASA and other space agencies will send astronauts beyond Low Earth Orbit (LEO) for the first time in over fifty years. But unlike the Apollo Era, these missions will consist of astronauts spending extended periods on the Moon and traveling to and from Mars (with a few months of surface operations in between). Beyond that, there’s also the planned commercialization of LEO and cis-Lunar space, meaning millions of people could live aboard space habitats and surface settlements well beyond Earth.

This presents many challenges, which include the possibility that the sick and injured won’t have licensed medical practitioners to perform potentially life-saving surgery. To address this, Professor Shane Farritor and his colleagues at the University of Nebraska-Lincoln’s (UNL) Nebraska Innovation Campus (NIC) have developed the Miniaturized In-vivo Robotic Assistant (MIRA). In 2024, this portable miniaturized robotic-assisted surgery (RAS) platform will be flown to the International Space Station (ISS) for a test mission to evaluate its ability to perform medical procedures in space.

Continue reading “A Remote Surgical Robot is Going to the International Space Station”

Before we Develop Self-Replicating Machines to Explore the Universe, we Should Figure out how to Turn Them off Again

An early NASA concept of an interstellar space probe. Credit: NASA/Johns Hopkins University Applied Physics Laboratory

In 1948/49, famed computer scientist, engineer, and physicist John von Neumann introduced the world to his revolutionary idea for a species of self-replicating robots (aka. “Universal Assemblers”). In time, researchers involved in the Search for Extraterrestrial Intelligence (SETI) adopted this idea, stating that self-replicating probes would be an effective way to explore the cosmos and that an advanced species may be doing this already. Among SETI researchers, “Von Neumann probes” (as they’ve come to be known) are considered a viable indication of technologically advanced species (technosignature).

Given the rate of progress with robotics, it’s likely just a matter of time before humanity can deploy Von Neumann probes, and the range of applications is endless. But what about the safety implications? In a recent study by Carleton University Professor Alex Ellery explores the potential harm that Von Neumann Probes could have. In particular, Ellery considers the prospect of runaway population growth (aka. the “grey goo problem”) and how a series of biologically-inspired controls that impose a cap on their replication cycles would prevent that.

Continue reading “Before we Develop Self-Replicating Machines to Explore the Universe, we Should Figure out how to Turn Them off Again”

Japanese Researchers Show how Microgravity Affects Astronauts’ Muscles and Nerves

Canadian astronaut Robert Thirsk using the exercise bike on the ISS. Exercise is one way of combatting muscle atrophy in space. Image Credit: NASA

It’s well-known that spending long periods in microgravity can adversely affect astronaut health and physiology. According to decades of research performed aboard the International Space Station (ISS), like NASA’s much-popularized Twins Study, these effects include the loss of muscle mass and bone density, as well as changes to cardiovascular health, eyesight, organ function, and gene expression. There’s even the possibility that astronauts will experience mood swings and psychological problems while in space or during recovery here on Earth.

According to a recent study by a team of Japanese researchers, one of the lesser-studied effects is how long periods spent in microgravity can damage the skeletal muscles that are important to maintaining our posture. This group of muscles – located mostly in our limbs, back, and neck – are rightly known as our “anti-gravity” muscles because they are load-bearing and allow us to stand upright and move against the force of gravity. This research and the countermeasures they propose could have significant implications for astronauts returning from long-term stays in space.

Continue reading “Japanese Researchers Show how Microgravity Affects Astronauts’ Muscles and Nerves”

Uh Oh, NASA is Reviewing Psyche and May Terminate the Mission

NASA's mission to asteroid 16 Psyche has been delayed. Now a review panel is examining the delay. Credit: Maxar/ASU/P. Rubin/NASA/JPL-Caltech

NASA is reviewing its mission to visit the asteroid 16 Psyche. The Administration has convened a 15-member review board to examine the mission and its failure to meet the scheduled 2022 launch. The review began on July 19, and the board will present their findings to NASA and JPL in late September.

Continue reading “Uh Oh, NASA is Reviewing Psyche and May Terminate the Mission”

A New Method for Making Graphene has an Awesome Application: A Space Elevator!

Credit: Lux Virtual/Galactic Harbor

The Space Elevator is one of those ideas that seems to have an endless supply of lives. Originally proposed about a century ago, this concept calls for a tether of supermaterial that connects a station in orbit to Earth’s surface. Our planet’s rotation would keep this tether taut, and a system of “climbers” would transport people and payloads to and from space. The engineering challenges and costs associated with such a structure have always been enormous. But every generation or so, new research comes along that causes engineers and space agencies to reevaluate the concept.

The single-greatest challenge has always been the tether since no known material has ever been strong enough to handle the stresses involved. But as it turns out, this issue may finally be resolved! According to scientists with the International Space Elevator Consortium (ISEC), a cost-effective manufacturing process could produce graphene ribbons that are strong enough to fashion a tether! Their latest findings are detailed in a paper they will present at the upcoming 2022 International Astronomical Congress in Paris.

Continue reading “A New Method for Making Graphene has an Awesome Application: A Space Elevator!”

What is the Best Radiation Shielding for the Surface of Mars?

Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet's upper atmosphere. Credits: NASA/GSFC

The planet Mars is calling to us. At least, that is the impression one gets when examining all the planned and proposed missions to the Red Planet in the coming decade. With so many space agencies currently sending missions there to characterize its environment, atmosphere, and geological history, it seems likely that crewed missions are right around the corner. In fact, both NASA and China have made it clear that they intend to send missions to Mars by the early 2030s that will culminate in the creation of surface habitats.

To ensure astronaut health and safety, both in transit and on the surface of Mars, scientists are investigated several means of radiation protection. In a recent study, a team from the Blue Marble Space Institute of Science (BMSIS) studied how various materials could be used to fashion radiation-protective structures. This included materials brought from Earth and those that can be harvested directly from the Martian environment. This is in keeping with the In-Situ-Resource-Utilization (ISRU) process, where local resources are leveraged to meet the needs of the astronaut crews and the mission.

Continue reading “What is the Best Radiation Shielding for the Surface of Mars?”

The Dream of Faster-than-Light (FTL) Travel: Dr. Harold “Sonny” White and Limitless Space

Ever since astronomers found that Earth and the Solar System are not unique in the cosmos, humanity has dreamed of the day when we might explore nearby stars and settle extrasolar planets. Unfortunately, the laws of physics impose strict limitations on how fast things can travel in our Universe, otherwise known as Einstein’s General Theory of Relativity. Per this theory, the speed of light is constant and absolute, and objects approaching it will experience an increase in their inertial mass (thereby requiring more mass to accelerate further).

While no object can ever reach or exceed the speed of light, there may be a loophole that allows for Faster-Than-Light (FTL) travel. It’s known as the Alcubierre Warp Metric, which describes a warp field that contracts spacetime in front of a spacecraft and expands it behind. This would allow the spacecraft to effectively travel faster than the speed of light while not violating Relativity or causality. For more than a decade, Dr. Harold “Sonny” White has been investigating this theory in the hopes of bringing it closer to reality.

Previously, Dr. White pursued the development of an Alcubierre Warp Drive with his colleagues at the Advanced Propulsion Physics Research Laboratory (NASA Eagleworks) at NASA’s Johnson Space Center. In 2020, he began working with engineers and scientists at the Limitless Space Institute, a non-profit organization dedicated to education, outreach, research grants, and the development of advanced propulsion methods – which they hope will culminate in the creation of the first warp drive!

Continue reading “The Dream of Faster-than-Light (FTL) Travel: Dr. Harold “Sonny” White and Limitless Space”

Forget About Mars, When Will Humans be Flying to Saturn?

It might be hard to fathom now, but the human exploration of the solar system isn’t going to stop at the Moon and Mars. Eventually, our descendants will spread throughout the solar system – for those interested in space exploration, the question is only of when rather than if. Answering that question is the focus of a new paper released on arXiv by a group of researchers from the US, China, and the Netherlands. Their approach is highly theoretical, but it is likely more accurate than previous estimates, and it gives a reasonable idea of when we could expect to see humans in the outer solar system. The latest they think we could reach the Saturnian system is 2153.

Continue reading “Forget About Mars, When Will Humans be Flying to Saturn?”

Traveling the Solar System with Pulsar Navigation

A pulsar with its magnetic field lines illustrated. The beams emitting from the poles are what washes over our detectors as the dead star spins.

A team of researchers at the University of Illinois Urbana-Champaign have found a way for travelers through the Solar System to work out exactly where they are, without needing help from ground-based observers on Earth. They have refined the pulsar navigation technique, which uses X-ray signals from distant pulsars, in a way similar to how GPS uses signals from a constellation of specialized satellites, to calculate an exact position .

Continue reading “Traveling the Solar System with Pulsar Navigation”

Planetary Decadal Survey Says it’s Time for a Mission to Uranus (and Enceladus too!)

Since 2002, the United States National Research Council (NRC) has released a publication that identifies objectives and makes recommendations for science missions for NASA, the National Science Foundation, and other government agencies for the next decade. These reports, appropriately named Planetary Science Decadal Surveys, help inform future NASA missions that address the mysteries that persist in astronomy, astrophysics, earth science, and heliophysics.

On Thursday, April 19th, in a briefing in Washington D.C., the National Academies of Sciences, Engineering, and Medicine (NASEM) shared the main findings of the Planetary Science and Astrobiology Decadal Survey 2023-2032. The event was live-streamed and consisted of NASEM committee members discussing the key science questions, priority missions, and research strategies identified and recommended, followed by a Q&A session with the audience.

Continue reading “Planetary Decadal Survey Says it’s Time for a Mission to Uranus (and Enceladus too!)”