What Would a Camera on a Breakthrough Starshot Spacecraft See if it’s Going at High Velocity?

In April of 2016, Russian billionaire Yuri Milner announced the creation of Breakthrough Starshot. As part of his non-profit scientific organization (known as Breakthrough Initiatives), the purpose of Starshot was to design a lightsail nanocraft that would be capable of achieving speeds of up to 20% the speed of light and reaching the nearest star system – Alpha Centauri (aka. Rigel Kentaurus) – within our lifetimes.

At this speed – roughly 60,000 km/s (37,282 mps) – the probe would be able to reach Alpha Centauri in 20 years, where it could then capture images of the star and any planets orbiting it. But according to a recent article by Professor Bing Zhang, an astrophysicist from the University of Nevada, researchers could get all kinds of valuable data from Starshot and similar concepts long before they ever reached their destination.

The article appeared in The Conversation under the title “Observing the universe with a camera traveling near the speed of light“. The article was a follow-up to a study conducted by Prof. Zhang and Kunyang Li – a graduate student from the Center for Relativistic Astrophysics at the Georgia Institute of Technology – that appeared in The Astrophysical Journal (titled “Relativistic Astronomy“).

Prof. Albert Einstein at the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in 1934. Credit: AP Photo

To recap, Breakthrough Starshot seeks to leverage recent technological developments to mount an interstellar mission that will reach another star within a single generation. The spacecraft would consist of an ultra-light nanocraft and a lightsail, the latter of which would accelerated by a ground-based laser array up to speeds of hundreds of kilometers per second.

Such a system would allow the tiny spacecraft to conduct a flyby mission of Alpha Centauri in about 20 years after it is launched, which could then beam home images of possible planets and other scientific data (such as analysis of magnetic fields). Recently, Breakthrough Starshot held an “industry day” where they submitted a Request For Proposals (RFP) to potential bidders to build the laser sail.

According to Zhang, a lightsail-driven nanocraft traveling at a portion of the speed of light would also be a good way to test Einstein’s theory of Special Relativity.  Simply put, this law states that the speed of light in a vacuum is constant, regardless of the inertial reference frame or motion of the source. In short, such a spacecraft would be able to take advantage of the features of Special Relativity and provide a new mode to study astronomy.

Based on Einstein’s theory, different objects in different “rest frames” would have different measures of the lengths of space and time. In this sense, an object moving at relativistic speeds would view distant astronomical objects differently as light emissions from these objects would be distorted. Whereas objects in front of the spacecraft would have the wavelength of their light shortened, objects behind it would have them lengthened.

This diagram shows the difference between unshifted, redshifted and blueshifted targets. Credit: NASA

This phenomenon, known as the “Doppler Effect”, results in light being shifted towards the blue end (“blueshift”) or the red end (“redshift”) of the spectrum for approaching and retreating objects, respectively. In 1929, astronomer Edwin Hubble used redshift measurements to determine that distant galaxies were moving away from our own, thus demonstrating that the Universe was in a state of expansion.

Because of this expansion (known as the Hubble Expansion), much of the light in the Universe is redshifted and only measurable in difficult-to-observe infrared wavelengths. But for a camera moving at relativistic speeds, according to Prof. Zhang, this redshifted light would become bluer since the motion of the camera would counteract the effects of cosmic expansion.

This effect, known as “Doppler boosting”, would cause the faint light from the early Universe to be amplified and allow distant objects to be studied in more detail. In this respect, astronomers would be able to study some of the earliest objects in the known Universe, which would offer more clues as to how it evolved over time. As Prof. Zhang explained to Universe Today via email, this would allow for some unique opportunities to test Special Relativity:

“In the rest frame of the camera, the emission of the objects in the hemisphere of the camera motion is blue-shifted. For bright objects with detailed spectral observations from the ground, one can observe them in flight. By comparing their blue-shifted flux at a specific blue-shifted frequency with the flux of the corresponding (de-blueshifted) frequency on the ground, one can precisely test the Doppler boosting prediction in Special Relativity.”
Observed image of nearby galaxy M51 (left) and how the image would look through a camera moving at half the speed of light (right). Credit: Zhang & Li, 2018, The Astrophysical Journal, 854, 123, CC BY-ND

In addition, the frequency and intensity of light – and also the size of distant objects – would also change as far as the observer was concerned. In this respect, the camera would act as a lens and a wide-field camera, magnifying the amount of light it collects and letting astronomers observe more objects within the same field of view. By comparing the observations collected by the camera to those collected by a camera from the ground, astronomers could also test the probe’s Lorentz Factor.

This factor indicates how time, length, and relativistic mass change for an object while that object is moving, which is another prediction of Special Relativity. Last, but not least, Prof. Zhang indicates that probes traveling at relativistic speeds would not need to be sent to any specific destination in order to conduct these tests. As he explained:

“The concept of “relativistic astronomy” is that one does not really need to send the cameras to specific star systems. No need to aim (e.g. to Alpha Centauri system), no need to decelerate. As long as the signal can be transferred back to earth, one can learn a lot of things. Interesting targets include high-redshift galaxies, active galactic nuclei, gamma-ray bursts, and even electromagnetic counterparts of gravitational waves.”

However, there are some drawbacks to this proposal. For starters, the technology behind Starshot is all about accomplishing the dream of countless generations – i.e. reaching another star system (in this case, Alpha Centauri) – within a single generation.

And as Professor Abraham Loeb – the Frank B. Baird Jr. Professor of Science at Harvard University and the Chair and the Breakthrough Starshot Committee – told Universe Today via email, what Prof. Zhang is proposing can be accomplished by other means:

>“Indeed, there are benefits to having a camera move near the speed of light toward faint sources, such as the most distant dwarf galaxies in the early universe. But the cost of launching a camera to the required speed would be far greater than building the next generation of large telescopes which will provide us with a similar sensitivity. Similarly, the goal of testing special relativity can be accomplished at a much lower cost.”

Of course, it will be many years before a project like Starshot can be mounted, and many challenges need to be addressed in the meantime. But it is exciting to know that in meantime, scientific applications can be found for such a mission that go beyond exploration. In a few decades, when the mission begins to make the journey to Alpha Centauri, perhaps it will also be able to conduct tests on Special Relativity and other physical laws while in transit.

Further Reading: The Conversation, The Astrophysical Journal

Breathing Lunar Dust Could Give Astronauts Bronchitis and Even Lung Cancer

It’s been over forty years since the Apollo Program wrapped up and the last crewed mission to the Moon took place. But in the coming years and decades, multiple space agencies plan to conduct crewed missions to the lunar surface. These includes NASA’s desire to return to the Moon, the ESA’s proposal to create an international Moon village, and the Chinese and Russian plans to send their first astronauts to the Moon.

For this reason, a great deal of research has been dedicated to what the health effects of long-duration missions to the Moon may be – particularly the effects a lower gravity environment would have on the human body. But in a recent study, a team of pharmacologists, geneticists and geoscientists consider how being exposed to lunar dust could have a serious effect on future astronauts’ lungs.

The study, titled “Assessing Toxicity and Nuclear and Mitochondrial DNA Damage Caused by Exposure of Mammalian Cells to Lunar Regolith Simulants“, recently appeared in GeoHealth – a journal of the American Geophysical Union. The study was led by Rachel Caston, a postdoctoral researcher from the Stony Brook University School of Medicine, and included members from Stony Brook’s Department of Pharmacological Sciences and the Department of Geosciences.

Geologist and astronaut Harrison Schmitt, Apollo 17 lunar module pilot, pictured using an adjustable sampling scoop to retrieve lunar samples during the Apollo 17 mission in December 1972. Credit: NASA.

Because it has no atmosphere, the Moon’s surface has been pounded by meteors and micrometeroes for billions of years, which have created a fine layer of surface dust known as regolith. In addition, the Moon’s surface is constantly being bombarded by charged particles from the Sun, which cause the lunar soil to become electrostatically charged and stick to clothing.

Indications that lunar dust could cause health problems first emerged during the Apollo missions. After visiting the Moon, astronauts brought lunar soil back with them into the command module as it clung to their spacesuits. After inhaling the dust, Apollo 17 astronaut Harrison Schmitt described having symptoms akin to hay fever, which including sneezing, watery eyes and a sore throat.

While the symptoms were short-lived, researchers wanted to know what the long-term effects of lunar dust could be. There have also been indications that exposure to lunar dust could be harmful based on research that has shown how breathing dust from volcanic eruptions, dust storms and coal mines can cause bronchitis, wheezing, eye irritation and scarring of lung tissue.

Previous research has also shown that dust can cause damage to cells’ DNA, which can cause mutations and eventually lead to cancer. For these reasons, Caston and her colleagues were well-motivated to see what harmful effects lunar soil could have on the human body.  For the sake of their study, the team exposed human lung cells and mouse brain cells to samples of simulated lunar soil.

After taking the first boot print photo, Aldrin moved closer to the little rock and took this second shot. The dusty, sandy pebbly soil is also known as the lunar ‘regolith’. Credit: NASA

These simulants were created by using dust samples from Earth that resemble soil found on the Moon’s lunar highlands and volcanic plains, which were then ground to a fine powder. What they found was that up to 90% of human lung cells and mouse neurons died when exposed to the dust samples. The simulants also caused significant DNA damage to mouse neurons, and the human lung cells were so effectively damaged that it was impossible to measure any damage to the cells’ DNA.

The results show that breathing lunar dust (even in minute quantities) could pose a serious health hazard to astronauts traveling to any airless bodies in the future. This includes not only the Moon, but also Mars and other terrestrial bodies like Mercury. Until now, this health hazard has been largely overlooked by space agencies seeking to understand the long-term health risks of space travel.

“There are risks to extraterrestrial exploration, both lunar and beyond, more than just the immediate risks of space itself,” said Rachel Caston. According to Bruce Demple, a biochemist at Stony Brook University School of Medicine and senior author of the new study, their results (coupled with the experience of the Apollo astronauts) indicate that prolonged exposure to lunar dust could impair airway and lung function.

What’s worse, he also indicated that if the dust induces inflammation in the lungs, it could increase the risk of more serious diseases like cancer. “If there are trips back to the Moon that involve stays of weeks, months or even longer, it probably won’t be possible to eliminate that risk completely,” he said.

Long-duration missions to the Moon, which could involve permanent bases, will have to contend with the hazard of breathing lunar dust. Credit: ESA/Foster + Partners

Ergo, any attempts to mitigate the risks of mounting crewed missions to the Moon, Mars, and beyond will have to take into account exposure to not only low-gravity and radiation, but also electrostatically charged soil. Aside from limiting the duration of missions and the number of EVAs, certain protective counter-measures may need to be incorporated into any plans for long-duration missions.

One possibility is to have astronauts cycle through an airlock that would also spray their suits with water or a compound designed to neutralize the charge, thus washing them clean of dust before they enter the main habitat. Otherwise, astronauts working in the International Lunar Village (or any other off-world habitat for that matter) may have to wear breathing masks the entire time they are not in a spacesuit.

Further Reading: AGU, GeoHealth

Living Underground on Other Worlds. Exploring Lava Tubes

Pangaea-X arrives at the entrance to La Cueva de los Verdes lava tube. . Credit and Copyright: ESA–Robbie Shone

The Moon and Mars will probably be the first places in the Solar System that humanity will try to live after leaving the safety and security of Earth. But those worlds are still incredibly harsh environments, with no protection from radiation, little to no atmosphere, and extreme temperatures.

Living on those worlds is going to be hard, it’s going to be dangerous. Fortunately, there are a few pockets on those worlds that’ll make it a tiny little bit easier to get a foothold in the Solar System: lava tubes.

I’m going to show you some really cool photographs now. First, let’s start with images of the Moon taken by NASA’s Lunar Reconnaissance Orbiter.

Images of open lava tubes on the Moon. Image credit: NASA/LRO
Images of open lava tubes on the Moon. Image credit: NASA/LRO

Those dark blobs in the photo are actually open skylights, the collapsed roofs of lava tubes on the Moon. They just look like dark areas because you can’t see the bottom. How cool is that?

And now, here are similar features on the surface of Mars. Here are several examples of cave skylights across the Red Planet.

Images of cave openings on a Martian volcano. Credit: NASA/JPL-Caltech/ASU/USGS
Images of cave openings on a Martian volcano. Credit: NASA/JPL-Caltech/ASU/USGS

And I want to show you a really special one. Check out this photo, where you can see the cave opening, how the Martian sand is flowing down into the skylight. You can even see it piling up on the cave floor. There’s no question, this is a cavern on Mars with opening to the surface.

Detailed image of a skylight. Credit: NASA/JPL/University of Arizona
Detailed image of a skylight. Credit: NASA/JPL/University of Arizona

Want to live on the Moon or Mars? You’re looking at your future home.

Lava tubes are a common here on Earth, and you can find them wherever there’s been volcanic activity. During an eruption, lava gets flowing downhill through a channel. The surface cools and crusts over, but the lava keeps on flowing, like an underground river of molten rock.

In the right conditions, the lava can keep flowing, and empty out the channel completely, leaving behind a natural tunnel that can be dozens of kilometers long. The tubes can be wide, from a single meter to up to 15 meters wide. Definitely big enough to live inside.

Exploring lava tubes in the Canary Islands. Credit: ESA-L.Ricci
Exploring lava tubes in the Canary Islands. Credit: ESA-L.Ricci

Both the Moon and Mars had periods of volcanism. The biggest volcano in the Solar System, Olympus Mons on Mars, is an enormous shield volcano with endless lava fields surrounding it.

The SETI Institute recently announced that they had identified a series of small pits in a crater near the Moon’s northern pole. They found them by analyzing images taken by NASA’s Lunar Reconnaissance Orbiter.

They look like skylights, and match similar features on Mars, where there is no crater rim, and just a shadowed dark feature. Further evidence is that they lie along lunar sinuous rilles, those ancient lava rivers with collapses features in a row.

At this point, there have been about 200 of these features discovered on the Moon so far, and more discovered on Mars too.

In addition to the skylights discovered by spacecraft, planetary scientists have uncovered vast pit chains on Mars, which could be collapsed lava tubes. With the amount of volcanism that occured on Mars over billions of years, there should be many features worth exploring.

Pit Chains in Tharsis. Credit: ESA/DLR/FU Berlin (G. Neukum)
Pit Chains in Tharsis. Credit: ESA/DLR/FU Berlin (G. Neukum)

Because of the lower gravity on the Moon and Mars, lava tubes should be much more extreme. On Mars, there could be lava tubes that measure hundreds of meters across, and hundreds of kilometers long. On the Moon, lava tubes could be kilometers across. Big enough to hide a city inside.

Future Moon and Mars colonists will already be facing a life underground, to hide from the surface radiation, micrometeorite bombardment, extreme temperatures and to create a usable atmosphere. These natural tunnels will save them the hard work of needing to dig the tunnel.

The natural roofs on these caverns are thought to be 10 meters or more thick, with one site estimated to have a roof that’s 45-90 meters thick. This would be more than enough to protect against solar radiation and galactic cosmic radiation.

While the surface of the Moon varies in temperature from -180 C to +100 C, the interior of a lava tube would remain a constant chilly -20 C. This would be easy enough to keep warmed up, once it was sealed off and pressurized with a breathable atmosphere.

As we’ve mentioned time and time again, the lunar dust on the Moon is dangerous stuff, irritating eyes, nasal passages and lungs. Lunar colonists would want to minimize their exposure to it at all costs. By sealing off the interior of the lava tube, they could prevent further dust from getting in. In fact, the dust is also electrically charged, and could be a hazard to electronics.

In terms of resources, the Moon has plenty. There’s aluminum everywhere in the regolith, as well as iron and titanium. But the most valuable one for humans, water, could be down there too. In the eternally shadowed craters, there could be large deposits of water collected down below that colonists could harvest.

There’s another advantage, the lava tubes on Mars could be the best places to search for life on the Red Planet. The natural protection would also keep Martian bacteria less exposed to the harsh conditions of the surface.

Future explorers could be protected inside the lava tubes at the same time that they’re in the ideal place to search for life on Mars. That’s convenient.

Of course NASA and the European Space Agency have considered human and robotic missions that could travel to the Moon or Mars and explore the interiors of lava tubes.

In 2011, a group of researchers proposed a mission design for a combined lander-rover that would map out a skylight on the Moon in incredible detail. It’s known as the Marius Hills Hole, and measures about 65 meters across.

First, the lander would descend down to the surface of the Moon near the hole, using a pulsed laser called LIDAR to map out a 50-meter region around the landing site, looking for hazards.

The spacecraft would then choose a landing site and deploy a rover that would scan the region around the skylight in extreme detail, peeking down into the lava tube when the light is right.

Following that, would come the missions to actually explore down in the tunnels. Remember how big they are, potentially hundreds of meters and even kilometers across.

You can imagine various robotic rovers and landers, but one of my favorite ideas is a snake robot developed by SINTEF in Norway. The robot uses hydraulics to move segments of its body, allowing it to move like a real snake. It could climb stairs, navigate up and down slopes, go around corners, and be able to handle the unpredictable terrain of the floor of a lavatube.

After the robots come the humans. The tricky part is getting from the surface down to the tunnel floor. Mission planners have proposed traditional rappelling and even astronauts with jetpacks who would lower themselves down into the tunnel to explore around.

The first astronauts would descend down to the floor of the lava tube bringing quadruped pack mule robots that would be able to navigate the rough terrain of the tunnel floor. Once inside, they’d set up a communications link at the crater opening, and then deploy a pressurized tent as a temporary habitat.

The astronauts would be free to travel several kilometers into the lava tube, mapping the interior, and taking samples. They could set up their tent at different points, allowing a much deeper exploration.

Of course, then hostile cave aliens would pick them off one by one, and the only way we’d know about the mission is from a series of found footage and computer logs. But I digress.

The European Space Agency has been developing tools to measure the interior of caves here on Earth, to develop the technology that could be used to explore other worlds. You’re looking at a 3D image of the interior of a cave network in Spain.

Volcanic wormhole. Copyright: Vigea – Tommaso Santagata
Volcanic wormhole. Copyright: Vigea – Tommaso Santagata

A team of researchers, including a European astronaut, used backpack-based cameras and LIDAR instruments to map out the cave to a resolution of just a few centimeters. They also tested out handheld tools to examine the cave walls, doing the same kinds of experiments future astronauts might do.

The long term goal, of course, is to set up some kind of long term colony inside lava tubes on the Moon or Mars.

What started as a temporary hiding place from the brutal environment of the Moon and Mars would become the base of operations for a future habitat and eventually the beginnings of a scientific outpost or even a full colony.

There’s no question that lava tubes are going to be one of the top priorities when we return to the Moon, and when the first astronaut sets foot on Mars. And with all the new missions in the works, from both NASA, SpaceX, the Europeans and even the Chinese, it looks like those days aren’t too far off now.

Astronaut Scott Tingle Was Able To Control A Ground-Based Robot… From Space.

If something called “Project METERON” sounds to you like a sinister project involving astronauts, robots, the International Space Station, and artificial intelligence, I don’t blame you. Because that’s what it is (except for the sinister part.) In fact, the Meteron Project (Multi-Purpose End-to-End Robotic Operation Network) is not sinister at all, but a friendly collaboration between the European Space Agency (ESA) and the German Aerospace Center (DLR.)

The idea behind the project is to place an artificially intelligent robot here on Earth under the direct control of an astronaut 400 km above the Earth, and to get the two to work together.

“Artificial intelligence allows the robot to perform many tasks independently, making us less susceptible to communication delays that would make continuous control more difficult at such a great distance.” – Neil Lii, DLR Project Manager.

On March 2nd, engineers at the DLR Institute of Robotics and Mechatronics set up the robot called Justin in a simulated Martian environment. Justin was given a simulated task to carry out, with as few instructions as necessary. The maintenance of solar panels was the chosen task, since they’re common on landers and rovers, and since Mars can get kind of dusty.

Justin is a pretty cool looking robot. Image: (DLR) German Aerospace Center (CC-BY 3.0)

The first test of the METERON Project was done in August. But this latest test was more demanding for both the robot and the astronaut issuing the commands. The pair had worked together before, but since then, Justin was programmed with more abstract commands that the operator could choose from.

American astronaut Scott Tingle issued commands to Justin from a tablet aboard the ISS, and the same tablet also displayed what Justin was seeing. The human-robot team had practiced together before, but this test was designed to push the pair into more challenging tasks. Tingle had no advance knowledge of the tasks in the test, and he also had no advance knowledge of Justin’s new capabilities. On-board the ISS, Tingle quickly realized that the panels in the simulation down here were dusty. They were also not pointed in the optimal direction.

This was a new situation for Tingle and for Justin, and Tingle had to choose from a range of commands on the tablet. The team on the ground monitored his choices. The level of complexity meant that Justin couldn’t just perform the task and report it completed, it meant that Tingle and the robot also had to estimate how clean the panels were after being cleaned.

“Our team closely observed how the astronaut accomplished these tasks, without being aware of these problems in advance and without any knowledge of the robot’s new capabilities,” says DLR engineer Daniel Leidner.

Streaks of dust or sand on NASA’s Mars rover Opportunity show what can happen to solar panels on the red planet. For any more permanent structures that we may put on Mars, an artificially intelligent maintenance robot under the control of an astronaut in orbit could be the perfect solution to the maintenance of solar panels. Credits: NASA/JPL-Caltech

The next test will take place in Summer 2018 and will push the system even further. Justin will have an even more complex task before him, in this case selecting a component on behalf of the astronaut and installing it on the solar panels. The German ESA astronaut Alexander Gerst will be the operator.

If the whole point of this is not immediately clear to you, think Mars exploration. We have rovers and landers working on the surface of Mars to study the planet in increasing detail. And one day, humans will visit the planet. But right now, we’re restricted to surface craft being controlled from Earth.

What METERON and other endeavours like it are doing, is developing robots that can do our work for us. But they’ll be smart robots that don’t need to be told every little thing. They are just given a task and they go about doing it. And the humans issuing the commands could be in orbit around Mars, rather than being exposed to all the risks on the surface.

“Artificial intelligence allows the robot to perform many tasks independently, making us less susceptible to communication delays that would make continuous control more difficult at such a great distance,” explained Neil Lii, DLR Project Manager. “And we also reduce the workload of the astronaut, who can transfer tasks to the robot.” To do this, however, astronauts and robots must cooperate seamlessly and also complement one another.

These two images from the camera on NASA’s Mars Global Surveyor show the effect that a global dust storm has on Mars. On the left is a normal view of Mars, on the right is Mars obscured by the haze from a dust storm. Image: NASA/JPL/MSSS

That’s why these tests are important. Getting the astronaut and the robot to perform well together is critical.

“This is a significant step closer to a manned planetary mission with robotic support,” says Alin Albu-Schäffer, head of the DLR Institute of Robotics and Mechatronics. It’s expensive and risky to maintain a human presence on the surface of Mars. Why risk human life to perform tasks like cleaning solar panels?

“The astronaut would therefore not be exposed to the risk of landing, and we could use more robotic assistants to build and maintain infrastructure, for example, with limited human resources.” In this scenario, the robot would no longer simply be the extended arm of the astronaut: “It would be more like a partner on the ground.”

Bacteria Surviving On Musk’s Tesla Are Either A Bio-threat Or A Backup Copy Of Life On Earth

A great celebratory eruption accompanied the successful launch of SpaceX’s Falcon Heavy rocket in early February. That launch was a big moment for people who are thoughtful about the long arc of humanity’s future. But the Tesla Roadster that was sent on a long voyage in space aboard that rocket is likely carrying some bacterial hitch-hikers.

The Falcon Heavy’s first flight. Image: SpaceX

A report from Purdue University suggests that, though unlikely, the Roadster may be carrying an unwelcome cargo of Earthly bacteria to any destination it reaches. But we’re talking science here, and science doesn’t necessarily shy away from the unlikely.

“The load of bacteria on the Tesla could be considered a biothreat, or a backup copy of life on Earth.” – Alina Alexeenko, Professor of Aeronautics and Astronautics at Purdue University.

NASA takes spacecraft microbial contamination very seriously. The Office of Planetary Protection monitors and enforces spacecraft sterilization. Spreading Terran bacteria to other worlds is a no-no, for obvious reasons, so spacecraft are routinely sterilized to prevent any bacterial hitch-hikers. NASA uses the term “biological burden” to quantify how rigorously a spacecraft needs to be sterilized. Depending on a spacecraft’s mission and destination, the craft is subjected to increasingly stringent sterilization procedures.

If a craft is not likely to ever contact another body, then sterilization isn’t as strict. If the target is a place like Mars, where the presence of Martian life is undetermined, then the craft is prepared differently. When required, spacecraft and spacecraft components are treated in clean rooms like the one at Goddard Space Flight Center.

The clean room at Goddard Space Flight Center where spacecraft are sterilized. Image: NASA

The clean rooms are strictly controlled environments, where staff wear protective suits, boots, hoodies, and surgical gloves. The air is filtered and the spacecraft are exposed to various types of sterilization. After sterilization, the spacecraft is handled carefully before launch to ensure it remains sterile. But the Tesla Roadster never visited such a place, since it’s destination is not another body.

The Tesla Roadster in space was certainly manufactured in a clean place, but there’s a big difference between clean and sterile. To use NASA’s terminology, the bacterial load of the Roadster is probably very high. But would those bacteria survive?

The atmosphere in space is most definitely hostile to life. The temperature extremes, the low pressure, and the radiation are all hazardous. But, some bacteria could survive by going dormant, and there are nooks and crannies in the Tesla where life could cling.

This images shows the Orion capsule wrapped in plastic after sterilization, and being moved to a workstand. These types of precautions are mandated by NASA’s Office of Planetary Protection. Image: NASA.

The Tesla is not predicted to come into contact with any other body, and certainly not Mars, which is definitely a destination in our Solar System that we want to protect from contamination. In fact, a more likely eventual destination for the Roadster is Earth, albeit millions of years from now. And in that case, according to Alina Alexeenko, a Professor of Aeronautics and Astronautics at Purdue University, any bacteria on the red Roadster is more like a back-up for life on Earth, in case we do something stupid before the car returns. “The load of bacteria on the Tesla could be considered a biothreat, or a backup copy of life on Earth,” she said.

But even if some bacteria survived for a while in some hidden recess somewhere on the Tesla Roadster, could it realistically survive for millions of years in space?

As far as NASA is concerned, length of time in space is one component of sterilization. Some missions are designed with the craft placed in a long-term orbit at the end of its mission, so that the space environment can eventually destroy any lingering bacterial life secreted away somewhere. Surely, if the Roadster does ever collide with Earth, and if it takes millions of years for that to happen, and if it’s not destroyed on re-entry, the car would be sterilized by its long-duration journey?

That seems to be the far more likely outcome. You never know for sure, but the space-faring Roadster is probably not a hazardous bio-threat, nor a back-up for life on Earth; those are pretty fanciful ideas.

Musk’s pretty red car is likely just a harmless, attention-grabbing bauble.

Microbes May Help Astronauts Turn Human Waste Into Food

Researchers at Penn State University are developing a way to use microbes to turn human waste into food on long space voyages. Image: Yuri Gorby, Rensselaer Polytechnic Institute

Geoscience researchers at Penn State University are finally figuring out what organic farmers have always known: digestive waste can help produce food. But whereas farmers here on Earth can let microbes in the soil turn waste into fertilizer, which can then be used to grow food crops, the Penn State researchers have to take a different route. They are trying to figure out how to let microbes turn waste directly into food.

There are many difficulties with long-duration space missions, or with lengthy missions to other worlds like Mars. One of the most challenging difficulties is how to take enough food. Food for a crew of astronauts on a 6-month voyage to Mars, and enough for a return trip, weighs a lot. And all that weight has to be lifted into space by expensive rockets.

SpaceX's reusable rockets are bringing down the cost of launching things into space, but the cost is still prohibitive. Any weight savings contribute to a missions feasibility, including a reduction in food supplies for long space journeys. In this image, a SpaceX Falcon 9 recycled rocket lifts off at sunset at 6:53 PM EDT on 11 Oct 2017.  Credit: Ken Kremer/Kenkremer.com
SpaceX’s reusable rockets are bringing down the cost of launching things into space, but the cost is still prohibitive. Any weight savings contribute to a missions feasibility, including a reduction in food supplies for long space journeys. In this image, a SpaceX Falcon 9 recycled rocket lifts off at sunset at 6:53 PM EDT on 11 Oct 2017. Credit: Ken Kremer/Kenkremer.com

Carrying enough food for a long voyage in space is problematic. Up until now, the solution for providing that food has been focused on growing it in hydroponic chambers and greenhouses. But that also takes lots of space, water, and energy. And time. It’s not really a solution.

“It’s faster than growing tomatoes or potatoes.” – Christopher House, Penn State Professor of Geosciences

What the researchers at Penn State, led by Professor of Geosciences Christopher House, are trying to develop, is a method of turning waste directly into an edible, nutritious substance. Their aim is to cut out the middle man, as it were. And in this case, the middle men are plants themselves, like tomatoes, potatoes, or other fruits and vegetables.

We've always assumed that astronauts working on Mars would feed themselves by growing Earthly crops in simulated Earth conditions. But that requires a lot of energy, space, and materials. It may not be necessary. An artist's illustration of a greenhouse on Mars. Image Credit: SAIC
We’ve always assumed that astronauts working on Mars would feed themselves by growing Earthly crops in simulated Earth conditions. But that requires a lot of energy, space, and materials. It may not be necessary. An artist’s illustration of a greenhouse on Mars. Image Credit: SAIC

“We envisioned and tested the concept of simultaneously treating astronauts’ waste with microbes while producing a biomass that is edible either directly or indirectly depending on safety concerns,” said Christopher House, professor of geosciences, Penn State. “It’s a little strange, but the concept would be a little bit like Marmite or Vegemite where you’re eating a smear of ‘microbial goo.'”

The Penn State team propose to use specific microorganisms to turn waste directly into edible biomass. And they’re making progress.

At the heart of their work are things called microbial reactors. Microbial reactors are basically vessels designed to maximize surface area for microbes to populate. These types of reactors are used to treat sewage here on Earth, but not to produce an edible biomass.

“It’s a little strange, but the concept would be a little bit like Marmite or Vegemite where you’re eating a smear of ‘microbial goo.'” – Christopher House, Penn State Professor of Geosciences

To test their ideas, the researchers constructed a cylindrical vessel four feet long by four inches in diameter. Inside it, they allowed select microorganisms to come into contact with human waste in controlled conditions. The process was anaerobic, and similar to what happens inside the human digestive tract. What they found was promising.

“Anaerobic digestion is something we use frequently on Earth for treating waste,” said House. “It’s an efficient way of getting mass treated and recycled. What was novel about our work was taking the nutrients out of that stream and intentionally putting them into a microbial reactor to grow food.”

One thing the team discovered is that the process readily produces methane. Methane is highly flammable, so very dangerous on a space mission, but it has other desirable properties when used in food production. It turns out that methane can be used to grow another microbe, called Methylococcus capsulatus. Methylococcus capsulatus is used as an animal food. Their conclusion is that the process could produce a nutritious food for astronauts that is 52 percent protein and 36 percent fats.

“We used materials from the commercial aquarium industry but adapted them for methane production.” – Christopher House, Penn State Professor of Geosciences

The process isn’t simple. The anaerobic process involved can produce pathogens very dangerous to people. To prevent that, the team studied ways to grow microbes in either an alkaline environment or a high-heat environment. After raising the system pH to 11, they found a strain of the bacteria Halomonas desiderata that thrived. Halomonas desiderata is 15 percent protein and 7 percent fats. They also cranked the system up to a pathogen-killing 158 degrees Fahrenheit, and found that the edible Thermus aquaticus grew, which is 61 percent protein and 16 percent fats.

Conventional waste treatment plants, like this one in England, take several days to treat waste. The anerobic system tested by the Penn State team treated waste in as little as 13 hours. Image: Nick Allen, CC BY-SA 4.0

Their system is based on modern aquarium systems, where microbes live on the surface of a filter film. The microbes take solid waste from the stream and convert it to fatty acids. Then, those fatty acids are converted to methane by other microbes on the same surface.

Speed is a factor in this system. Existing waste management treatment typically takes several days. The team’s system removed 49 to 59 percent of solids in 13 hours.

This system won’t be in space any time soon. The tests were conducted on individual components, as proof of feasibility. A complete system that functioned together still has to be built. “Each component is quite robust and fast and breaks down waste quickly,” said House. “That’s why this might have potential for future space flight. It’s faster than growing tomatoes or potatoes.”

The team’s paper was published here, in the journal Life Sciences In Space Research.

The Genesis Project: Using Robotic Gene Factories to Seed the Galaxy with Life

In the past decade, the rate at which extra-solar planets have been discovered and characterized has increased prodigiously. Because of this, the question of when we might explore these distant planets directly has repeatedly come up. In addition, the age-old question of what we might find once we get there – i.e. is humanity alone in the Universe or not? – has also come up with renewed vigor.

These questions have led to a number of interesting and ambitious proposals. These include Project Blue, a space telescope which would directly observe any planets orbiting Alpha Centauri, and Breakthrough Starshot – which aims to send a laser-driven nanocraft to Alpha Centauri in just 20 years. But perhaps the most daring proposal comes in the form of Project Genesis, which would attempt to seed distant planets with life.

This proposal was put forth by Dr. Claudius Gros, a theoretical physicist from the Institute for Theoretical Physics at Goethe University Frankfurt. In 2016, he published a paper that described how robotic missions equipped with gene factories (or cryogenic pods) could be used to distribute microbial life to “transiently habitable exoplanets – i.e. planets capable of supporting life, but not likely to give rise to it on their own.

Exogenesis
The purpose of Project Genesis would be to seed “transiently habitable” worlds with life, thus giving them a jump start on evolution. Credit: NASA/Jenny Mottor

Not long ago, Universe Today wrote about Dr. Gros’ recent study where he proposed using a magnetic sail to slow down an interstellar spacecraft. We were fortunate to catch up with Dr. Gros again and had a chance to ask him about Project Genesis. You can find our Q&A below, and be sure to check out his seminal paper that describes this project – “Developing Ecospheres on Transiently Habitable Planets: The Genesis Project“.

What is the purpose of Project Genesis?

Exoplanets come in all sizes, temperatures and compositions. The purpose of the Genesis project is to offer terrestrial life alternative evolutionary pathways on those exoplanets that are potentially habitable but yet lifeless. The basic philosophy of most scientists nowadays is that simple life is common in the universe and complex life is rare. We don’t know that for sure, but at the moment, that is the consensus.

If you had good conditions, simple life can develop very fast, but complex life will have a hard time. At least on Earth, it took a very long time for complex life to arrive. The Cambrian Explosion only happened about 500 million years ago, roughly 4 billion years after Earth was formed. If we give planets the opportunity to fast forward evolution, we can give them the chance to have their own Cambrian Explosions.

Early trilobite species (Eoredlichia takooensis) from the Lower Cambrian period, found in Emu Bay Shale, Kangaroo Island, Australia. Credit and ©: Royal Ontario Museum/David Rudkin

What worlds would be targeted?

The prime candidates are habitable “oxygen planets” around M-dwarfs like TRAPPIST-1. It is very likely that the oxygen-rich primordial atmosphere of these planets will have prevented abiogenesis in first place, that is the formation of life. Our galaxy could potentially harbor billions of habitable but lifeless oxygen planets.

Nowadays, astronomers are looking for planets around M-stars. These are very different from planets around Sun-like stars. Once a star forms, it takes a certain amount of time to contract to the point where fusion begins, and it starts to produce energy. For the Sun, this took 10 million years, which is very fast. For stars like TRAPPIST-1, it would take 100 million to 1 billion years. Then they have to contract to dissipate their initial heat.

The planets around TRAPPIST-1 would have been very hot, because the star was very hot for a long time. All the water that was in their stratospheres, the UV radiation would have disassociated it into hydrogen and oxygen – the hydrogen escaped, and the oxygen remained. All surveys have showed that they have oxygen atmospheres, but this is the product of chemical disassociation and not from plants (as with Earth).

There’s a good chance that oxygen planets are sterile, because oxygen planets eat up prebiotic conditions. We believe there may be billions of oxygen planets in our galaxy. They would have no life, and complex life needs oxygen. In science fiction, you have all these planets that look alike. We could imagine that in half a billion years, we could have this because we seeded oxygen planets (only we couldn’t travel there quickly since we have no FTL).

Illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

What kind of organisms would be sent?

The first wave would consist of unicellular autotrophs. That is photo-synthesizing bacteria, like cyanobacteria, and eukaryotes (the cell type making up all complex life, that is animals and plants). Heterotrophs would follow in a second stage, organisms that feed on other organisms and can only exist after autotrophs exist and take root.

How would these organisms be sent?

That depends on the technology. If it can advance, we can miniaturize a gene factory. In principle, nature is a miniature gene factory. Everything we want to produce is very small. If it’s possible that would be the best option. Send in a gene bank, and then select the most optimal organism to send down. If that is not possible, you would have to have frozen germs. In the end, it depends on what would be the technically available.

You could also send in synthetic life. Synthetic biology is a very active research field, which involves reprogramming the genetic code. In science fiction, you have alien life with a different genetic code. Today, people are trying to produce this here on Earth. The end goal is to have new life forms that are based on a different code. This would be very dangerous on Earth, but on a far-distant planet, it would be beneficial.

What if these worlds are not sterile?

Genesis is all about life, not destroying life, so we’d want to avoid that. The probes would have to go into orbit, so we are pretty sure that from orbit, we could detect complex life on the surface. The Genesis Project was intended for planets that are not habitable for eternity. Earth is habitable for billions of years, but we are not sure about habitable exoplanets.

This illustration shows a star’s light illuminating the atmosphere of a planet. Credits: NASA Goddard Space Flight Center

Exoplanets come in all kinds of sized, temperatures, and habitabilities. Many of these planets will only be habitable for some time, maybe 1 billion years. Life there will not have time to evolve into complex life forms. So you have a decision: leave them like they are, or take a chance at developing complex life there.

Some believe that all bacteria are worth saving. On Earth, there is no protection for bacteria. But bacteria living on different planets are treated differently. Planetary protection, why do we do that? So we can study the life, or for the sake of protecting life itself? Mars most likely had life at one time, but now not, except for maybe a few bacteria. Still, we plan manned missions to Mars, which means planetary protection is off. It’s a contradiction.

I am very enthusiastic about finding life, but what about the planets where we don’t find life? This offers the possibility about doing something about it.

Could humanity benefit from this someday (i.e. colonize “seeded” planets)?

Yes and no. Yes, because nothing would keep our decedents (or any other intelligence living on Earth by then), to visit Genesis planets in 10-100 million years (the minimal time for the life initially seeded to fully unfold). No, because the involved time spans are so long, that it is not rational to speak of a ‘benefit’.

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity’s first interstellar voyage. Credit: breakthroughinitiatives.org

How soon could such a mission be mounted?

Genesis probes could be launched by the same directed-energy launch system planned for the Breakthrough Starshot initiative. Breakthrough Starshot aims to send very fast, very small, very light probes of about 1 gram to another star system. The same laser technology could send something more massive, but slower. Slow is relative, of course. So the in the end it depends on what is optimal.

The magnetic sail paper I recently wrote was a sample mission to show that it was possible. The probe would be about the size of a car (1 tonne) and would travel at a speed of about 1000 km/s – slow for interstellar travel relative to speed of light, but fast for Earth. If you reduce the velocity by a factor of 100, the mass you can propel is 10,000 heavier. You could accelerate a 1-tonne Genesis Probe and it would still fit into the layout of Breakthrough Starshot.

Therefore, the launch facility could see dual use and you wouldn’t need to build something new. Once that is in place one would need to test the magnetic sail. A realistic time span would hence be in the 50-100 years window.

What counter-arguments are there against this?

There are three main lines of counter-arguments. The first is the religious counter-argument, which says that humanity should not play God. The Genesis project is however not about creating life, but to give life the possibility to further develop. Just not on Earth, but elsewhere in the cosmos.

Mars, according to multiple studies, could still support life, raising issues of “planetary protection”. Credit: YONHAP/EPA

The second is the Planetary protection argument, which argues that we should not interfere. Some people objecting to the Genesis Project cite the ‘first directive’ of the Star Trek TV series. The Genesis Project fully supports planetary protection of planets which harbor complex life and of planets on which complex life could potentially develop in the future. The Genesis project will target only planets on which complex life could not develop on its own.

The third argument is about the lack of benefit to humanity. The Genesis Project is expressively not for human benefit. It is reasonable to argue, from the perspective of survival, that the ethical values of a species (like humanity) has to put the good of the species at the center.  Ethical is therefore “what is good for our own species”. Spending a large amount of money on a project, like the Genesis Project, which is expressively not for the benefit of our own species, would then be unethical.

___

Our thanks go out to Dr. Gros for taking the time to talk to us! We hope to hear more from him in the future and wish him the best of luck with Project Genesis.

SpaceX Resuming Launches from Damaged Pad 40 on Dec. 4 with Station Resupply Flight for NASA; Covert Zuma Remains on Hold

SpaceX Dragon CRS-9 was the last International Space Station resupply mission to lift off successfully from pad 40 on July 18, 2016, prior to the Cape Canaveral, FL, launch pad explosion with the Amos-6 payload that heavily damaged the pad and infrastructure on Sept. 1, 2016. Cargo launches for NASA will resume with Dragon CRS-13 in December 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After postponing last week’s liftoff of the covert ‘Zuma’ spy satellite due to last minute concerns about the reliability of the payload fairing encapsulating it while poised for liftoff at KSC pad 39, SpaceX is set to at last resume launches from their previously damaged and now repaired Cape Canaveral pad 40 with a cargo resupply mission for NASA to the International Space Station (ISS) on Dec 4.

NASA and SpaceX have jointly decided to move forward with the Dragon CRS-13 cargo blastoff apparently because the mission does not involve use of the problematical payload fairing that halted last weeks planned Falcon 9 launch with the rocket and the mysterious Zuma payload.

Zuma was ready and waiting at pad 39A for the GO to launch that never came.

Then after a series of daily delays SpaceX ultimately announced a ‘stand down’ for super secret Zuma at pad 39A on Friday, Nov. 17, for the foreseeable future.

SpaceX engineers also had to deal with the after effects of a fire that broke out on a Merlin engine test stand during preparations for a hot fire test that resulted from a leak during a ‘LOX drop’ that halted testing of the Block 5 version of the Merlin 1D.

SpaceX Falcon 9 rocket blastoff of clandestine Zuma spysat to low earth orbit for a classified US government customer is postponed indefinitely from Launch Complex 39A at the Kennedy Space Center, FL, from last targeted launch date of 17 Nov 2017. Credit: Ken Kremer/Kenkremer.com

Since SpaceX’s gumdrop shaped Dragon cargo freighter launches as a stand alone aerodynamically shielded spacecraft atop the Falcon 9, it does not require additional protection from atmospheric forces and friction housed inside a nose cone during ascent to orbit unlike satellites with many unprotected exposed surfaces, critical hardware and delicate instruments.

Thus Dragon is deemed good to go since there currently appear to be no other unresolved technical issues with the Falcon 9 rocket.

“NASA commercial cargo provider SpaceX is targeting its 13th commercial resupply services mission to the International Space Station for no earlier than 2:53 p.m. EST Monday, Dec. 4,” NASA announced on the agency blog and social media accounts.

The Dec. 4 launch date for Dragon CRS-13 was announced by NASA’s space station manager Dan Hartman during the Orbital ATK Antares/Cygnus launch campaign that culminated with a successful blastoff last Sunday, Nov 12 from NASA’s Wallops Flight Facility on Virginia’s eastern shore.

But the targeted Dec 4 liftoff from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL, was cast in doubt after SpaceX disclosed the payload fairing issue related launch delay on Friday.

Since last week SpaceX engineers have been busy taking the time to carefully scrutinize all the pertinent fairing data before proceeding with the top secret Zuma launch.

“We have decided to stand down and take a closer look at data from recent fairing testing for another customer,” said SpaceX spokesman John Taylor last Friday.

Covert Zuma spysat is encapsulated inside the nose cose at the top of the SpaceX Falcon 9 rocket in this up-close view from Launch Complex 39A at the Kennedy Space Center, FL, taken on Nov. 17, 2017. An unresolved issue with the nose cone caused indefinite launch postponement. Credit: Ken Kremer/Kenkremer.com

All of SpaceX’s launches this year from Florida’s Spaceport have taken place from NASA’s historic Launch Complex-39A at the Kennedy Space Center.

Pad 39A became SpaceX’s only operational Florida Space Coast launch pad following a catastrophic launch pad accident last year on Sept. 1, 2016 that took place during a routine fueling test that suddenly ended in a devastating explosion and fire that completely consumed the Falcon 9 rocket and Amos-6 payload and heavily damaged the pad and support infrastructure.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Since the Amos-6 accident workers raced to finish refurbishments to NASA’s long dormant pad 39A to transform into operational status and successfully launched a dozen missions this year.

Simultaneously additional crews have been hard at work to repair damaged pad 40 so that flights can resume there as soon as possible for the bulk of NASA, commercial and military contracted missions.

Meanwhile SpaceX wants to upgrade pad 39A to launch the Falcon Heavy and crewed Dragon flight. But those launches cant take place until pad 40 resumes operational status.

The Dragon CRS-13 mission was recently announced as the maiden mission for the reopening of pad 40.

Altogether Dragon CRS-13 will count as the fourth SpaceX Dragon liftoff of 2017.

The 20-foot high, 12-foot-diameter Dragon CRS-13 vessel will carry about 3 tons of science and supplies to the orbiting outpost and stay about 4 weeks.

It will be a reused Dragon that previously flew on the CRS-6 mission.

“The Dragon [CRS-13] spacecraft will spend about a month attached to the space station,” NASA said.

SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

The prior Dragon CRS-12 resupply ship launched from pad 39A on Aug. 14, 2017 from KSC pad 39A and carried more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

Dragon CRS-9 was the last ISS resupply mission to launch from pad 40 on July 18, 2016.

The recently arrived Orbital ATK Cygnus cargo ship is expected to depart the station from the Earth facing Unity node on Dec. 3 to make way for Dragon’s berthing at the Harmony node.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite coverage of SpaceX CRS-13, Zuma and KoreaSat-5A & Orbital ATK OA-8 Cygnus and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Station Astronauts Unload Cygnus Science; Antares Launch Gallery

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Astronauts aboard the International Space Station are now busily unloading nearly four tons of science experiments, research gear, station equipment and crew supplies – following the spectacular launch of the Orbital ATK Antares rocket earlier this week on Sunday Nov. 12 from Virginia’s eastern shore that propelled the Cygnus cargo freighter to an on time arrival two days later on Tuesday Nov. 14.

The Orbital ATK Cygnus spacecraft was christened the S.S. Gene Cernan and named in honor of NASA’s Apollo 17 lunar landing commander; Gene Cernan.

Among the goodies delivered by the newly arrived S.S. Gene Cernan Cygnus OA-8 supply run to resident the crew of six astronauts and cosmonauts from the US, Russia and Italy are ice cream, pizza and presents for the holidays. They are enjoying the fruits of the earthy labor of thousands of space workers celebrating the mission’s success.

The six-member Expedition 53 crew poses for a portrait inside the Japanese Kibo laboratory module with the VICTORY art spacesuit that was hand-painted by cancer patients in Russia and the United States. On the left (from top to bottom) are NASA astronauts Joe Acaba and Mark Vande Hei with cosmonaut Alexander Misurkin of Roscosmos. On the right (from top to bottom) are European Space Agency astronaut Paolo Nespoli, cosmonaut Sergey Ryazanskiy of Roscosmos and Expedition 53 Commander Randy Bresnik of NASA. Credit: NASA/ESA/Roscosmos

The journey began with the flawless liftoff of the two stage Antares rocket shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Check out the expanding gallery of launch imagery and videos captured by this author and several space colleagues of Antares prelaunch activities around the launch pad and through Sunday’s stunningly beautiful sunrise blastoff.

After a carefully choreographed series of intricate thruster firings to raise its orbit in an orbital pursuit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

The Orbital ATK Cygnus OA-8 spacecraft is pictured after it had been grappled with the Canadarm2 robotic arm by astronauts Paolo Nespoli and Randy Bresnik on Nov. 14, 2017. Credit: NASA

Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik then deftly maneuvered the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm to grapple and successfully capture the Cygnus cargo freighter at 5:04 a.m., Tuesday Nov. 14.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, then maneuvered the arm and robotic hand grappling Cygnus towards the exterior hull and berthed the cargo ship at the Earth-facing port of the stations Unity module.

The berthing operation was completed at 7:15 a.m. after all 16 bolts were driven home for hard mating as the station was flying 252 miles over the North Pacific in orbital night.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Apollo 17 was NASA’s final lunar landing mission. Gere Cernan was the last man to walk on the Moon.

A portrait of Gene Cernan greets the astronauts as they open the hatch to the Cygnus cargo spacecraft named in his honor. Credit: NASA

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and release 14 CubeSats using a NanoRacks deployer, a record number for the spacecraft.

It will then be commanded to fire its main engine to lower its orbit and carry out a fiery and destructive re-entry into Earth’s atmosphere over the Pacific Ocean as it disposes of several tons of trash.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 manifest includes:

Crew Supplies 2,734.1 lbs. / 1,240 kg
Science Investigations 1631.42 lbs. / 740 kg
Spacewalk Equipment 291.0 lbs. / 132 kg
Vehicle Hardware 1,875.2 lbs. / 851 kg
Computer Resources 75.0 lbs. / 34 kg

Total Cargo: 7,359.0 lbs. / 3,338 kg
Total Pressurized Cargo with Packaging: 7,118.7 lbs. / 3,229 kg
Unpressurized Cargo (NanoRacks Deployer): 240.3 lbs. / 109 kg

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Orbital ATK’s Antares rocket and S.S. Gene Cernan Cygnus OA-8 resupply ship pierce the oceanside clouds over NASA Wallops Flight Facility in Virginia, after sunrise liftoff on Nov. 12, 2017 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann
Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com
Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com
Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com
Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com
Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer
Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer
Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer
The Orbital ATK Antares rocket topped with the Cygnus OA-8 spacecraft creates a beautiful water reflection in this prelaunch nighttime view across the inland waterways. Launch is targeted for Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Hardware for the Orbital ATK Antares rocket launching the Cygnus OA-8 resupply mission to the International Space Station on Nov. 11, 2017 – as it was being assembled for flight inside the Horizontal Integration Facility at NASA’s Wallops Flight Facility. Credit: Ken Kremer/kenkremer.com
Orbital ATK Cygnus OA-8 mission patch. Credit: Orbital ATK

S.S Gene Cernan Honoring Last Moonwalker Arrives at International Space Station Carrying Tons of Research Gear and Supplies

The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV

The S.S. Gene Cernan Cygnus spacecraft named in honor of the Apollo 17 lunar landing commander and launched by Orbital ATK from the eastern shore of Virgina at breakfast time Sunday, Nov. 12, arrived at the International Space Station early Tuesday morning, Nov 14, carrying over 3.7 tons of research equipment and supplies for the six person resident crew.

Soon thereafter at 5:04 a.m., Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik successfully captured Orbital ATK’s Cygnus cargo freighter using the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Nespoli and Bresnik were working at a robotics work station inside the seven windowed domed Cupola module that offers astronauts the most expansive view outside to snare Cygnus with the robotic arms end effector.

The Cygnus cargo freighter – named after the last man to walk on the Moon – reached its preliminary orbit nine minutes after blasting off early Sunday atop the upgraded 230 version of the Orbital ATK Antares rocket from NASA’s Wallops Flight Facility in Virginia.

The flawless liftoff of the two stage Antares rocket took place shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Sunday’s spectacular Antares launch delighted spectators – but came a day late due to a last moment scrub on the originally planned Veteran’s Day liftoff, Saturday, Nov. 11, when a completely reckless pilot flew below radar into restricted airspace just 5 miles away from the launch pad – forcing a sudden and unexpected halt to the countdown under absolutely perfect weather conditions.

After a carefully choreographed series of intricate thruster firings to raise its orbit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

With Cygnus firmly in the grip of the robots hand, ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, maneuvered the arm towards the exterior hull and berth the cargo ship at the Earth-facing port of the stations Unity module.

1st stage capture was completed at 7:08 a. EST Nov 14.

After driving in the second stage gang of bolts, hard mate and capture were completed at 7:15 a.m.

The station was flying 252 miles over the North Pacific in orbital night at the time of berthing.

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

NASA TV provided live coverage of the rendezvous and grappling.

Including Cygnus there are now five visiting vehicle spaceships parked at the space station including also the Russian Progress 67 and 68 resupply ships and the Russian Soyuz MS-05 and MS-06 crew ships.

International Space Station Configuration. Five spaceships are parked at the space station including the Orbital ATK Cygnus after Nov. 14, 2017 arrival, the Progress 67 and 68 resupply ships and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.

On this flight, the Cygnus OA-8 spacecraft is jam packed with its heaviest cargo load to date!

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cernan was commander of Apollo 17, NASA’s last lunar landing mission and passed away in January at age 82. He set records for both lunar surface extravehicular activities and the longest time in lunar orbit on Apollo 10 and Apollo 17.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Apollo17, NASA’s final lunar landing mission, on December 7, 1972, as seen from the KSC press site. Credit: Mark and Tom Usciak

………….

Ken’s upcoming outreach events:

Learn more about the upcoming SpaceX Falcon 9 Zuma launch on Nov 16, 2017, upcoming Falcon Heavy and CRS-13 resupply launches, NASA missions, ULA Atlas & Delta launches, SpySats and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Nov 15, 17: “SpaceX Falcon 9 Zuma launch, ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-13 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com
The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/Kenkremer.com
Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com
Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com