New Research Reveals How Galaxies Stay Hot and Bothered

This visualization uses data from simulations of orbital motions of gas swirling around at about 30% of the speed of light on a circular orbit around the black hole. Credit: ESO/Gravity Consortium/L. Calçada

It’s relatively easy for galaxies to make stars. Start out with a bunch of random blobs of gas and dust. Typically those blobs will be pretty warm. To turn them into stars, you have to cool them off. By dumping all their heat in the form of radiation, they can compress. Dump more heat, compress more. Repeat for a million years or so.

Eventually pieces of the gas cloud shrink and shrink, compressing themselves into a tight little knots. If the densities inside those knots get high enough, they trigger nuclear fusion and voila: stars are born.

Continue reading “New Research Reveals How Galaxies Stay Hot and Bothered”

You’re Looking at an Actual Image of a White Dwarf Feeding on Material from a Larger Red Giant, 650 Light Years from Earth.

This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, with the white dwarf feeding on material from the Mira variable, as well as the jets of material spewing from the stellar couple. Image Credit: ESO/Schmid et al.
This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, with the white dwarf feeding on material from the Mira variable, as well as the jets of material spewing from the stellar couple. Image Credit: ESO/Schmid et al.

The SPHERE planet-hunting instrument on the European Southern Observatory’s Very Large Telescope captured this image of a white dwarf feeding on its companion star, a type of Red Giant called a Mira variable. Most stars exist in binary systems, and they spend an eternity serenely orbiting their common center of gravity. But something almost sinister is going on between these two.

Astronomers at the ESO have been observing the pair for years and have uncovered what they call a “peculiar story.” The Red Giant is a Mira variable, meaning it’s near the end of its life, and it’s pulsing up to 1,000 times as bright as our Sun. Each time it pulses, its gaseous envelope expands, and the smaller White Dwarf strips material from the Red Giant.

Continue reading “You’re Looking at an Actual Image of a White Dwarf Feeding on Material from a Larger Red Giant, 650 Light Years from Earth.”

There’s a Surprising Amount of Life Deep Inside the Earth. Hundreds of Times More Mass than All of Humanity

A nematode (eukaryote) in a biofilm of microorganisms. This unidentified nematode (Poikilolaimus sp.) from Kopanang gold mine in South Africa, lives 1.4 km below the surface. Image courtesy of Gaetan Borgonie (Extreme Life Isyensya, Belgium).
A nematode (eukaryote) in a biofilm of microorganisms. This unidentified nematode (Poikilolaimus sp.) from Kopanang gold mine in South Africa, lives 1.4 km below the surface. Image courtesy of Gaetan Borgonie (Extreme Life Isyensya, Belgium).

Scientists with the Deep Carbon Observatory (DCO) are transforming our understanding of life deep inside the Earth, and maybe on other worlds. Their discoveries suggest that abundant life could exist in the sub-surface of other planets and moons, even where temperatures are extreme, and energy and nutrients are scarce. They’ve also discovered that all of the life hidden in the deep Earth contains hundreds of times more carbon than all of humanity, and that the deep biosphere is almost twice the volume of all Earth’s oceans.

“Existing models of the carbon cycle … are still a work in progress.” – Dr. Mark Lever, DCO Deep Life Community Steering Committee.”

The DCO is not a facility, but a group of over 1,000 scientist from 52 countries, including geologists, chemists, physicists, and biologists. They’re nearing the end of a 10-year project to investigate how the Deep Carbon Cycle affects Earth. 90 % of Earth’s carbon is inside the planet, and the DCO is our first effort to really understand it.

Continue reading “There’s a Surprising Amount of Life Deep Inside the Earth. Hundreds of Times More Mass than All of Humanity”

A Supernova 2.6 Million Years Ago Could Have Wiped Out the Ocean’s Large Animals

Artist's impression of a Type II supernova. Credit: ESO
Artist's impression of a Type II supernova. Credit: ESO

For many years, scientists have been studying how supernovae could affect life on Earth. Supernovae are extremely powerful events, and depending on how close they are to Earth, they could have consequences ranging from the cataclysmic to the inconsequential. But now, the scientists behind a new paper say they have specific evidence linking one or more supernova to an extinction event 2.6 million years ago.

About 2.6 million years ago, one or more supernovae exploded about 50 parsecs, or about 160 light years, away from Earth. At that same time, there was also an extinction event on Earth, called the Pliocene marine megafauna extinction. Up to a third of the large marine species on Earth were wiped out at the time, most of them living in shallow coastal waters.

“This time, it’s different. We have evidence of nearby events at a specific time.” – Dr. Adrian Melott, University of Kansas.

Continue reading “A Supernova 2.6 Million Years Ago Could Have Wiped Out the Ocean’s Large Animals”

A Rapid Rise in Temperature Led to the Worst Extinction in our Planet’s History

This illustration shows the percentage of marine animals that went extinct during Earth's worst extinction at the end of the Permian era by latitude, from the model (black line) and from the fossil record (blue dots).A greater percentage of marine animals survived in the tropics than at the poles. The color of the water shows the temperature change, with red being most severe warming and yellow less warming. At the top is the supercontinent Pangaea, with massive volcanic eruptions emitting carbon dioxide. The images below the line represent some of the 96 percent of marine species that died during the event. [Includes fossil drawings by Ernst Haeckel/Wikimedia; Blue crab photo by Wendy Kaveney/Flickr; Atlantic cod photo by Hans-Petter Fjeld/Wikimedia; Chambered nautilus photo by John White/CalPhotos.]Justin Penn and Curtis Deutsch/University of Washington
This illustration shows the percentage of marine animals that went extinct during Earth's worst extinction at the end of the Permian era by latitude, from the model (black line) and from the fossil record (blue dots).A greater percentage of marine animals survived in the tropics than at the poles. The color of the water shows the temperature change, with red being most severe warming and yellow less warming. At the top is the supercontinent Pangaea, with massive volcanic eruptions emitting carbon dioxide. The images below the line represent some of the 96 percent of marine species that died during the event. [Includes fossil drawings by Ernst Haeckel/Wikimedia; Blue crab photo by Wendy Kaveney/Flickr; Atlantic cod photo by Hans-Petter Fjeld/Wikimedia; Chambered nautilus photo by John White/CalPhotos.]Justin Penn and Curtis Deutsch/University of Washington

Everyone knows about the extinction of the dinosaurs. A cataclysmic asteroid strike about 66 million years ago (mya) caused the Death of the Dinosaurs. But there’ve been several mass extinctions in the Earth’s history, and they didn’t involve killer asteroids. The worst extinction was caused by a rapid rise in temperature.

Earth’s most severe extinction occurred long before the killer asteroid impact that wiped out the dinosaurs. It happened some 252 mya, and it marked the end of what’s called the Permian Period. The extinction is known as the Permian-Triassic Extinction Event, the End-Permian Extinction, or more simply, “The Great Dying.” Up to 70% of terrestrial vertebrates and up to 96% of all marine species were extinguished during The Great Dying.

How did it happen? Could it happen again?

Continue reading “A Rapid Rise in Temperature Led to the Worst Extinction in our Planet’s History”

Astronomers Count all the Photons in the Universe. Spoiler Alert: 4,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Photons

The NASA/ESA Hubble Space Telescope offers this delightful view of the crowded stellar encampment called Messier 68, a spherical, star-filled region of space known as a globular cluster. Mutual gravitational attraction amongst a cluster’s hundreds of thousands or even millions of stars keeps stellar members in check, allowing globular clusters to hang together for many billions of years. Astronomers can measure the ages of globular clusters by looking at the light of their constituent stars. The chemical elements leave signatures in this light, and the starlight reveals that globular clusters' stars typically contain fewer heavy elements, such as carbon, oxygen and iron, than stars like the Sun. Since successive generations of stars gradually create these elements through nuclear fusion, stars having fewer of them are relics of earlier epochs in the Universe. Indeed, the stars in globular clusters rank among the oldest on record, dating back more than 10 billion years. More than 150 of these objects surround our Milky Way galaxy. On a galactic scale, globular clusters are indeed not all that big. In Messier 68's case, its constituent stars span a volume of space with a diameter of little more than a hundred light-years. The disc of the Milky Way, on the other hand, extends over some 100 000 light-years or more. Messier 68 is located about 33 000 light-years from Earth in the constellation Hydra (The Female Water Snake). French astronomer Charles Messier notched the object as the sixty-eighth entry in his famous catalogue in 1780. Hubble added Messier 68 to its own impressive list of cosmic targets in this image using the Wide Field Camera of Hubble’s Advanced Camera for Surveys. The image, which combines visible and infrared light, has a field of view of approximately 3.4 by 3.4 arcminutes. Credit: Hubble/NASA/ESA

Imagine yourself in a boat on a great ocean, the water stretching to the distant horizon, with the faintest hints of land just beyond that. It’s morning, just before dawn, and a dense fog has settled along the coast. As the chill grips you on your early watch, you catch out of the corner of your eye a lighthouse, feebly flickering through the fog.

And – yes – there! Another lighthouse, closer, its light a little stronger. As you scan the horizon more lighthouses signal the dangers of the distant coast.
Continue reading “Astronomers Count all the Photons in the Universe. Spoiler Alert: 4,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Photons”

The Large Hadron Collider has been Shut Down, and Will Stay Down for Two Years While they Perform Major Upgrades

The Compact Muon Solenoid Detector on the LHC. Image Credit: CERN
The Compact Muon Solenoid Detector on the LHC. Image Credit: CERN

The Large Hadron Collider (LHC) is getting a big boost to its performance. Unfortunately, for fans of ground-breaking physics, the whole thing has to be shut down for two years while the work is done. But once it’s back up and running, its enhanced capabilities will make it even more powerful.
Continue reading “The Large Hadron Collider has been Shut Down, and Will Stay Down for Two Years While they Perform Major Upgrades”

A Meteor may have Exploded in the Air 3,700 Years Ago, Obliterating Communities Near the Dead Sea

Artist's conception of a comet exploding in the Earth’s atmosphere above Egypt. Credit: Terry Bakker

A meteor that exploded in the air near the Dead Sea 3,700 years ago may have wiped out communities, killed tens of thousands of people, and provided the kernel of truth to an old Bible story. The area is in modern-day Jordan, in a 25 km wide circular plain called Middle Ghor. Most of the evidence for this event comes from archaeological evidence excavated at the Bronze Age city of Tall el-Hammam located in that area, which some scholars say is the city of Sodom from the Bible.

Continue reading “A Meteor may have Exploded in the Air 3,700 Years Ago, Obliterating Communities Near the Dead Sea”

A New Atomic Clock has been Built that Would be off by Less than a Second Since the Big Bang

Timeline of the Big Bang and the expansion of the Universe. If the new atomic clock had been turned on at the Big Bang, it would be off by less than a single second now, almost 14 billion years later. Credit: NASA
Timeline of the Big Bang and the expansion of the Universe. If the new atomic clock had been turned on at the Big Bang, it would be off by less than a single second now, almost 14 billion years later. Credit: NASA

Physicists have developed an atomic clock so accurate that it would be off by less than a single second in 14 billion years. That kind of accuracy and precision makes it more than just a timepiece. It’s a powerful scientific instrument that could measure gravitational waves, take the measure of the Earth’s gravitational shape, and maybe even detect dark matter.

How did they do it?

Continue reading “A New Atomic Clock has been Built that Would be off by Less than a Second Since the Big Bang”

Antibiotic Resistant Bacteria has been Found on the Space Station’s Toilet

The International Space Station (ISS), seen here with Earth as a backdrop. Credit: NASA
The International Space Station (ISS), seen here with Earth as a backdrop. Credit: NASA

NASA keeps a close eye on the bacteria inhabiting the International Space Station with a program called the Microbial Observatory (M.O.) The ISS is home to a variety of microbes, some of which pose a threat to the health of astronauts. As part of their monitoring, the M.O. has discovered antibiotic resistant bacteria on the toilet seat on the ISS.
Continue reading “Antibiotic Resistant Bacteria has been Found on the Space Station’s Toilet”