Warp Drives Could Generate Gravitational Waves

This artist's illustration shows a spacecraft using an Alcubierre Warp Drive to warp space and 'travel' faster than light. Image Credit: NASA

Will future humans use warp drives to explore the cosmos? We’re in no position to eliminate the possibility. But if our distant descendants ever do, it won’t involve dilithium crystals, and Scottish accents will have evaporated into history by then.

Continue reading “Warp Drives Could Generate Gravitational Waves”

If Gravity Can Exist Without Mass, That Could Explain Dark Matter

Researchers are making progress mapping dark matter, but they don't know what it is. This is a 3D density map of dark matter in the local universe, with the Milky Way marked by an X. Dots are galaxies, and the arrows indicate the directions of motion derived from the reconstructed gravitational potential of dark matter. Image Credit: Hong et al., doi: 10.3847/1538-4357/abf040.

Dark Matter is Nature’s poltergeist. We can see its effects, but we can’t see it, and we don’t know what it is. It’s as if Nature is playing tricks on us, hiding most of its mass and confounding our efforts to determine what it is.

Continue reading “If Gravity Can Exist Without Mass, That Could Explain Dark Matter”

An Earth-sized Exoplanet Found Orbiting a Jupiter-Sized Star

This artist's illustration shows the exoplanet SPECULOOS-3 b orbiting its red dwarf star. The planet is as big around as Earth, while its star is slightly bigger than Jupiter – but much more massive. The planet is a prime candidate for follow-up studies with the JWST. Credit: NASA/JPL-Caltech

Red dwarf stars, also known as M-dwarfs, dominate the Milky Way’s stellar population. They can last for 100 billion years or longer. Since these long-lived stars make up the bulk of the stars in our galaxy, it stands to reason that they host the most planets.

Astronomers examined one red dwarf star named SPECULOOS-3, a Jupiter-sized star about 55 light-years away, and found an Earth-sized exoplanet orbiting it. It’s an excellent candidate for further study with the James Webb Space Telescope.

Continue reading “An Earth-sized Exoplanet Found Orbiting a Jupiter-Sized Star”

The JWST is Re-Writing Astronomy Textbooks

The first JWST Deep Field Image, showing large distant galaxies. The telescope's observations are revealing the previously unseen and are forcing a re-write of astronomy textbooks. Image Credit: NASA, ESA, CSA, STScI

When the James Webb Space Telescope was launched at the end of 2021, we expected stunning images and illuminating scientific results. So far, the powerful space telescope has lived up to our expectations. The JWST has shown us things about the early Universe we never anticipated.

Some of those results are forcing a rewrite of astronomy textbooks.

Continue reading “The JWST is Re-Writing Astronomy Textbooks”

Astronomers Propose a 14-Meter Infrared Space Telescope

An artist's illustration of the SALTUS Observatory concept. SALTUS is a Far-IR space telescope that will open a new window into the cosmos. Image Credit: NASA

The Universe wants us to understand its origins. Every second of every day, it sends us a multitude of signals, each one a clue to a different aspect of the cosmos. But the Universe is the original Trickster, and its multitude of signals is an almost unrecognizable cacophony of light, warped, shifted, and stretched during its long journey through the expanding Universe.

Continue reading “Astronomers Propose a 14-Meter Infrared Space Telescope”

41,000 Years Ago Earth’s Shield Went Down

An illustration of Earth's magnetic field. Image Credit: ESA/ATG medialab

Earth is naked without its protective barrier. The planet’s magnetic shield surrounds Earth and shelters it from the natural onslaught of cosmic rays. But sometimes, the shield weakens and wavers, allowing cosmic rays to strike the atmosphere, creating a shower of particles that scientists think could wreak havoc on the biosphere.

This has happened many times in our planet’s history, including 41,000 years ago in an event called the Laschamps excursion.

Continue reading “41,000 Years Ago Earth’s Shield Went Down”

Astronomers Think They’ve Found Examples of the First Stars in the Universe

An artist's illustration of some of the Universe's first stars. Called Population 3 stars, they formed a few hundred million years after the Big Bang. Image Credit: By NASA/WMAP Science Team - https://www.nasa.gov/vision/universe/starsgalaxies/fuse_fossil_galaxies.html (image link), Public Domain, https://commons.wikimedia.org/w/index.php?curid=1582286

When the first stars in the Universe formed, the only material available was primordial hydrogen and helium from the Big Bang. Astronomers call these original stars Population Three stars, and they were extremely massive, luminous, and hot stars. They’re gone now, and in fact, their existence is hypothetical.

But if they did exist, they should’ve left their fingerprints on nearby gas, and astrophysicists are looking for it.

Continue reading “Astronomers Think They’ve Found Examples of the First Stars in the Universe”

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

These diagrams show a set of possible routes a spacecraft could take between different regions near to the Moon. Image via a new paper by Danny Owen and Nicola Baresi.

When a spacecraft arrives at its destination, it settles into an orbit for science operations. But after the primary mission is complete, there might be other interesting orbits where scientists would like to explore. Maneuvering to a different orbit requires fuel, limiting a spacecraft’s number of maneuvers.

Researchers have discovered that some orbital paths allow for no-fuel orbital changes. But the figuring out these paths also are computationally expensive. Knot theory has been shown to find these pathways more easily, allowing the most fuel-efficient routes to be plotted. This is similar to how our GPS mapping software plots the most efficient routes for us here on Earth.

Continue reading “How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel”

Did An Ancient Icy Impactor Create the Martian Moons?

A composite image of Mars and its two moons, Phobos (foreground) and Deimos (background). Credit: NASA/JPL/University of Arizona

The Martian moons Phobos and Deimos are oddballs. While other Solar System moons are round, Mars’ moons are misshapen and lumpy like potatoes. They’re more like asteroids or other small bodies than moons.

Because of their odd shapes and unusual compositions, scientists are still puzzling over their origins.

Continue reading “Did An Ancient Icy Impactor Create the Martian Moons?”

If Europa has Geysers, They’re Very Faint

Jupiter's second Galilean moon, Europa. Its smooth surface has fewer craters than other moons, but they help us understand its icy shell. (Credit: NASA/JPL/Galileo spacecraft)
The Hubble spotted evidence of geysers coming from Jupiter's moon Europa, but nobody's been able to find them again. (Credit: NASA/JPL/Galileo spacecraft)

In 2013, the Hubble Space Telescope spotted water vapour on Jupiter’s moon Europa. The vapour was evidence of plumes similar to the ones on Saturn’s moon Enceladus. That, and other compelling evidence, showed that the moon has an ocean. That led to speculation that the ocean could harbour life.

But the ocean is obscured under a thick, global layer of ice, making the plumes our only way of examining the ocean. The plumes are so difficult to detect they haven’t been confirmed.

Continue reading “If Europa has Geysers, They’re Very Faint”