New Study Says Enceladus has had an Internal Ocean for Billions of Years

Cutaway showing the interior of Saturn's moon Enceladus. Credit: ESA

When the Cassini mission arrived in the Saturn system in 2004, it discovered something rather unexpected in Enceladus’ southern hemisphere. From hundreds of fissures located in the polar region, plumes of water and organic molecules were spotted periodically spewing forth. This was the first indication that Saturn’s moon may have an interior ocean caused by hydrothermal activity near the core-mantle boundary.

According to a new study based on Cassini data, which it obtained before diving into Saturn’s atmosphere on September 15th, this activity may have been going on for some time. In fact, the study team concluded that if the moon’s core is porous enough, it could have generated enough heat to maintain an interior ocean for billions of years. This study is the most encouraging indication yet that the interior of Enceladus could support life.

The study, titled “Powering prolonged hydrothermal activity inside Enceladus“, recently appeared in the journal Nature Astronomy. The study was led by Gaël Choblet, a researcher with the Planetary and Geodynamic Laboratory at the University of Nantes, and included members from NASA’s Jet Propulsion Laboratory, Charles University, and the Institute of Earth Sciences and the Geo- and Cosmochemistry Laboratory at the University of Heidelberg.

Artist’s rendering of possible hydrothermal activity that may be taking place on and under the seafloor of Enceladus. Credit: NASA/JPL

Prior to the Cassini mission’s many flybys of Enceladus, scientists believed this moon’s surface was composed of solid ice. It was only after noticing the plume activity that they came to realize that it had water jets that extended all the way down to a warm-water ocean in its interior. From the data obtained by Cassini, scientists were even able to make educated guesses of where this internal ocean lay.

All told, Enceladus is a relatively small moon, measuring some 500 km (311 mi) in diameter. Based on gravity measurements performed by Cassini, its interior ocean is believed to lie beneath an icy outer surface at depths of 20 to 25 km (12.4 to 15.5 mi). However, this surface ice thins to about 1 to 5 km (0.6 to 3.1 mi) over the southern polar region, where the jets of water and icy particles jet through fissures.

Based on the way Enceladus orbits Saturn with a certain wobble (aka. libration), scientists have been able to make estimates of the ocean’s depth, which they place at 26 to 31 km (16 to 19 mi). All of this surrounds a core which is believed to be composed of silicate minerals and metal, but which is also porous. Despite all these findings, the source of the interior heat has remained something of an open question.

This mechanism would have to be active when the moon formed billions of years ago and is still active today (as evidenced by the current plume activity). As Dr. Choblet explained in an ESA press statement:

“Where Enceladus gets the sustained power to remain active has always been a bit of mystery, but we’ve now considered in greater detail how the structure and composition of the moon’s rocky core could play a key role in generating the necessary energy.”

Gravity measurements by NASA’s Cassini spacecraft and Deep Space Network suggest that Saturn’s moon Enceladus, which has jets of water vapor and ice gushing from its south pole, also harbors a large interior ocean beneath an ice shell, as this illustration depicts. Credit: NASA/JPL-Caltech

For years, scientists have speculated that tidal forces caused by Saturn’s gravitational influence are responsible for Enceladus’ internal heating. The way Saturn pushes and pulls the moon as it follows an elliptical path around the planet is also believed to be what causes Enceladus’ icy shell to deform, causing the fissures around the southern polar region. These same mechanisms are believed to be what is responsible for Europa’s interior warm-water ocean.

However, the energy produced by tidal friction in the ice is too weak to counterbalance the heat loss seen from the ocean. At the rate Enceladus’ ocean is losing energy to space, the entire moon would freeze solid within 30 million years. Similarly, the natural decay of radioactive elements within the core (which has been suggested for other moons as well) is also about 100 times too weak to explain Enceladus interior and plume activity.

To address this, Dr. Choblet and his team conducted simulations of Enceladus’ core to determine what kind of conditions could allow for tidal heating over billions of years. As they state in their study:

“In absence of direct constraints on the mechanical properties of Enceladus’ core, we consider a wide range of parameters to characterize the rate of tidal friction and the efficiency of water transport by porous flow. The unconsolidated core of Enceladus can be viewed as a highly granular/fragmented material, in which tidal deformation is likely to be associated with intergranular friction during fragment rearrangements.”
Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface.Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

What they found was that in order for the Cassini observations to be borne out, Enceladus’ core would need to be made of unconsolidated, easily deformable, porous rock. This core could be easily permeated by liquid water, which would seep into the core and gradually heated through tidal friction between sliding rock fragments. Once this water was sufficiently heated, it would rise upwards because of temperature differences with its surroundings.

This process ultimately transfers heat to the interior ocean in narrow plumes which rise to the meet Enceladus’ icy shell. Once there, it causes the surface ice to melt and forming fissures through which jets reach  into space, spewing water, ice particles and hydrated minerals that replenish Saturn’s E-Ring. All of this is consistent with the observations made by Cassini, and is sustainable from a geophysical point of view.

In other words, this study is able to show that action in Enceladus’ core could produce the necessary heating to maintain a global ocean and produce plume activity. Since this action is a result of the core’s structure and tidal interaction with Saturn, it is perfectly logical that it has been taking place for billions of years. So beyond providing the first coherent explanation for Enceladus’ plume activity, this study is also a strong indication of habitability.

As scientists have come to understand, life takes a long time to get going. On Earth, it is estimated that the first microorganisms arose after 500 million years, and hydrothermal vents are believed to have played a key role in that process. It took another 2.5 billion years for the first multi-cellular life to evolve, and land-based plants and animals have only been around for the past 500 million years.

Knowing that moons like Enceladus – which has the necessary chemistry to support for life – has also had the necessary energy for billions of years is therefore very encouraging. One can only imagine what we will find once future missions begin inspecting its plumes more closely!

Further Reading: ESA, Nature Astronomy

Forecast for Titan: Cold, with a Chance of Noxious Ice Clouds

This view of Saturn’s largest moon, Titan, is among the last images the Cassini spacecraft sent to Earth before it plunged into the giant planet’s atmosphere. Credits: NASA/JPL-Caltech/Space Science Institute

During the 13 years and 76 days that the Cassini mission spent around Saturn, the orbiter and its lander (the Huygens probe) revealed a great deal about Saturn and its systems of moons. This is especially true of Titan, Saturn’s largest moon and one of the most mysterious objects in the Solar System. As a result of Cassini’s many flybys, scientists learned a great deal about Titan’s methane lakes, nitrogen-rich atmosphere, and surface features.

Even though Cassini plunged into Saturn’s atmosphere on September 15th, 2017, scientists are still pouring over the things it revealed. For instance, before it ended its mission, Cassini captured an image of a strange cloud floating high above Titan’s south pole, one which is composed of toxic, hybrid ice particles. This discovery is another indication of the complex organic chemistry occurring in Titan’s atmosphere and on it’s surface.

Since this cloud was invisible to the naked eye, it was only observable thanks to Cassini’s Composite Infrared Spectrometer (CIRS). This instrument spotted the cloud at an altitude of about 160 to 210 km (100 to 130 mi), far above the methane rain clouds of Titan’s troposphere. It also covered a large area near the south pole, between 75° and 85° south latitude.

Artist concept of Cassini’s last moments at Saturn. Credit: NASA/JPL.

Using the chemical fingerprint obtained by the CIRS instrument, NASA researchers also conducted laboratory experiments to reconstruct the chemical composition of the cloud. These experiments determined that the cloud was composed of the organic molecules hydrogen cyanide and benzene. These two chemicals appeared to have condensed together to form ice particles, rather than being layered on top of each other.

For those who have spent more than the past decade studying Titan’s atmosphere, this was a rather interesting and unexpected find. As Carrie Anderson, a CIRS co-investigator at NASA’s Goddard Space Flight Center, said in a recent NASA press statement:

“This cloud represents a new chemical formula of ice in Titan’s atmosphere. What’s interesting is that this noxious ice is made of two molecules that condensed together out of a rich mixture of gases at the south pole.”

The presence of this cloud around Titan’s southern pole is also another example of the moon’s global circulation patterns. This involves currents of warm gases being sent from the hemisphere that is experiencing summer to the hemisphere experience winter. This pattern reverse direction when the seasons change, which leads to a buildup of clouds around whichever pole is experiencing winter.

Artist’s impression of Saturn’s moon Titan shows the change in observed atmospheric effects before, during and after equinox in 2009. Credit: NASA

When the Cassini orbiter arrived at Saturn in 20o4, Titan’s northern hemisphere was experiencing winter – which began in 2004. This was evidenced by the buildup of clouds around its north pole, which Cassini spotted during its first encounter with the moon later than same year. Similarly, the same phenomena was taking place around the south pole near the end of Cassini’s mission.

This was consistent with seasonal changes on Titan, which take place roughly every seven Earth years – a year on Titan lasts about 29.5 Earth years. Typically, the clouds that form in Titan’s atmosphere are structured in layers, where different types of gas will condense into icy clouds at different altitudes. Which ones condense is dependent on how much vapor is present and temperatures – which become steadily colder closer to the surface.

However, at times, different types of clouds can form over a range of altitudes, or co-condense with other types of clouds. This certainly appeared to be the case when it came to the large cloud of hydrogen cyanide and benzene that was spotted above the south pole. Evidence of this cloud was derived from three sets of Titan observations made with the CIRS instrument, which took place between July and November of 2015.

The CIRS instrument works by separating infrared light into its constituent colors, and then measures the strengths of these signals at the different wavelengths to determine the presence of chemical signatures. Previously, it was used to identify the presence of hydrogen cyanide ice clouds over the south pole, as well as other toxic chemicals in the moon’s stratosphere.

Artist’s impression of the Cassini orbiter’s Composite Infrared Spectrometer (CIRS). Credit: NASA-JPL

As F. Michael Flasar, the CIRS principal investigator at Goddard, said:

“CIRS acts as a remote-sensing thermometer and as a chemical probe, picking out the heat radiation emitted by individual gases in an atmosphere. And the instrument does it all remotely, while passing by a planet or moon.”

However, when examining the observation data for chemical “fingerprints”, Anderson and her colleagues noticed that the spectral signatures of the icy cloud did not match those of any individual chemical. To address this, the team began conducting laboratory experiments where mixtures of gases were condensed in a chamber that simulated conditions in Titan’s stratosphere.

After testing different pairs of chemicals, they finally found one which matched the infrared signature observed by CIRS. At first, they tried letting one gas condense before the other, but found that the best results were obtained when both gases were introduced and allowed to condense at the same time. To be fair, this was not the first time that Anderson and her colleagues had discovered co-condensed ice in CIRS data.

For example, similar observations were made near the north pole in 2005, about two years after the northern hemisphere experienced its winter solstice. At that time, the icy clouds were detected at a much lower altitude (below 150 km, or 93 mi) and showed chemical fingerprints of hydrogen cyanicide and caynoacetylene – one of the more complex organic molecules in Titan’s atmosphere.

Artist’s impression of the Cassini orbiter entering Saturn’s atmosphere. Credit: NASA/JPL

This difference between this and the latest detection of a hybrid cloud, according to Anderson, comes down to differences in seasonal variations between the north and south poles. Whereas the northern polar cloud observed in 2005 was spotted about two years after the northern winter solstice, the southern cloud Anderson and her team recently examined was spotted two years before the southern winter solstice.

In short, it is possible that the mixture of the gases was slightly different in the two case, and/or that the northern cloud had a chance to warm slightly, thus altering its composition somewhat.  As Anderson explained, these observations were made possible thanks to the many years that the Cassini mission spent around Saturn:

“One of the advantages of Cassini was that we were able to flyby Titan again and again over the course of the thirteen-year mission to see changes over time. This is a big part of the value of a long-term mission.”

Additional studies will certainly be needed to determine the structure of these icy clouds of mixed composition, and Anderson and her team already have some ideas on how they would look. For their money, the researchers expect these clouds to be lumpy and disorderly, rather than well-defined crystals like the single-chemical clouds.

In the coming years, NASA scientists are sure to be spending a great deal of time and energy sorting through all the data obtained by the Cassini mission over the course of its 13-year mission. Who knows what else they will detect before they have exhausted the orbiter’s vast collections of data?

Future Reading: NASA

Loss of Signal: Cassini Spacecraft Plunges Into Saturn

Artist concept of Cassini's last moments at Saturn. Credit: NASA/JPL.

Until the very end, Cassini displayed just how robust and enduring this spacecraft has been throughout its entire 20 years in space and its 13-year mission at Saturn. As Cassini plummeted through the ringed-planet’s atmosphere, its thrusters fought the good fight to keep the antenna pointed at Earth for as long as possible, sending as much of the last drops of science data as it could.

Cassini endured about 40 seconds longer than expected before loss of signal was called at 11:55:46 UTC

“I hope you’re all deeply proud of this accomplishment,” said Cassini Project Manager Earl Maize in JPL’s Mission Control Center after Cassini’s signal was lost. “This has been an incredible mission, and incredible spacecraft and an incredible team. I’m going to call this the end of mission. Project Manager off the net.”

Of course, the actual demise of Cassini took place about an hour and 23 minutes before, as it took that long for the signal to travel the 1.5 billion km distance from Saturn to Earth.

“This is a bittersweet moment for all of us,” said JPL Director Mike Watkins, “but I think it is more sweet than bitter because Cassini has been such an incredible mission. This is a great time to celebrate the hard work and dedication of those who have worked on this mission.”

Watkins added that almost everything we know about Saturn comes from the Cassini mission. “It made discoveries so compelling that we have to back,” he said. “We will go back and fly through the geysers of Encleadus and we’ll go back to explore Titan… These are incredibly compelling targets.”

Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, embrace after the Cassini spacecraft plunged into Saturn, Friday, Sept. 15, 2017 at NASA’s Jet Propulsion Laboratory in Pasadena, California. Photo Credit: (NASA/Joel Kowsky)

Cassini launched on Oct. 15, 1997, and arrived at Saturn’s in 2004. It studied Saturn’s rings and sent back postcards almost every day of its journeys around the Saturn system, pictures of complex moons, the intriguing rings and the giant gas planet.

It revealed the moon Enceladus as one of the most geothermally active places in our solar system, showing it to be one of the prime targets in the search for life beyond Earth.

Saturn’s active, ocean-bearing moon Enceladus sinks behind the giant planet in a farewell portrait from NASA’s Cassini spacecraft.
Credits: NASA/JPL-Caltech/Space Science Institute

Also, piggybacking along was the Huygens probe to study Saturn’s largest moon, Titan. This landing in 2005 was the first spacecraft to land in the outer solar system.

During its final plunge, Cassini’s instruments captured data on Saturn’s atmosphere, sending a strong signal throughout. As planned, data from eight of Cassini’s science instruments will be providing new insights about Saturn, including hints about the planet’s formation and evolution, and processes occurring in its atmosphere.

This death plunge ensures Saturn’s moons will remain pristine for future exploration.

Over 260 scientists from 17 countries and hundreds of engineers worked with Cassini throughout the entire mission. During Cassini’s final days, mission team members from all around the world gathered at JPL to celebrate the achievements of this historic mission.

Here is the last picture taken by Cassini’s cameras, showing the place where Cassini likely met its demise:

This monochrome view is the last image taken by the imaging cameras on NASA’s Cassini spacecraft. It looks toward the planet’s night side, lit by reflected light from the rings, and shows the location at which the spacecraft would enter the planet’s atmosphere hours later. Credit: NASA/JPL-Caltech/Space Science Institute

If you can’t get enough of Cassini, there will be more information coming about this final data, and of course, you can go look at all the images it has sent back here. Also, NASA has provided an ebook for download that includes information and images from the mission.

Cassini: The Mission That Will Live Forever

Artist rendition of the Cassini spacecraft over Saturn. Credit: NASA/JPL-Caltech/SSI/Kevin M. Gill.

“With Cassini, we had a rare opportunity and we seized it,” said Linda Spilker, Cassini Mission Scientist.

And on Friday, September 15, we say goodbye to this incredible spacecraft.

Since 2004, Cassini has been orbiting Saturn, exploring the magnificent gas giant planet while weaving through an incredibly diverse assortment of 60-plus icy moons, and skimming along the edges of the complex but iconic icy rings.

Cassini’s findings have revolutionized our understanding of the entire Saturn system, providing intriguing insights on Saturn itself as well as revealing secrets held by moons such as Enceladus, which should be a big iceball but instead is one of the most geothermally active places in our solar system. And thanks to the Huygens lander, we now know Saturn’s largest moon, Titan is eerily Earthlike, but yet totally alien.

“The lasting story of Cassini will likely be its longevity and the monumental amount of scientific discovery,” Cassini Project Manager Earl Maize told me last year. “It was absolutely the right spacecraft in the right place at the right time to capture a huge array of phenomena at Saturn.”

But after 20 years in space, the Cassini spacecraft is running out of fuel, and so Cassini will conduct a sacred act known as ‘planetary protection.’ This self-sacrifice will ensure any potentially habitable moons of Saturn won’t be contaminated sometime in the future if the drifting, unpowered spacecraft were to accidentally crash land there. Microbes from Earth might still be adhering to Cassini, and its RTG power source still generates warmth. It could melt through the icy crust of one of Saturn’s moons, possibly, and reach a subsurface ocean.

Diagram of Cassini’s final week, showing some of the milestones as the spacecraft heads for its plunge into Saturn. Credit: NASA/JPL-Caltech

For a mission this big, this long and this unprecedented, it will end in spectacular fashion. Called the Grand Finale — which actually began last spring — Cassini has made 22 close passes through the small gap between Saturn’s cloud tops and the innermost ring. This series of orbits has sent the spacecraft on an inevitable path towards destruction.

And tomorrow, on its final orbit, Cassini will plunge into Saturn’s atmosphere at tens of thousands of kilometers per hour. Like the science-churning machine it has been throughout its mission, Cassini will continue to conduct science observations until the very end, sending back long-sought after data about Saturn’s atmosphere. But eventually, the spacecraft will be utterly destroyed by the gas planet’s heat and pressure. It will burn up like a meteor, and become part of the planet itself.

There’s no real way to sum up this amazing mission in one article, and so I’ll leave some links and information below for you to peruse.

But I’ll also leave you with this: Instead of feeling like the mission is over, I prefer to think of Cassini as living forever, because of all the data it provided that has yet to be studied. Linda Spilker told me this last year:

“In one way,” Spilker said, “the mission will end. But we have collected this treasure trove of data, so we have decades of additional work ahead of us. With this firehose of data coming back basically every day, we have only been able to skim the cream off the top of the best images and data. But imagine how many new discoveries we haven’t made yet! The search for a more complete understanding of the Saturn system continues, and we leave that legacy to those who come after, as we dream of future missions to continue the exploration we began.”

But if you want to say goodbye to Cassini, scientist Sarah Hörst might have suggested the best way to do it:

You can watch the live video coverage of Cassini’s end of mission on Friday starting at 7 a.m. EDT. on NASA TV

NASA has a great “Grand Finale” feature on its website, which is well worth the visit.

NASA also has all sorts of “Grand Finale” images, graphics and videos available here.

Follow the @CassiniSaturn twitter account for the latest info.

Imaging wizard Kevin Gill has put together a “Visions of Cassini” video with a great compilation of images from the mission. Here’s a shorter two minute version:

Or a longer, two and a half hour version!

These are one of the highest-resolution color images of any part of Saturn’s rings, taken on taken on July 6, 2017, with the Cassini spacecraft narrow-angle camera. This image shows a portion of the inner-central part of the planet’s B Ring. Credit: NASA/JPL-Caltech/Space Science Institute

Cassini Conducts a Final Flyby of Titan Before Crashing into Saturn

Illustration of the Cassini probe in orbit of Saturn. The probe will descend into Saturn's atmosphere on Sept. 15th, 2017. Credit: NASA/JPL-Caltech

When the Cassini spacecraft arrived around Saturn on July 1st, 2004, it became the fourth space probe to visit the system. But unlike the Pioneer 11 and Voyager 1 and 2 probes, the Cassini mission was the first to establish orbit around the planet for the sake of conducting long-term research. Since that time, the spacecraft and its accompanying probe – the Huygens lander – have revealed a startling amount about this system.

On Friday, September 15th, the Cassini mission will official end as the spacecraft descends into Saturn’s atmosphere. In part of this final maneuver, Cassini recently conducted one last distant flyby of Titan. This flyby is being referred to informally as “the goodbye kiss” by mission engineers, since it is providing the gravitational push necessary to send the spacecraft into Saturn’s upper atmosphere, where it will burn up.

In the course of this flyby, the spacecraft made its closest approach to Titan on Tuesday, September 12th, at 12:04 p.m. PDT (3:04 p.m. EDT), passing within 119,049 kilometers (73,974 mi) of the moon’s surface. The maneuver was designed to slow the probe down and lower the altitude of its orbit around the planet, which will cause it to descend into Saturn’s atmosphere in a few day’s time.

Artist’s conception of Cassini winging by Saturn’s moon Titan (right) with the planet in the background. Credit: NASA/JPL-Caltech

The flyby also served as an opportunity to collect some final pictures and data on Saturn’s largest moon, which has been a major focal point for much of the Cassini-Huygens mission. These will all be transmitted back to Earth at 18:19 PDT (21:19 EDT) when the spacecraft makes contact, and navigators will use this opportunity to confirm that Cassini is on course for its final dive.

All told, the spacecraft made hundreds of passes over Titan during its 13-year mission. These included a total of 127 precisely targeted encounters at close and far range (like this latest flyby). As Cassini Project Manager Earl Maize, from NASA’s Jet Propulsion Laboratory, said in a NASA press statement:

“Cassini has been in a long-term relationship with Titan, with a new rendezvous nearly every month for more than a decade. This final encounter is something of a bittersweet goodbye, but as it has done throughout the mission, Titan’s gravity is once again sending Cassini where we need it to go.”

In the course of making its many flybys, the Cassini spacecraft revealed a great deal about the composition of Titan’s atmosphere, its methane cycle (similar to Earth’s hydrological cycle) and the kinds of weather it experiences in its polar regions. The probe also provided high-resolution radar images of Titan’s surface, which included topography and images of its northern methane lakes.

Artist depiction of Huygens lander touching down on the surface of Saturn’s largest moon Titan. Credit: ESA

Cassini’s first flyby of Titan took place on July 2nd, 2004 – a day after the spacecraft’s orbital insertion – where it approached to within 339,000 km (211,000 mi) of the moon’s surface. On December 25th, 2004, Cassini released the Huygens lander into the planet’s atmosphere. The probe touched down on January 14th, 2005, taking hundreds of pictures of the moon’s surface in the process.

In November of 2016, the spacecraft began the Grand Finale phase of its mission, where it would make 22 orbits between Saturn and its rings. This phase began with a flyby of Titan that took it to the gateway of Saturn’s’ F-ring, the outermost and perhaps most active ring around Saturn. This was followed by a final close flyby of Titan on April 22nd, 2017, taking it to within 979 km (608 mi) of the moon’s surface.

Throughout its mission, Cassini also revealed some significant things about Saturn’s atmosphere, its hexagonal storms, its ring system, and its extensive system of moons. It even revealed previously-undiscovered moons, such as Methone, Pallene and Polydeuces. Last, but certainly not least, it conducted studies of Saturn’s moon Enceladus that revealed evidence of a interior ocean and plume activity around its southern polar region.

These discoveries are part of the reason why the probe will end its mission by plunging into Saturn’s atmosphere, about two days and 16 hours from now. This will cause the probe to burn up, thus preventing contamination of moons like Titan and Enceladus, where microbial life could possibly exist. Finding evidence of this life will be the main focus of future missions to the Saturn system, which are likely to launch in the next decade.

So long and best wishes, Cassini! You taught so much in the past decade and we hope to follow up on it very soon. We’ll all miss you when you go!

Further Reading: NASA

Summer Astronomy, Minimoon & Saturn Opposition 2017

Saturn from June 1st. Image credit and copyright: Peter on the Universe Today Flickr forum.
Saturn on June 1st, nearing opposition. Image credit and copyright: Peter on the Universe Today Flickr forum

Summertime astronomy leaves observers with the perennial question: when to observe? Here in Florida, for example, true astronomical darkness does not occur until 10 PM; folks further north face an even more dire situation. In Alaska, the game in late July became “on what date can you first spot a bright planet/star? around midnight.

And evening summer thunder showers don’t help. Our solution is to get up early (4 AM or so) when the roiling atmosphere has settled down a bit.

But there’s one reason to stay up late, as the planet Saturn reaches opposition next week on June 15th and crosses into the evening sky.

Southern hemisphere observers have it best this year, as the ringed planet loiters in southern declinations for the next few years. In fact, Saturn won’t pop up over the celestial equator again until April, 2026. You’ll still be able to see Saturn from mid-northern latitudes, looking low to the south.

First, a brief rundown of the planets this summer. Mars is currently on the far side of the Sun and headed towards solar conjunction of July 26th. Meanwhile, Mercury is headed towards greatest eastern (dusk) elongation on June 21st. Early AM viewers, can follow Venus, which has just passed greatest elongation west of the Sun on June 3rd, just last week. Finally, Jupiter joins Saturn in the dusk sky, high to the south at sunset and headed towards quadrature 90 degrees east of the Sun on July 6th.

Looking eastward on the evening of June 9th. Credit: Stellarium.

There’s another astronomical curiosity afoot this coming weekend: the MiniMoon for 2017. This is the Full Moon nearest to lunar apogee, a sort of antithesis of the over-hyped “SuperMoon.” Lunar apogee occurs on Thursday, June 8th and the Full Moon occurs just 14 hours after.

2017 sees Saturn traveling from the dreaded “13th constellation” of zodiac Ophiuchus the Serpent Bearer into Sagittarius. This also means that Saturn is headed towards bottoming out near 23 degrees southern declination next year in late 2018. Saturn truly lives up to its “father time” namesake, marking up its slow 29 year passage once around the zodiac. This struck home to us a few years back when Saturn passed Spica in the constellation Virgo, right back where I first started observing the planet as a teenager three decades before.

The path of Saturn through the last half of 2017. Credit: Starry Night Education Software.

The rings are also at their widest tilt in 2017, making for an extra photogenic view. 27 degrees wide as seen from our Earthly vantage point is as wide as Saturn’s ring system ever gets. Saturn isn’t really “tipping” back and forth as much as it’s orbiting the Sun and dipping one hemisphere towards us, and then another. In 2017, it’s the planet’s northern hemisphere time to shine.

Saturn: the changing view. Image credit and copyright: Andrew Symes (@failedprotostar)

Here’s the last/next cycle rundown:

-Rings wide open: (southern pole of Saturn tipped earthward): 2003

Rings edge on: 2009

Rings wide open: (northern pole of Saturn tipped earthward): 2017

-Rings edge on: 2025

-Rings wide open: (southern pole of Saturn tipped earthward): 2032

Even a small 60 mm refractor and a low power eyepiece will reveal the most glorious facet of Saturn: its glorious rings. Galileo first saw this confounding view in 1610, and sketched Saturn as a curious double-handled world. In 1655 Christaan Huygens first correctly deduced that Saturn’s rings are a flat plane, fully disconnected from the planet itself.

Crank up the magnification a bit, and the large Cassini Gap in the rings and the shadow play of the rings and the planet becomes apparent. This gives the view an amazing 3-D effect unparalleled in observational astronomy. The shadow cast by the bulk of the planet disappears behind it during opposition, then slowly starts to reemerge to one side after. Other things to watch for include the retro-reflector Seeliger Effect ( also known as opposition surge) as the planet brightens near opposition. And can you spy the bulk of the planet through the Cassini gap?

The moons of Saturn. Image credit and copyright: John Chumack

Hunting for Saturn’s moons is also a fun challenge. Saturn has more moons visible to a backyard telescope than any other planet. Titan is easiest, as the +8 magnitude moon orbits Saturn once every 16 days. In a small to medium-sized (8-inch) telescope, six moons are readily visible: Enceladus, Mimas, Rhea, Dione, Iapetus and Tethys. Large light bucket scopes 10” and larger might just also tease out the two faint +15th magnitude moons Hyperion and Phoebe.

Saturn
Cassini looks back across Saturn’s rings. NASA/Cassini/JPL-Caltech/Space Science Institute

There’s also something else special about Saturn in 2017 in the world of space flight: the venerable Cassini mission comes to an end this September. Hard to believe, this mission soon won’t be with us. Launched in 1997, Cassini arrived at Saturn in in July 2004, and has since provided us with an amazing decade plus of science. The internet and science writing online has grown up with Cassini, and it’ll be a sad moment to see it go.

All thoughts to ponder, as you check out Saturn at the eyepiece this summer.

A Survivor’s Tale: Cassini Lives Through First Ring Dive

Artist's concept of Cassini diving between Saturn and its innermost ring. Credit: NASA/JPL-Caltech

One down, twenty-one to go! The Cassini spacecraft survived the first dive through the narrow gap between Saturn and its rings, and is now back communicating with Earth.

“No spacecraft has ever been this close to Saturn before. We could only rely on predictions, based on our experience with Saturn’s other rings, of what we thought this gap between the rings and Saturn would be like,” said Cassini Project Manager Earl Maize of NASA’s Jet Propulsion Laboratory in Pasadena, California. “I am delighted to report that Cassini shot through the gap just as we planned and has come out the other side in excellent shape.”

It was a long day for Cassini scientists and engineers at the Jet Propulsion Laboratory while the spacecraft was out of contact for 20 hours during this first dive, signaling the beginning of the end for the mission.

Cassini, running out of fuel, is heading toward its ultimate death by crashing into Saturn on September 15, 2017. But during the next few months, Cassini will make twenty-one more passes through the gap, and in doing so, further our understanding of how giant planets, and planetary systems everywhere, form and evolve.

A raw image of Saturn’s polar vortex, taken on April 26, 2017 by the Cassini spacecraft during the first close pass between Saturn and its rings. Credit: NASA/JPL-Caltech.

Project Scientist Linda Spilker said Cassini will be able to make close up measurements of Saturn and its rings to finally help us understand the mass and internal structure of Saturn. And the images should be absolutely stunning.

Contact was lost as the ring-plane crossing started at 2 a.m. PDT (5 a.m. EDT) on April 26. NASA’s Deep Space Network Goldstone Complex in California’s Mojave Desert acquired Cassini’s signal at 11:56 p.m. PDT on April 26, 2017 (2:56 a.m. EDT on April 27) and data began flowing at 12:01 a.m. PDT (3:01 a.m. EDT) on April 27.

Cassini was programmed to collect science data while close to the planet. As a protective measure, the spacecraft used its large, dish-shaped high-gain antenna (13 feet or 4 meters across) as a deflector shield, orienting it in the direction of oncoming ring particles. This orientation put the spacecraft out of contact with Earth.

“In the grandest tradition of exploration, NASA’s Cassini spacecraft has once again blazed a trail, showing us new wonders and demonstrating where our curiosity can take us if we dare,” said Jim Green, director of the Planetary Science Division at NASA Headquarters.

The gap between the rings and the top of Saturn’s atmosphere is about 1,500 miles (2,000 kilometers) wide, and Cassini came within about 1,000 miles (1,600 kilometers) of Saturn’s cloud tops.

The best models for the region suggested that if there were ring particles in the area where Cassini crossed the ring plane, they would be tiny, on the scale of smoke particles. However, the spacecraft was traveling at speeds of about 77,000 mph (124,000 kph) relative to the planet, so small particles hitting a sensitive area could potentially have disabled the spacecraft.

The spacecraft is being destroyed after a successful 13 year mission at Saturn, as NASA needs to follow the protocol of planetary protection, and not allow a spacecraft with possible microbes from Earth to crash into a potentially habitable moon such as Enceladus or Titan.

Cassini’s next dive through the gap is scheduled for May 2.

You can see the Cassini raw images page here, but look for more processed images to be available soon.

Jason Major put together this animation of some of the first images from Cassini’s close pass:

Source: JPL

Earth Beams From Between Saturn’s Rings in New Cassini Image

Credit: NASA/JPL-Caltech
NASA’s Cassini spacecraft captured the view on April 13, 2017 at 12:41 a.m. CDT. The probe was 870 million miles (1.4 billion km) away from Earth when the image was taken. The part of Earth facing toward Cassini at the time was the southern Atlantic Ocean. Look closely to the left of Earth; that pinprick of light is the Moon. Credit: NASA/JPL Caltech

Look at us. Packed into a gleaming dot. The entire planet nothing more than a point of light between the icy rings of Saturn. The rings visible here are the A ring (top), followed by the Keeler and Encke gaps, and finally the F ring at bottom. During this observation, Cassini was looking toward the backlit rings with the sun blocked by the disk of Saturn.

Cassini first photographed Earth from Saturn in July 2013. Credit: NASA/JPL-Caltech

Seen from Saturn, Earth and the other inner solar system planets always appear close to the sun much like Venus and Mercury do from Earth. All orbit interior to Saturn; even at maximum elongation, they never get far from the Sun. Early this month, as viewed from Saturn, Earth was near maximum elongation east of the sun, thus an “evening star,” making it an ideal time to take a picture.

In this cropped view of the April 13 image, you can better see the Moon, located a short distance to the left of the Earth. Credit: NASA/JPL-Caltech

Opportunities to capture Earth from Saturn have been rare in the 13 years Cassini has spent orbiting the ringed planet. The only other photo I’m aware of was snapped on July 19, 2013. Each is a precious document with a clear message: we are all tiny, please let’s be kind to one another.

This graphic shows Cassini’s flight path during the final two phases of its mission. The 20 Ring-Grazing Orbits are in gray (completed) and the 22 Grand Finale Orbits are in blue. The final partial orbit is colored orange. The first of the Grand Finale orbits begins on April 22 at 10:46 p.m. CDT. Credit: NASA/JPL-Caltech/Space Science Institute

We’ll soon miss the steady stream of artistic images of Saturn, its rings and moons by the Cassini team. The probe will make its final close flyby of the planet’s largest moon, fog-enshrouded Titan, at 1:08 a.m. April 22, at a distance of just 608 miles (979 km). That night at 10:46 p.m. CDT, Cassini will enter the first of its Grand Finale orbits, a series of 22 weekly dives between the planet and the rings. The first ring plane crossing is slated for midnight CDT April 25-26.


Cassini at Saturn and the Grand Finale

The coming week will be a busy one for Cassini. On each orbit, the probe will draw closer and closer to the butterscotch ball of Saturn until it finally tears across the cloud tops and burns up as a spectacular fireball on September 15. Scientists would rather see the craft burn up in Saturn’s atmosphere instead crash into a moon and possibly contaminate it.

Cassini will become a brilliant fireball streaking over Saturn’s cloud tops on the last day of its operation on September 15. Credit: NASA/JPL-Caltech

After nearly 20 years in space, seven of them spent traveling to the ringed planet, Cassini feels like family. It won’t be easy to say goodbye, but thanks to the probe, Saturn’s family album is bursting with remarkable images that will forever remind us the tenacity of this amazing machine and the vision and work of those who kept it operating for so many years.

The Orbit of Saturn. How Long is a Year on Saturn?

Saturn. Image credit: Hubble

Every planet in the Solar System takes a certain amount of time to complete a single orbit around the Sun. Here on Earth, this period lasts 365.25 days – a period that we refer to as a year. When it comes to the other planets, we use this measurement to characterize their orbital periods. And what we have found is that on many of these planets, depending on their distance from the Sun, a year can last a very long time!

Consider Saturn, which orbits the Sun at a distance of about 9.5 AU – i.e. nine and a half times the distance between the Earth and the Sun. Because of this, the speed with which it orbits the Sun is also considerably slower. As a result, a single year on Saturn lasts an average of about twenty-nine and a half years. And during that time, some interesting changes happen for the planet’s weather systems.

Orbital Period:

Saturn orbits the Sun at an average distance (semi-major axis) of 1.429 billion km (887.9 million mi; 9.5549 AU). Because its orbit is elliptical – with an eccentricity of 0.05555 – its distance from the Sun ranges from 1.35 billion km (838.8 million mi; 9.024 AU) at its closest (perihelion) to 1.509 billion km (937.6 million mi; 10.086 AU) at its farthest (aphelion).

A diagram showing the orbits of the outer Solar planets. Saturn’s orbit is represented in yellow Credit: NASA

With an average orbital speed of 9.69 km/s, it takes Saturn 29.457 Earth years (or 10,759 Earth days) to complete a single revolution around the Sun. In other words, a year on Saturn lasts about as long as 29.5 years here on Earth. However, Saturn also takes just over 10 and a half hours (10 hours 33 minutes) to rotate once on its axis. This means that a single year on Saturn lasts about 24,491 Saturnian solar days.

It is because of this that what we can see of Saturn’s rings from Earth changes over time. For part of its orbit, Saturn’s rings are seen at their widest point. But as it continues on its orbit around the Sun, the angle of Saturn’s rings decreases until they disappear entirely from our point of view. This is because we are seeing them edge-on. After a few more years, our angle improves and we can see the beautiful ring system again.

Orbital Inclination and Axial Tilt:

Another interesting thing about Saturn is the fact that its axis is tilted off the plane of the ecliptic. Essentially, its orbit is inclined 2.48° relative to the orbital plane of the Earth. Its axis is also tilted by 26.73° relative to the ecliptic of the Sun, which is similar to Earth’s 23.5° tilt. The result of this is that, like Earth, Saturn goes through seasonal changes during the course of its orbital period.

R. G. French (Wellesley College) et al., NASA, ESA, and The Hubble Heritage Team (STScI/AURA)

Seasonal Changes:

For half of its orbit, Saturn’s northern hemisphere receives more of the Sun’s radiation than the southern hemisphere. For other half of its orbit, the situation is reversed, with the southern hemisphere receiving more sunlight than the northern hemisphere. This creates storm systems that dramatically change depending on which part of its orbit Saturn is in.

For staters, winds in the upper atmosphere can reach speeds of up to 5oo meters per second (1,600 feet per second) around the equatorial region. On occasion, Saturn’s atmosphere exhibits long-lived ovals, similar to what is commonly observed on Jupiter. Whereas Jupiter has the Great Red Spot, Saturn periodically has what’s known as the Great White Spot (aka. Great White Oval).

This unique but short-lived phenomenon occurs once every Saturnian year, around the time of the northern hemisphere’s summer solstice. These spots can be several thousands of kilometers wide, and have been observed on many occasions throughout the past – in 1876, 1903, 1933, 1960, and 1990.

Since 2010, a large band of white clouds called the Northern Electrostatic Disturbance have been observed, which was spotted by the Cassini space probe. Given the periodic nature of these storms, another one is expected to happen in 2020, coinciding with Saturn’s next summer in the northern hemisphere.

The huge storm churning through the atmosphere in Saturn’s northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI

Similarly, seasonal changes affect the very large weather patterns that exist around Saturn’s northern and southern polar regions. At the north pole, Saturn experiences a hexagonal wave pattern which measures some 30,000 km (20,000 mi) in diameter, while each of it six sides measure about 13,800 km (8,600 mi). This persistent storm can reach speeds of about 322 km per hour (200 mph).

Thanks to images taken by the Cassini probe between 2012 and 2016, the storm appears to undergo changes in color (from a bluish haze to a golden-brown hue) that coincide with the approach of the summer solstice. This was attributed to an increase in the production of photochemical hazes in the atmosphere, which is due to increased exposure to sunlight.

Similarly, in the southern hemisphere, images acquired by the Hubble Space Telescope have indicated the existence of large jet stream. This storm resembles a hurricane from orbit, has a clearly defined eyewall, and can reach speeds of up to 550 km/h (~342 mph). And much like the northern hexagonal storm, the southern jet stream undergoes changes as a result of increased exposure to sunlight.

Saturn makes a beautifully striped ornament in this natural-color image, showing its north polar hexagon and central vortex (Credit: NASA/JPL-Caltech/Space Science Institute)

Cassini was able to captured images of the south polar region in 2007, which coincided with late fall in the southern hemisphere. At the time, the polar region was becoming increasingly “smoggy”, while the northern polar region was becoming increasingly clear. The reason for this, it was argued, was that decreases in sunlight led to the formation of methane aerosols and the creation of cloud cover.

From this, it has been surmised that the polar regions become increasingly obscured by methane clouds as their respective hemisphere approaches their winter solstice, and clearer as they approach their summer solstice. And the mid-latitudes certainly show their share of changes thanks to increases/decreases in exposure to solar radiation.

Much like the length of a single year, what we know about Saturn has a lot to do with its considerable distance from the Sun. In short, few missions have been able to study it in depth, and the length of a single year means it is difficult for a probe to witness all the seasonal changes the planet goes through. Still, what we have learned has been considerable, and also quite impressive!

We have written many articles about years on other planets here at Universe Today. Here’s The Orbit of the Planets. How Long Is A Year On The Other Planets?, The Orbit of Earth. How Long is a Year on Earth?, The Orbit of Mercury. How Long is a Year on Mercury?, The Orbit of Venus. How Long is a Year on Venus?,  The Orbit of Mars. How Long is a Year on Mars?, The Orbit of Jupiter. How Long is a Year on Jupiter?, The Orbit of Uranus. How Long is a Year on Uranus?, The Orbit of Neptune. How Long is a Year on Neptune?, The Orbit of Pluto. How Long is a Year on Pluto?

If you’d like more information on Saturn, check out Hubblesite’s News Releases about Saturn. And here’s a link to the homepage of NASA’s Cassini spacecraft, which is orbiting Saturn.

We have also recorded an entire episode of Astronomy Cast that’s just about Saturn. Listen here, Episode 59: Saturn.

Sources:

Last Look At Mimas For A Long Time

Mosaic view of Mimas, created using images taken by the Cassini probe (and illuminated to show the full surface). Credit: NASA/JPL-Caltech/Space Science Institute

Since the Cassini mission arrived in the Saturn system in 2004, it has provided some stunning images of the gas giant and its many moons. And in the course of capturing new views of Titan’s dense atmosphere, Iapetus’ curious “yin-yang” coloration, and the water plumes and “tiger stripes” of Enceladus, it snapped the most richly-detailed images of Mimas ever seen.

But like all good things, Cassini’s days of capturing close-up images of Mimas are coming to an end. As of January 30th, 2017, the probe made its final close approach to the moon, and took the last of it’s close-up pictures in the process. In the future, all observations (and pictures) of Mimas will take place at roughly twice this distance – and will therefore be less detailed.

To be fair, these close approaches were a pretty rare event during the Cassini mission. Over the course of the thirteen years that the probe has been in the Saturn system, only seven flybys have taken place, occurring at distances of less 50,000 km (31,000 mi). At its closest approach, Cassini passed within 41,230 km (25,620 mi) of Mimas.

Second mosaic view of Mimas, showing illumination on only the Sun-facing side. Credit: NASA/JPL-Caltech/Space Science Institute

During this time, the probe managed to take a series of images that allowed for the creation of a beautiful mosaic. This mosaic was made from ten combined narrow-angle camera images, and is one of the highest resolution views ever captured of the icy moon. It also comes in two versions. In one, the left side of Mimas is illuminated by the Sun and the picture is enhanced to show the full moon (seen at top).

In the second version (shown above), natural illumination shows only the Sun-facing side of the moon. They also created an animation that allows viewers to switch between mosaics, showing the contrast. And as you can see, these mosaics provide a very detailed look at Mimas heavily-cratered surface, a well as the large surface fractures that are believed to have been caused by the same impact that created the Herschel Crater.

This famous crater, from which Mimas gets it’s “Death Star” appearance, was photographed during Cassini’s first flyby – which occurred on February 13th, 2010. Named in honor of William Herschel (the discoverer of Uranus, its moons Oberon, and Titania, and Saturn’s moons Enceladus and Mimas), this crater measures 130 km (81 mi) across, almost a third of Mimas’ diameter.

This mosaic, created from images taken by NASA’s Cassini spacecraft during its closest flyby of Saturn’s moon Mimas, looks straight at the moon’s huge Herschel Crater Credit: NASA/JPL

Its is also quite deep, as craters go, with walls that are approximately 5 km (3.1 mi) high. Parts of its floor reach as deep as 10 km (6.2 mi), and it’s central peak rises 6 km (3.7 mi) above the crater floor. The impact that created this crater is believed to have nearly shattered Mimas, and also caused the fractures visible on the opposite side of the moon.

It’s a shame we won’t be getting any more close ups of the moon’s many interesting features. However, we can expect a plethora of intriguing images of Saturn’s rings, which it will be exploring in depth as part of the final phase of its mission. The mission is scheduled to end on September 15th, 2017, which will culminate with the crash of the probe in Saturn’s atmosphere.

Further Reading: NASA