Weekly SkyWatcher’s Forecast: April 30-May 6, 2012

Large Magellanic Cloud - Image Courtesy of NASA

[/caption]

Greetings, fellow SkyWatchers! Are you ready for another week filled with bright planets, a meteor shower, challenging lunar features, interesting stars and astronomy history? Then you have come to the right place! Bring along your telescopes and binoculars and meet me in the backyard…

Monday, April 30 – Karl Frederich Gauss was born on this day in 1777. Known as the “Prince of Mathematics,” Gauss contributed to the field of astronomy in many ways – from computing asteroid orbits to inventing the heliotrope. Out of Gauss’ many endeavors, he is most recognized for his work in magnetism. We understand the term “gauss” as a magnetic unit – a refrigerator magnet carries about 100 gauss while an average sunspot might go up to 4000. On the most extreme ends of the magnetic scale, the Earth produces about 0.5 gauss at its poles, while a magnetar can produce as much as 10 to the 15th power in gauss units!

While we cannot directly observe a magnetar, those living in the Southern Hemisphere can view a region of the sky where magnetars are known to exist – the Large Magellanic Cloud – or you can use the projection method to view a sunspot! If you have a proper solar filter, magnetism distorts sunspots as they near the limb – called the “Wilson Effect”

Tuesday, May 1 – On this day in 1949 Gerard Kuiper discovered Nereid, a satellite of Neptune. If you’re game, you can find Neptune – usually hanging around in Capricornus – about an hour before dawn. While it can be seen in binoculars as a bluish “star,” it takes around a 6″ telescope and some magnification to resolve its disc. Today’s imaging technology can even reveal its moons!

While you’re out this morning, keep an eye on the sky for the peak of the Phi Bootid meteor shower, whose radiant is near the constellation of Hercules. While the best time to view a meteor shower is around 2:00 a.m. local time, you will have best success watching for these meteors when the Moon is as far west as possible. The average fall rate is about 6 per hour.

Our lunar mission for tonight is to move south, past the crater rings of Ptolemaeus, Alphonsus, Arzachel, and Purbach, until we end up at the spectacular crater Walter.

Named for Dutch astronomer Bernhard Walter, this 132- by 140-kilometer-wide lunar feature offers up amazing details at high power. It is worthwhile to take the time to study the differing levels, which drop to a maximum of 4,130 meters below the surface. Multiple interior strikes abound, but the most fascinating of all is the wall crater Nonius. Spanning 70 kilometers, Nonius would also appear to have a double strike of its own—one that’s 2,990 meters deep!

Wednesday, May 2 – On the lunar surface, we can enjoy a strange, thin feature. If you used last night’s map, you’re well acquainted with this area! Look toward the lunar south where you will note the prominent rings of craters Ptolemaeus, Alphonsus, Arzachel, Purbach, and Walter descending from north to south. Just west of them, you’ll see the emerging Mare Nubium. Between Purbach and Walter you will see the small, bright ring of Thebit with a crater caught on its edge. Look further west and you will see a long, thin, dark feature cutting across the mare. Its name? Rupes Recta – better known as The Straight Wall, or sometimes Rima Birt. It is one of the steepest known lunar slopes rising around 366 meters from the surface at a 41 degree angle.

Be sure to mark your lunar challenge notes and we’ll visit this feature again!

Another great target for a bright night is Delta Corvi. 125 light-years away, it displays a yellowish color primary and slightly blue secondary that’s an easily split star in any telescope, and a nice visual double with Eta in binoculars. Use low power and see if you can frame this bright grouping of stars in the same eyepiece field.

Before you put the telescope away for the evening, be sure to visit with Mars. If you’ve been keeping track, the red planet is slowly moving away from us and dimming even more. Tonight it should have reached an apparent -0.0 magnitude. Compare it to other nearby stars and gauge its brightness for yourself. How has its apparent position against the background stars changed over the weeks? Have you noted features like Syrtis Major or Amazonis Planitia? How have the polar caps changed?

Thursday, May 3 – Tonight we’ll use what we learned previously to locate another unusual feature – Montes Recti or the “Straight Range.” You’ll find this curiosity tucked between Plato and Sinus Iridum on the north shore of Mare Imbrium.

To binoculars or small scopes at low power, this isolated strip of mountains will appear as a white line drawn across the grey mare. It is believed this feature may be all that is left of a crater wall from the Imbrium impact. It runs for a distance of around 90 kilometers, and is approximately 15 kilometers wide. The Straight Range and some of its peaks reach up to 2072 meters! Although this doesn’t sound particularly impressive, that’s over twice as tall as the Vosges Mountains in central western Europe, and on the average very comparable to the Appalachian Mountains in the eastern United States.

Friday, May 4 – Tonight you are on your own without a map. Lunar features are easy when you become acquainted with them! Return to the Moon and explore with binoculars or telescopes the area to the south around another easy and delightful lunar feature you should recognize, the crater Gassendi. At around 110 kilometers in diameter and 2010 meters deep, this ancient crater contains a triple mountain peak in its center. As one of the most “perfect circles” on the Moon, the south wall of Gassendi has been eroded by lava flows over a 48 kilometer expanse and offers a great amount of detail to telescopic observers on its ridge- and rille-covered floor. For those observing with binoculars? Gassendi’s bright ring stands on the north shore of Mare Humorum…an area about the size of the state of Arkansas!

Northeast of Regulus by about a fistwidth is 2.61 magnitude Gamma Leonis – also known as Algieba. This is one of the finest double stars in the sky, but a little difficult at low power since the pair is both bright and close. Separated by about twice the diameter of our own solar system, this 90 light-year distant pair is slowly widening.

Another two fingerwidths north is 3.44 magnitude Zeta Leonis – also named Aldhafera. Located about 130 light-years away, this excellent star has an optical companion which is viewable in binoculars – 35 Leonis. Remember this pair, because it will lead you to galaxies later!

Saturday, May 5 – In 1961 Alan Shepard became the first American in “space” (as we now refer to that region above the sky), taking a 15 minute suborbital ride aboard the Mercury craft Freedom 7.

Return to the Moon tonight to have a look on the terminator near the southern cusp for two outstanding features. The easiest is crater Schickard – a class V mountain-walled plain that spans 227 kilometers. Named for German astronomer Wilhelm Schickard, this beautiful old crater with the subtle interior details has another crater caught on its northern wall named Lehmann.

Look further south for one of the Moon’s most incredible features – Wargentin. Among the many strange things on the lunar surface, Wargentin is unique. Once upon a time, it was a very normal crater and had been that way for hundreds of millions of years – then it happened. Either a fissure opened in its interior, or the meteoric impact that formed it caused molten lava to begin to rise. Oddly enough, Wargentin’s walls were without large enough breaks to allow the lava to escape and it continued to fill the crater to the rim. Often referred to as “the Cheese,” enjoy Wargentin tonight for its unusual appearance and be sure to note Nasmyth and Phocylides as well!

Before we leave, let’s have a look east at 3.34 magnitude Theta Leonis. Also known as Chort, mark this one in your memory, as well as 3.94 magnitude Iota to the south as markers for a galaxy hop. Last is easternmost 2.14 magnitude Beta. Denebola is the “Lion’s Tail” and has several faint optical companions.

Sunday, May 6 – Earlier we learned about awesome magnetic energy, but what happens when you find magnetism in a very unlikely place? Tonight might be Full Moon, but we can still have a look at the lunar surface just a little southeast of the grey oval of Grimaldi. The area we are looking for is called the Sirsalis Rille and on an orb devoid of magnetic fields – it’s magnetic! Like a dry river bed, this ancient “crack” on the surface runs 480 kilometers along the surface and branches in many areas.

For those who like curiosities, our target for tonight will be 1.4 degrees northwest of 59 Leonis, which is itself about a degree southwest of Xi. While this type of observation may not be for everyone, what we are looking for is a very special star – a red dwarf named Wolf 359 (RA 10 56 28.99 Dec +07 00 52.0).

Discovered photographically by Max Wolf in 1959, charts from that time period will no longer be accurate because of the star’s large proper motion. It is one of the least luminous stars known, and we probably wouldn’t even know it was there except for the fact that it is the third closest star to our solar system. Located only 7.5 light-years away, this miniature star is about 8% the size of our Sun – making it roughly the size of Jupiter. Oddly enough, it is also a “flare star” – capable of jumping another magnitude brighter at random intervals. It might be faint and difficult to spot in mid-sized scopes, but Wolf 359 is definitely one of the most unusual things you will ever observe!

Until next week? Ask for the Moon, but keep on reaching for the stars!

Fireball Over California Exploded with Force of 5 Kilotons

Location of daylight (8 AM) fireball over California on April 22, 2012. Credit: NASA's Meteor Watch

[/caption]

A daytime fireball over the skies of central/northern California on Sunday morning, April 22, 2012 caused a loud explosion and the event was also detected on several seismographs stations in the area. According to Bill Cooke, head of NASA’s Meteoroid Environments Office, the source of the blast was a meteoroid about the size of a minivan, weighing in at around 70 metric tons (154,300 pounds) and at the time of disintegration released energy equivalent to a 5-kiloton explosion.

For comparison, conventional bombs yield energy from less than 1 ton to 44 tons, and the approximate energy released when the Chicxulub impact caused the mass extinction 65 million years ago was estimated to be equal to 96 million megatons of TNT.

“This was a BIG event,” said Elizabeth Silber of the Meteor Group at the Western University in Ontario, Canada.

“Most meteors you see in the night’s sky are the size of tiny stones or even grains of sand and their trail lasts all of a second or two,” said Don Yeomans of NASA’s Near-Earth Object Program Office at the Jet Propulsion Laboratory in Pasadena, Calif. “Fireballs you can see relatively easily in the daytime and are many times that size – anywhere from a baseball-sized object to something as big as a minivan.”

Silber estimates the location of its explosion in the upper atmosphere above California’s Central Valley. It is not known yet if any pieces of the space rock survived to land as meteorites, but the entire object was likely vaporized before hitting the ground. However, you can bet there are people out looking. (Silber said on the Meteorobs newsgroup that based on infrasonic data the approximate source coordinates are 37.6N, 120.5W).

Descriptions of the fireball range from a “silver flash” to like a “green glittering sparkler,” and one person said their sighting of the object was followed 4-5 minutes later by a loud sonic boom.

Unfortunately, since the huge fireball occurred during the day, all of NASA’s meteor-seeking cameras were turned off, so images of the event are sparse. You can see some at news station KTVN’s website.

This type of fireball is quite rare, and visual observations of them are even more rare. “An event of this size might happen about once a year,” said Yeomans. “But most of them occur over the ocean or an uninhabited area, so getting to see one is something special.”

That the fireball occurred during the Lyrid meteor shower is probably a coincidence, most experts are saying, as meteor shower meteors are generally small bits space dust that don’t produce large fireballs. However, another large fireball also occurred on April 20 in Brazil. See more information about that bolide here.

Weekly SkyWatcher’s Forecast: April 23-29, 2012

Mars In Leo - Credit: John Chumack

[/caption]

Greetings, fellow SkyWatchers! What a great week to just enjoy some great unaided eye astronomy observations. Who can resist the beautiful appearance of Mars in Leo? Also this week, you’ll enjoy not one – but two – meteor showers as the Mu Virginids come to town mid-week and the Bootids light up the weekend. Get ready to enjoy bright stars, find planets, explore lunar features, learn some astronomy history and much more! When ever you’re ready, meet me in the back yard…

Monday, April 23 – Pioneer quantum physicist Max Planck was born on this day in 1858. In 1900, Max developed the Planck equation to explain the shape of blackbody spectra (a function of temperature and wavelength of emission). A “blackbody” is any object that absorbs all incident radiation – regardless of wavelength. For example, heated metal has blackbody properties because the energy it radiates is thermal. The blackbody spectrum’s shape remains constant, and the peak and height of an emitter can be measured against it – be it cosmic background radiation – or our own bodies.

Now, let’s put this knowledge into action. Stars themselves approximate blackbody radiators, because their temperature directly controls the color we see. A prime example of a “hot” star is Alpha Virginis, better known as Spica. Compare its color to the cooler Arcturus… What colors do you see? There are other astronomical delights that radiate like blackbodies over some or all parts of the spectrum as well. You can observe a prime example in a nebula such as M42, in Orion. By examining the radio portion of the spectrum, we find the temperature properly matches that of electrons involved in the process of fluorescence. Much like a common household fixture, this process is what produces the visible light we can see.

Tuesday, April 24 – Today in 1970, China launched its first satellite. Named Shi Jian 1, it was a successful technological and research craft. This achievement made China the fifth country to send a vessel into space.

Tonight see if you can spot the tender beginnings of the Moon after sunset. Observers take pleasure in sweeping the sky with small scopes and binoculars in hopes of finding the thinnest possible lunar crescent. And speaking of crescents, did you spot Venus close to the Moon? Why not take out your telescope and see what phase Venus is now in. If you don’t have a filter to cut its bright glare, try wearing sunglasses!

No telescope? No problem. You can still do some very awesome astronomy with just your eyes! Begin with locating the northern constellation of Ursa Major – most commonly known as the “Big Dipper”. Take note of the curve of the Dipper’s “handle” and trace it from the bottom of the cup and continue on the “Arc to Arcturus”. Keep moving, because now you’re going to “Speed on to Spica”! Once you’ve located this bright, blue/white star, simply look to its east/southeast (or upper left) for a yellow appearing “star”. That’s no star… That’s Saturn!

Now let’s have a look at 140 light-year distant Epsilon Hydrae – the northernmost star in the small circlet east of Procyon. While it and Rho will make a beautiful visual double for binoculars, Epsilon itself is a multiple system. Its A and B components are a tough split for any scope, but the 8th magnitude C star is easier. The D component is a dwarf star.

Wednesday, April 25 – Today marks the 15th anniversary of the deployment of Hubble Space Telescope. While everyone in the astronomical community is well aware of what this magnificent telescope “sees,” did you know that you can see it with just your eyes? The HST is a satellite that can be tracked and observed. Visit heavens-above.com and enter your location. This page will provide you with a list of visible passes for your area. Although you can’t see details of the scope itself, it’s great fun to track with binoculars or see the Sun glinting off its surface in a scope.

Tonight our first voyage is to the Moon’s surface. Look along the terminator in the southern quadrant and revisit ancient old crater Furnerius. Named for French Jesuit mathematician George Furner, this crater spans approximately 125 kilometers and is a lunar club challenge. Power up and look for two interior craters. The smaller is crater A and it spans a little less than 15 kilometers and drops to a depth of over 1000 meters. The larger crater C is about 20 kilometers in diameter, but goes far deeper, to more than 1400 meters. That’s about as deep as a coral will grow under the Earth’s oceans!

Keep a watch on the skies while you’re out as the Mu Virginid meteor shower reaches its peak at 7 to 10 per hour. With dark skies tonight, you still might catch one of these medium speed meteors radiating from a point near the constellation of Libra.

Thursday, April 26 – On this date in 1920, the Shapely-Curtis debate raged in Washington on the nature of and distance to spiral nebulae. Shapely claimed they were part of one huge galaxy to which we all belonged, while Curtis maintained they were distant galaxies of their own. Thirteen years later on the same date, Arno Penzias was born. He went on to become a Nobel Prize winner for his part in the discovery of the cosmic microwave background radiation, through searching for the source of the “noise” coming from a simple horn antenna. His discovery helped further our understanding of cosmology in ways that Shapely and Curtis could have never dreamed of.

Perhaps they dreamed of Moon? We’ve got Moon! No matter, what we really want to do is revisit and study a changeable, sometimes transient, and eventually bright feature on the lunar surface – crater Proclus. At around 28 kilometers in diameter and 2400 meters deep, Proclus will appear on the terminator on the west mountainous border of Mare Crisium. For many viewers tonight, it will seem to be about 2/3 black, but 1/3 of the exposed crater will be exceptionally brilliant – and with good reason. Proclus has an albedo, or surface reflectivity, of about 16%, which is an unusually high value for a lunar feature. Watch this area over the next few nights as two rays from the crater will widen and lengthen, extending approximately 322 kilometers to both the north and south. Congratulations on another lunar club challenge!

Friday, April 27 – Tonight we’re heading towards the lunar surface to view a very fine old crater on the northwest shore of Mare Nectaris – Theophilus. Slightly south of mid-point on the terminator, this crater contains an unusually large multiple-peaked central mountain which can be spotted in binoculars. Theophilus is an odd crater, one that is a parabola – with no area on the floor being flat. It stretches across a distance of 100 kilometers and dives down 440 meters below the surface. Tonight it will appear dark, shadowed by its massive west wall, but look for sunrise on its 1400 meter summit!

Now, let’s try picking up a globular cluster in Hydra that is located about 3 fingerwidths southeast of Beta Corvus and just a breath northeast of double star A8612 – M68 (Right Ascension:12 : 39.5 – Declination: -26 : 45). This class X globular was discovered in 1780 by Charles Messier and first resolved into individual stars by William Herschel in 1786. At a distance of approximately 33,000 light-years, it contains at least 2000 stars, including 250 giants and 42 variables. It will show as a faint, round glow in binoculars, and small telescopes will perceive individual members. Large telescopes will fully resolve this small globular to the core!

While you’re out, have a look at 27 Hydrae about a fingerwidth southwest of Alpha. It’s an easy double for any equipment with its slightly yellow 5th magnitude primary and distant, white, 7th magnitude secondary. Although it is wide, the pair is a true binary system.

Saturday, April 28 – Today was a very busy day in astronomy history. Newton published his Principia in 1686 on April 28. In 1774, Francis Baily was born. He went on to revise star catalogs and explain the phenomenon at the beginning and ending of a total solar eclipse which we know as “Baily’s Beads.” 1900 saw the birth of Jan Hendrick Oort, who quantified the Milky Way’s rotation characteristics and envisioned the vast, spherical area of comets outside our solar system that we now call the Oort Cloud. Last, but not least, was the birth of Bart Jan Bok in 1906 who studied the structure and dynamics of the Milky Way.

Tonight’s outstanding lunar feature will be crater Maurolycus just southwest of the three rings of Theophilus, Cyrillus and Catharina. This lunar club challenge spans 114 kilometers and goes below the lunar surface by 4730 meters. Be sure to look for Gemma Frisius just to its north.

Now let’s check out a dandy little group of stars that are about a fistwidth southeast of Procyon and just slightly more than a fingerwidth northeast of M48. Called C Hydrae, this group isn’t truly gravitationally bound, but is a real pleasure to large binoculars and telescopes of all sizes. While they share similar spectral types, this mixed magnitude collection will be sure to delight you!

For SkyWatchers, no equipment is necessary to enjoy the Alpha Bootid meteor shower – despite the Moon. Pull up a comfortable seat and face orange Arcturus as it climbs the sky in the east. These slow meteors have a fall rate of 6 to 10 per hour and leave very fine trails, making an evening of quiet contemplation most enjoyable.

Sunday, April 29 – Before we explore space, let’s have a look at the Moon and the close apparition of Regulus and Mars! The three make a wonderful “line up” the night sky! Now, let’s start our lunar observations tonight as challenge craters Cassini and Cassini A come into view just south of the black slash of the Alpine Valley. The major crater spans 57 kilometers and reaches a floor depth of 1240 meters. The challenge is to also spot the central crater A, which is only 17 kilometers wide, yet drops down another 2830 meters below the surface.

While we’re out, have a look at R Hydrae about a fingerwidth east of Gamma – which is a little more than fistwidth south of Spica. R is a beautiful, red, long-term variable first observed by Hevelius in 1662. Located about 325 light-years from us, it’s approaching – but not that fast. Be sure to look for a visual companion star as well!

Until next week? Dreams really do come true when you keep on reaching for the stars!

Many thanks to John Chumack of Galactic Images for his outstanding photo of “Leo In Mars”!

See Big and Bright Saturn at Opposition This Weekend

Saturn on April 3, 2012 with the moons Dione (Top-Left) and Tethys (Bot.-Right) as the ringed planet approaches opposition.Credit: Efrain Morales.

[/caption]

Now is the time to take a look at the planet Saturn, as the ringed planet will be at opposition this weekend, making its closest approach to Earth on April 15, 2012. Its face will be fully illuminated by the Sun, so get out those telescopes, binoculars and your imaging equipment! We want to see your photos! Efrain Morales from the Jaicoa Observatory took this image of Saturn and some of its moons on April 3.

The giant planet’s rings are now optimally angled at over 13 degrees, revealing them better than they have appeared in the past five years. To see the rings of Saturn during opposition, in the northern hemisphere point your telescopes east to southeast at nightfall and south around midnight. For reference, Saturn will be near the bright star Spica, in the constellation Virgo. In the southern hemisphere, Saturn will be above the eastern horizon at 10pm local time, still near Spica.

If the skies aren’t clear in your area, the Slooh Space Observatory will broadcast a free, real-time feed of Saturn at opposition. Their coverage will begin on Sunday, April 15th, starting at 6:30 p.m. PDT/9:30 p.m. EDT/01:30 UTC (April 16th). Slooh will provide two distinct observatory feeds — one from a remote location in South Africa and the second from their world-class observatory site in Canary Islands off the coast of Africa. The broadcast can be accessed at Slooh’s homepage or by visiting Slooh’s Google+ page, where you will be able to see a panel of experts interact live via G+ Hangouts On Air.

The experts include Duncan Copp, producer of many astronomical documentaries, including “In the Shadow of the Moon”; Amanda Hendrix, Cassini’s deputy project scientist from NASA’s Jet Propulsion Laboratory; and Bob Berman, author of numerous astronomy books and contributing editor and monthly columnist for Astronomy Magazine.

“In 40 years of observing the heavens and watching people’s reactions to celestial glories, I’ve found that no object elicits more amazement and sheer wonder than Saturn. I am thrilled to be part of Slooh’s live close-up visit to that magnificent planet,” said Bob Berman.

Send us your images of Saturn by joining our Flickr group, or send us your images by email (this means you’re giving us permission to post them). Please explain when and where you took it, the equipment you used, etc.

Weekly SkyWatcher’s Forecast: April 9-15, 2012

M95 - Credit: NOAO/AURA/NSF

[/caption]Greetings, fellow SkyWatchers! It’s shaping up to be a great week to enjoy astronomy. For both hemispheres, the Virginid Meteor shower is underway and its peak occurs late Monday night / early Tuesday morning. Need more celestial fireworks? Then keep looking up as the “April Fireballs” will be visiting, with their peak beginning about a week from today and lasting for 24 days. Even if you only catch one of these bright travelers as they sparkle across the starry sky, it will make your night! But hang on, there will be plenty to explore. Bright stars and bright planets are featured – as well as some of the season’s best galaxies. Keep your telescope out and don’t get spooked, because the “Ghost of Jupiter” will be a challenge object! If you want to know more about astonomy history, and what you can see with just your eyes and your optics, then meet me in the back yard…

Monday, April 9 – Tonight let’s take a journey towards the 25th brightest star in the night sky – 1.3 magnitude, Alpha Leonis. Regulus, known as “The Little King,” is the brightest star in Leo. At 77 light-years away, this star is considered a “dwarf” despite shining with a visible light almost 150 times that of Sol. The orange-red giant Arcturus and the blue white “dwarf” Regulus both share a common absolute magnitude very close to 0. The reason the two stars shine with a similar intrinsic brightness – despite widely different physical sizes – is Regulus’ photosphere is more than twice as hot (12,000 C) as Arcturus. While observing Regulus, look for a distant companion of magnitude 8.5. Normally low powers would best concentrate the companion’s light, but try a variety of magnifications to help improve contrast. For those with large aperture scopes, look for a 13.1 magnitude “companion’s companion” a little more than 2 arc seconds away!

Tuesday, April 10 – Be sure to get up before dawn to enjoy the Virginid meteor shower. The radiant point will be near Gamma in the bowl of Virgo. The fall rate of 20 per hour is above average for meteor showers, and with the Moon partially out of the equation this morning, you’re in for a treat!

Tonight, let’s have a look at Arcturus – a star whose distance from the Earth (10 parsecs) and radial velocity (less than 200 meters per second) can almost be considered a benchmark. By skydark you will see 0.2 magnitude, Arcturus – the brightest star in Bootes and 4th brightest star in the night sky – some 30 degrees above the eastern horizon. Apparent to the eye is Arcturus’ orange color. Because a star’s intrinsic luminosity relates to its apparent brightness and distance, Arcturus’ absolute magnitude is almost precisely the same as its apparent magnitude. Just because Arcturus’ radial velocity is nearly zero doesn’t mean it isn’t on the move relative to our Sun. Arcturus is now almost as close as it will ever get and its large proper motion – perpendicular to our line of sight – exceeds 125 kilometers per second. Every 100 years Arcturus moves almost 1 degree across the sky!

Since you’ve looked at a red star, why not look at a red planet before you call it a night? Mars is still making a wonderful apparition. Have you noticed it dimming even more? Right now it should be about magnitude -0.5. You may have noticed something else about Mars in the eyepiece, too… It’s getting smaller!

Wednesday, April 11 – Today is the birthday of William Wallace Campbell. Born in 1862, Campbell went on to become the leader of stellar motion and radial velocity studies. He was the director of Lick Observatory from 1901 to 1930, and also served as president of the University of California and the National Academy of Sciences. Also born on this day – but in 1901 – was Donald H. Menzel – assistant astronomer at Lick Observatory. Menzel became Director of Harvard Observatory, an expert on the Sun’s coronosphere and held a genuine belief in the extraterrestrial nature of UFOs. Today in 1960, the first radio search for extraterrestrial civilizations was started by Frank Drake (Project Ozma). In 1986, Halley’s Comet closed within 65 million kilometers of the Earth – as close as it would get.

Tonight, why don’t we honor Campbell’s work as we try taking a look at a variable ourselves? RT (star 48) Aurigae is a bright cephid that is located roughly halfway between Epsilon Geminorum and Theta Aurigae. This perfect example of a pulsating star follows a precise timetable of 3.728 days and fluxes by close to one magnitude.

Thursday, April 12 – Today in 1961, Yuri Gagarin made one full orbit of the Earth aboard Vostok 1, while also becoming the first human in space. Also today (in 1981) Columbia became the first Space Shuttle to launch.

Break out the telescope tonight and launch your way towards Iota Cancri – a fine wide disparate double of magnitudes 4.0 and 6.6 separated by some 30 arc seconds. This true binary is so distant from one another that they take over 60,000 years to complete a single orbit around their common center of gravity! Located slightly less than a fist’s width due north of M44, this pair is about 300 light years distant. Both stars shine with a light considerably brighter than our Sun and observers may note a subtle gold and pale blue color contrast between them.

Friday, April 13 – With no early evening Moon to contend with, this is a fine opportunity to have a look at a group of galaxies between Leo’s paws. Start at Regulus and look due east toward Iota Leonis. Halfway between the two (less than a fist from Regulus) and two finger-widths northeast of Rho Leonis, you’ll encounter Messier Galaxies M95 (Right Ascension: 10 : 44.0 – Declination: +11 : 42) and M96 (Right Ascension: 10 : 46.8 – Declination: +11 : 49) – both within the same low power field of view. At magnitude 9.2, the brighter – and slightly rounder – M96 lies northeast of 9.7 magnitude, M95. Pierre Mechain discovered both galaxies on March 20, 1781 and Messier added them to his catalog 4 days later. These two galaxies are two of the brightest members of the Leo I galaxy group located some 38 million light-years away.

To see another Messier member of the Leo I group, center on M96 and shift the galaxy south. From the north side of the low power field, the 9.3 magnitude galaxy M105 (Right Ascension: 10 : 47.8 – Declination: +12 : 35), nearby 10th magnitude NGC 3384 (Right Ascension: 10 : 48.3 – Declination: +12 : 38), and 12th magnitude NGC 3389 (Right Ascension: 10 : 48.5 – Declination: +12 : 32) will come into view. M105 was discovered by Mechain on the night Messier catalogued M95 and 96 but was not formally added to Messier’s catalog. Based on Mechain’s observing notes, Helen Sawyer Hogg added it to Messier’s list in 1947 – along with galaxy M106 and globular cluster M107. Mechain failed to notice M105’s bright neighboring galaxy – NGC 3384. NGC 3384 is actually slightly brighter than the faintest Messier discovered – M91.

We’re not done yet! If you center on M105 and shift due north less than a degree and a half you will encounter 10th magnitude NGC 3377 (Right Ascension: 10 : 47.7 – Declination: +13 : 59) – a small elongated galaxy with a stellar core. There are a dozen galaxies visible to moderate amateur instruments (through magnitude 12) in the Leo I region of the sky!

Saturday, April 14 – Today is the birthday of Christian Huygens. Born in 1629, the Dutch scientist went on to become one of the leaders in his field during the 17th century. Among his achievements were promoting the wave theory of light, patenting the pendulum clock, and improving the optics of telescopes by inventing a new type eyepiece and reducing false color through increasing the focal length of refractor telescopes. Huygens was the first to discover Saturn’s rings and largest satellite – Titan. Of the rings, Huygens said, “Saturn: encircled by a ring, thin and flat, nowhere touching, and inclined to the ecliptic.”

Wanna’ check Saturn out? It will be rising in the constellation of Virgo not long after the sky begins to turn dark. If you’re not sure of which “star” it is, just wait for awhile and you’ll find it about a fistwidth northwest of bright, blue/white Spica. Be sure to check out the ring system! Right now they have a very nice southern tilt which will allow you a great view of the shadow of the planet on the rings – and the shadow of the rings on the planet. If the atmosphere will allow, power up! Something you may never have thought of looking for could be happening… Can you see the planet’s edge through the Cassini division? Be sure to look for wide orbiting Titan and some of Saturn’s smaller moons slipping around the ring edges.

Tonight our challenge is also planetary – but it’s the planetary nebula – the “Ghost of Jupiter”. Begin by identifying the constellation of Hydra. Starting at Alpha Hydrae, head east about a fist’s width to find Lambda within a field of nearby fainter stars. Continue less than a fist southeast and locate Mu. You’ll find the “Ghost of Jupiter” (NGC 3242) lurking in the dark less than a finger-width due south. At magnitude 9, the NGC 3242 (Right Ascension: 10 : 24.8 – Declination: -18 : 38) gives a strikingly blue-green appearance in even small scopes – despite being more than 1500 light years away.

Sunday, April 15 – Tonight keep a watch for the “April Fireballs.” This unusual name has been given to what may be a branch of the complex Virginid stream which began earlier in the week. The absolute radiant of the stream is unclear, but most of its long tails will point back toward southeastern skies. These bright bolides can possibly arrive in a flurry – depending on how much Jupiter’s gravity has perturbed the meteoroid stream. Even if you only see one tonight, keep a watch in the days ahead. The time for “April Fireballs” lasts for two weeks. Just seeing one of these brilliant streaks will put a smile on your face!

And if you can’t take your eyes off Leo, then there’s good reason. The combination of Theta Leonis, Regulus and Mars certainly calls attention to itself!

While we’re out, let’s journey this evening towards another lovely multiple system as we explore Beta Monocerotis. Located about a fist width northwest of Sirius, Beta is one of the finest true triple systems for the small telescope. At low power, the 450 light year distant white primary will show the blue B and C stars to the southeast. If skies are stable, up the magnification to split the E/W oriented pair. All three stars are within a magnitude of each other and make Beta one of the finest sights for late winter skies.

If you hadn’t noticed, Saturn is at opposition tonight, meaning it will be viewable from dusk until dawn. Be sure to check out the “Ring King” – but wait until it has risen well above the lower atmosphere disturbance for a superior view!

Until next week, I wish you clear and steady skies!

Weekly SkyWatcher’s Forecast: April 2-8, 2012

Aurora Australis - Credit: Shevill Mathers, Southern Cross Observatory, Tasmania 42 South.

[/caption]

Greetings, fellow SkyWatchers! Despite the Moon, it will be a great week as the month of April opens with two meteor showers. The planetary action doesn’t stop, because Venus is about to become a “guest star” in the Pleiades! Need more? Then know it’s the right time of year to spot aurora – and to gather photons from bright star clusters! Get out your binoculars and telescopes and meet me in the back yard…

Monday, April 2 – Today in 1889, the Harvard Observatory’s 13″ refractor arrived at Mt. Wilson. Just one month later, it went into astronomical service at Lick Observatory, located at Mt. Hamilton. It was here that the largest telescopes in the world resided from 1908 to 1948 – the 60″ for the first decade, followed by the 100″. This latter mirror is still the largest solid piece ever cast in plate glass and weighed 4.5 tons. Would you believe it’s just 13 inches thick?

Today in 1845, the first photograph of the Sun was taken. While solar photography and observing is the domain of properly filtered telescopes, no special equipment is necessary to see some effects of the Sun – only the correct conditions. Right now Earth’s magnetosphere and magnetopause (the point of contact) are positioned correctly to interact with the Sun’s influencing interplanetary magnetic field (IMF) – and the plasma stream which flows past us as solar winds. During the time around equinox, this leaves the door wide open for one of the most awesome signs of spring – aurora! Visit the Geophysical Institute to sign up for aurora alerts and use their tools to help locate the position of the Earth’s auroral oval.

Tuesday, April 3 – Celestial scenery alert! Tonight as the skies darken, look for a very unusual planetary event… Venus will be visiting the Pleiades! For some parts of the world, it’s possible that it will occult some of the cluster’s member stars, so be sure to check resources for a planetarium program or on-line service that will list times and locations. Enjoy this splendid unaided eye apparition…

While the Moon will be nearly overpowering tonight, let’s take a look at a pair of orbiting bodies as we head for Kappa Puppis – a bright double of near equal magnitudes. This one is well suited to northern observers with small telescopes. For the southern observer, try your hand at Sigma Puppis. At magnitude 3, this bright orange star holds a wide separation from its white 8.5 magnitude companion. Sigma’s B star is a curiosity, because at a distance of 180 light-years it would be about the same brightness as our own Sun placed at that distance!

Wednesday, April 4 – Did you catch last night’s close pass of Venus and the Pleiades? Then try again tonight! It’s not hard to spot blazing Venus above the western horizon just after twilight – and right now it’s a “guest star” in M45!

While you’re out tonight, be on watch for the Kappa Serpentid meteor shower. Its radiant will be near the “Northern Crown,” the constellation known as Corona Borealis. The fall rate is small with an average 4 or 5 per hour.

Now, let’s identify the upside down Y of the constellation of Cancer. If you can spot the hazy patch of M44, the star just south of it is Delta. About three fingerwidths southeast of Delta is Alpha, and we’ll begin by exploring this star… 130 light-year distant Alpha Cancri . Acubens is around 4th magnitude and is also a great double star for a small telescope. Its name translates as the “claw” and you will find it clutches a disparate 11.8 magnitude companion star nearby.

Now hop just one fingerwidth west for a stunning sight – galactic cluster M67 (Right Ascension: 8 : 50.4 – Declination: +11 : 49). Hanging out in space some 2500 light-years away and containing more than 500 members, this grand cluster is a rule breaker in age. Believed to be about 10 billion years old, it is one of the oldest star clusters in our galaxy. Its stars have literally “switched off” from the main sequence, and have passed through the red giant stage and are returning back to their blue youth!

In binoculars you will see it as almost galaxy-like in structure, while even small telescopes resolve individual stars. Large telescopes will reveal stars beyond stars, like a globular cluster that has been smeared across the night. It is truly one of the most beautiful and mysterious of all open clusters.

Thursday, April 5 – We’ll return again tonight to Cancer to have a look at some curiosities. The first is about four fingerwidths away from Delta – Zeta Cancri. Its name is Tegmeni and it is a handsome double star for the small telescope. Both components are nearly the same magnitude and neatly split for mid-magnification ranges.

About a fingerwidth due east is V Cancri – a Mira-type variable star. While many such variables are difficult to follow with amateur equipment, V Cancri breaks the rules. It changes from magnitude 7.9 to magnitude 12.8 in a period of 125 days. When it swells to its maximum, it reaches a size about that of the orbit of Mars.

Friday, April 6 – Tonight’s Full Moon is often referred to as the “Pink Moon” of April. As strange as the name may sound, it actually comes from the herb known as moss pink – or wild ground phlox. April is the time of blossoming and the “pink” is one of the earliest widespread flowers of the spring season. As always, this Moon is known by other names as well, such as the Full Sprouting Grass Moon, the Egg Moon, and coastal tribes referred to it as the Full Fish Moon. Why? Because spring was the season the fish swam upstream to spawn!

There’s more than one reason to look at the Moon tonight, too. In a span of less than 5 degrees (about 3 fingerwidths held at arm’s length) you’ll see bright Spica almost touching the limb and Saturn just slightly further away. For some lucky viewer somewhere, this could be an occultation or grazing event, so be sure to check resources like IOTA for specific times and locations.

Now let’s move on to 3.2 magnitude – Epsilon Geminorum. Mebsuta is the brightest star (other than Castor) in northwestern Gemini. It has a very distant 9th magnitude companion. As you observe Epsilon, keep in mind its spectral class (G8) is very similar to our Sun. Despite this, Mebsuta glows with an intensity of light 7600 times brighter. It’s one of a rare class of stars called “yellow supergiants” – stars whose nuclear cores are vastly swollen due to advanced age and which have taken on “planetary” proportions. Why planetary? Because the planet Venus would find itself orbiting inside Mebsuta’s 4600 degree C temperature photosphere!

Saturday, April 7 – Today in 1991, the Compton Gamma Ray Observatory (CGRO) was deployed. While it may sound strange, this observatory sees the sky in gamma ray photons. These photons go off the edge of ultra violet – imperceptible to the human eye. Unfortunately, we can’t study gamma rays from Earth because our atmosphere blocks it, but the CGRO has shown a universe beyond our direct comprehension.

If there were a place that we could choose to look at in gamma rays, Cancer would be prime. Riddled with quasars, this constellation has got to produce some amazing things! Have a look at a quasar for yourself tonight. You’ll find 0839+187 about half a degree away from Delta Cancri. 0851+202 lies two degrees northeast and 3C215 is five degrees east-southeast. 3C212 and 3C208 are within two degrees north of Alpha, and are less than a degree apart, with radio source 3C208.1 in between them! While they will appear as nothing more than stellar nicks, these are quite probably our only visual point of reference for the black holes at their hearts.

While you’re out, watch for bright streaks belonging to the Delta Draconid meteor shower. Its radiant is near the Cepheus border. The fall rate is quite low with around 5 meteors per hour and your best chance is before the Moon rises!

Sunday, April 8 – With very little time before the Moon rises tonight, let’s begin a new adventure as we move into the constellation of Cancer. This will be an ideal time to familiarize yourself with its dim stars and one very bright open cluster. Try using both Pollux and Procyon to form the base of an imaginary triangle. Now aim your binoculars or finderscope near the point of the apex to discover M44 – the Beehive (Right Ascension: 8 :40.1 – Declination: +19 : 59).

According to ancient lore, this group of stars (often called the Praesepe) foretold a coming storm if it was not visible in otherwise clear skies. Of course, this came from a time when combating light pollution meant asking your neighbors to dim their candles. But, once you learn where it’s at, it can be spotted unaided even from suburban settings. Hipparchus called it the “Little Cloud,” but not until the early 1600s was its stellar nature revealed.

Believed to be about 550 light-years away, this awesome cluster consists of hundreds of members – with at least four orange giants and five white dwarfs. M44’s age is similar to that of the Pleiades, and it is believed that both clusters have a common origin. Although you won’t see any nebulosity in the Beehive, even the very smallest of binoculars will reveal a swarm of bright stars and large telescopes can resolve down to 350 faint stars.

For those of you who use only your eyes to observe – look again at the Beehive and concentrate on Delta to the southeast. Known as Asellus Australis, this is a yellow optical double star often called the “southern donkey.” Need more? Then check out Mars’ position not far from Alpha Leonis – and just a few short degrees away from the impressive “Leo Trio” galaxy field. Capture them tonight!

Until next week? Ask for the Moon, but keep on reaching for the stars…

Weekly SkyWatcher’s Forecast: March 5-11, 2012

Open Cluster Messier 50 - Credit: NOAO/AURA/NSF

[/caption]

Greetings, fellow SkyWatchers! Our week begins with the dance of the planets and a gathering of asteroids. Keep watching as Mars makes its closest approach of the year – while Venus and Jupiter continue to get nearer. Celebrate the Full Worm Moon, interesting stars and beautful galaxies and clusters! Dust off those binoculars and telescopes and meet me in the backyard, because… Here’s what’s up!

Monday, March 5 – Today is the birthday of Gerardus Mercator, famed mapmaker, who started his life in 1512. Mercator’s time was a rough one for astronomy, but despite a prison sentence and the threat of torture and death for his “beliefs,” he went on to design a celestial globe in the year 1551.

Need a little celestial action of your own? Then be outside at twilight with a clear horizon to catch Mercury! joining the show with Venus and Jupiter. The swift inner planet will make a brief appearance on the western skyline just after the Sun dips below the horizon. To add to the fun, the planet Uranus is situated about 5 degrees to its southwest and asteroid Vesta is about 5 degrees south/southwest. More? Then know that asteroid Ceres is also here – just around 20 degrees to Mercury’s southeast. While the asteroids and Uranus really aren’t observable, it’s still fun to know they’re “hanging around” in the same small space!

Tonight we’ll ignore the Moon and use both Sirius and Beta Monocerotis as our guides to have a look at one fantastic galactic cluster for any optical aid – M50 (Right Ascension: 7 : 03.2 – Declination: -08 : 20). Hop about a fistwidth east-southeast of Beta, or northeast of Sirius…and be prepared!

Perhaps discovered as early as 1711 by G. D. Cassini, it was relocated by Messier in 1772 and confirmed by J. E. Bode in 1774. Containing perhaps as many as 200 members, this colorful old cluster resides almost 3000 light-years away. The light of the stars you are looking at tonight left this cluster at a time when iron was first being smelted and used in tools. The Mayan culture was just beginning to develop, while the Hebrews and Phoenicians were creating an alphabet. Do you wonder if it looked the same then as it does now? In binoculars you will see an almost heart-shaped collection of stars, while telescopes will begin to resolve out color and many fainter members – with a very notable red one in its midst. Enjoy this worthy cluster and make a note that you’ve captured another Messier object!

Now, point your telescope towards Mars! This universal date marks the closest approach of Mars and Earth (0.6737 AU = 100.78 million km). While it’s a far cry from being the much celebrated “size of the Moon”, Mars currently has an apparent diameter of 13.89″. This will make for some mighty fine observing, so be sure to check for a lot a great surface details!

Tuesday, March 6 – If you get a chance to see sunshine today, then celebrate the birthday of Joseph Fraunhofer, who was born in 1787. As a German scientist, Fraunhofer was truly a “trailblazer” in terms of modern astronomy. His field? Spectroscopy! After having served his apprenticeship as a lens and mirror maker, Fraunhofer went on to develop scientific instruments, specializing in applied optics. While designing the achromatic objective lens for the telescope, he was watching the spectrum of solar light passing through a thin slit and saw the dark lines which make up the “rainbow bar code.” Fraunhofer knew that some of these lines could be used as a wavelength standard so he began measuring. The most prominent of the lines he labeled with letters that are still in use. His skill in optics, mathematics and physics led Fraunhofer to design and build the very first diffraction grating which was capable of measuring the wavelengths of specific colors and dark lines in the solar spectrum. Did his telescope designs succeed? Of course! His work with the achromatic objective lens is the design still used in modern telescopes!

In 1986, the first of eight consecutive days of flybys began as VEGA 1 and Giotto became the very first spacecraft to reach Halley’s Comet. Tonight let’s just fly by the Moon and have a look at Theta Aurigae. 2.7 magnitude Theta is a four star system ranging in magnitudes from 2.7 to 10.7. The brightest companion – Theta B – is magnitude 7.2 and is separated from the primary by slightly more than 3 arc seconds. Remember that this is what is known as a “disparate double” and look for the two fainter members well away from the primary.

Wednesday, March 7 – Today the only child of William Herschel (the discoverer of Uranus) was born in 1792 – John Herschel. He became the first astronomer to thoroughly survey the southern hemisphere’s sky, and he was discoverer of photographic fixer. Also born on this day, but in 1837, was Henry Draper – the man who made the first photograph of a stellar spectrum.

Tonight the great Grimaldi, found in the central region of the Moon near the terminator is the best lunar feature for binoculars. If you would like to see how well you have mastered your telescopic skills, then let’s start there. About one Grimaldi length south, you’ll see a narrow black ellipse with a bright rim. This is Rocca. Go the same distance again (and a bit east) to spot a small, shallow crater with a dark floor. This is Cruger, and its lava-filled interior is very similar to another study – Billy. Now look between them. Can you see a couple of tiny dark markings? Believe it or not, this is called Mare Aestatis. It’s not even large enough to be considered a medium-sized crater, but is a mare!

Take the time tonight to have a look at Delta Monocerotis with binoculars. Although it is not a difficult double star, it is faint enough to require some optical aid. If you are using a telescope, hop to Epsilon. It’s a lovely yellow and blue system that’s perfect for small apertures.

Thursday, March 8 – On this day in 1977, the NASA airborne occultation observatory made a unique discovery – Uranus had rings!

Tonight we’ll play ring around the Full Moon. In many cultures, it is known as the “Worm Moon.” As ground temperatures begin to warm and produce a thaw in the northern hemisphere, earthworms return and encourage the return of robins. For the Indians of the far north, this was also considered the “Crow Moon.” The return of the black bird signaled the end of winter. Sometimes it has been called the “Crust Moon” because warmer temperatures melt existing snow during the day, leaving it to freeze at night. Perhaps you may have also heard it referred to as the “Sap Moon.” This marks the time of tapping maple trees to make syrup. To early American settlers, it was called the “Lenten Moon” and was considered to be the last full Moon of winter. For those of us in northern climes, let’s hope so!

Friday, March 9 – Today is the anniversary of the Sputnik 9 launch in 1966 which carried a dog named Chernushka (Blackie). Also today we recognize the birth of David Fabricius. Born in 1564, Fabricus was the discoverer of the first variable star – Mira. Tonight let’s visit with an unusual variable star as we look at Beta Canis Majoris – better known as Murzim.

Located about three fingerwidths west-southwest of Sirius, Beta is a member of a group of stars known as quasi-Cepheids – stars which have very short term and small brightness changes. First noted in 1928, Beta changes no more than .03 in magnitude, and its spectral lines will widen in cycles longer than those of its pulsations.

When you’ve had a look at Beta, hop another fingerwidth west-southwest for open cluster NGC 2204 (Right Ascension: 6 : 15.7 – Declination: -18 : 39). Chances are, this small collection of stars was discovered by Caroline Herschel in 1783, but it was added to William’s list. This challenging object is a tough call for even large binoculars and small telescopes, since only around a handful of its dim members can be resolved. To the larger scope, a small round concentration can be seen, making this Herschel study one of the more challenging. While it might not seem like it’s worth the trouble, this is one of the oldest of galactic clusters residing in the halo and has been a study for “blue straggler” stars.

Saturday, March 10 – Since this is a weekend night and we’ve a short time before Moonrise, why not break out the big telescope and do a little galaxy hopping in the region south of Beta Canis Majoris?

Our first mark will be NGC 2207 – a 12.3 magnitude pair of interacting galaxies. Located some 114 million light-years away, this pair is locked in a gravitational tug of war. The larger of the pair is NGC 2207 (Right Ascension: 6 : 16.4 – Declination: -21 : 22), and it is estimated the encounter began with the Milky Way-sized IC 2163 about 40 million years ago. Like the M81 and M82 pair, NGC 2207 will cannibalize the smaller galaxy – yet the true space between the stars is so far apart that actual collisions may never occur. While our eyes may never see as grandly as a photograph, a mid-sized telescope will make out the signature of two galactic cores with intertwining material. Enjoy this great pair!

Now shift further southeast for NGC 2223 (Right Ascension: 6 : 24.6 – Declination: -22 : 50). Slightly fainter and smaller than the previous pair, this round, low surface brightness galaxy shows a slightly brighter nucleus area and a small star caught on its southern edge. While it seems a bit more boring, it did have a supernova event as recently as 1993!

Sunday, March 11 – Tonight let’s return to Canis Major with binoculars and have a look at Omicron 1, the western-most star in the central Omicron pair. While this bright, colorful gathering of stars is not a true cluster, it is certainly an interesting group.

For larger binoculars and telescopes, hop on to Tau northeast of Delta and the open cluster NGC 2362 (Right Ascension: 7: 18.8 – Declination: -24 : 5). At a distance of about 4600 light-years, this rich little cluster contains about 40 members and is one of the youngest of all known star clusters. Many of the stars you can resolve have not even reached main sequence yet! Still gathering themselves together, it is estimated this stellar collection is less than a million years old. Its central star, Tau, is believed to be a true cluster member and one of the most luminous stars known. Put as much magnification on this one as skies will allow – it’s a beauty!

Until next week? Dreams really do come true when you keep on reaching for the stars!

If you enjoy this weekly observing column, then you’d love the fully illustrated The Night Sky Companion 2012. It’s available in both Kindle and soft cover formats!

Night Sky Guide: March 2012

Special thanks to Ninian Boyle astronomyknowhow.com for information in parts of this guide.

March brings us some wonderful sights to see in the night skies for those who are armed with binoculars, telescopes or just their eyes.

The brightest object in the night sky this month (apart from the Moon) is the Planet Venus. Venus and mighty Jupiter have already been providing a treat n the western skies for naked eye observers, but by the middle of the month the two planets will inch even closer. There are other planetary conjunctions this month as well.

The stars of spring are starting to become more prominent and the mighty constellation of Orion sets earlier in the west as the nights roll on. The constellations of Leo, Coma Berenices and Virgo herald the region of the sky known as the “Realm of the Galaxies” more so as the month moves on.

We have Comet Garradd visible all night long through binoculars, as it starts to fade from 7th to 8th magnitude. You can find it near the north celestial North pole near the star Kochab or Beta Ursa Minoris (The little Bear) on the 6th, and the star Dubhe in the Plough on the 21st. Scan this region with binoculars and you should pick it up as a faint misty patch of light.

The Sun continues to become more active as it approaches “Solar Maximum” in 2013 and this is a time when we need to be on our guard for sudden bursts of activity which can result in aurora for observers in high latitudes. Some large geomagnetic storms in the past have resulted in Aurora being spotted as far south as regions near the Caribbean and Mediterranean. Will we get a show like this soon?

Planets

There are going to be some excellent conjunctions this month, as planets and even sometimes the Moon are close together and appear in the same region of the sky.

Mercury. Keep an eye out for the tiny planet Mercury. This planet (closest one to the Sun) is notoriously difficult to see. The best time to try and catch it is on the 4th, low down near the western horizon shortly after sunset. Make sure the Sun has fully set if you plan to sweep the area with binoculars. Never ever look at the sun directly with binoculars, telescopes or your naked eyes – This will damage your eyes or permanently blind you!

Mercury just after sunset - Beginning of March

Mars reaches what we call ‘opposition’ on the 3rd, when it is directly opposite the Sun in the sky from our point of view here on Earth. This is the best time to view the “Red Planet” with a telescope. Try and see if you can spot its ice caps and dark markings. It will need a clear steady sky and a good magnification to see these well, try different coloured filters and even have a go at webcam imaging this amazing Planet. On the 7th the nearly full Moon lies 10-degrees to the south of the planet Mars. You’ll know its Mars by its distinct orange/pink colour.

Mars

Venus & Jupiter bring us the highlight of the month when they appear to be very close to each other and are just separated by 3 degrees on the 15th of March. The brightest out of the pair will be Venus with Jupiter below it and the pair will be an amazing sight – like a pair of heavenly eyes staring down at us. The two planets will be close to each other either side of the 15th, so there should be plenty of picture-taking opportunities. The Moon joins the Venus and Jupiter on the 25th and 26th and the thin crescent Moon will make the show even more stunning.

Venus Jupiter 15 March

Saturn rises later in the evenings in the constellation of Virgo, the rings are now nicely tilted towards us and the planet looks stunning right throughout the month. If you have never seen Saturn through a telescope before, you must see it! It is the most beautiful of all the planets and one of the reasons so many people get interested in astronomy.

Saturn

Moon phases

  • First Quarter – 1st March
  • Full Moon – 8th March
  • Last Quarter – 15th March
  • New Moon – 22nd March

Constellations

In March Orion is getting lower in the West and setting earlier as the spring constellations of Leo, Coma Berenices and Virgo come into view; this is the “Realm of the Galaxies.”

In the month of March the Earth’s orbit around the Sun means that during the night we see out from our own galaxy the ‘Milky Way’ into the depths of deep space. Because of this, we can see many other galaxies and some similar to our own, each contains hundreds of billions of stars. You will need a good telescope to see these amazing wonders; however a good pair of binoculars will show one or two faint fuzzy patches. Some of these faint fuzzy objects are many millions of light years distant.

A few brighter examples lay in the constellation of Leo the Lion. Have a look for M 95, M96 and M105; these are not far from Mars during March. You will need a dark Moonless night to see them well.

Another trio of galaxies still in the constellation of Leo are M65, M66 and NGC 3628 otherwise known as the ‘Leo Triplet’ A small telescope and a low to medium power should show these objects in the same field of view.

The region of sky within Leo, Coma and Virgo is packed with galaxies and whatever telescope you use, you will be sure to spot something.

For those of you without a telescope, see if you can discern the asterism of the ‘Bowl of Virgo’. This is a chain of five stars in a loose semi-circle pointing towards the ‘tail’ of Leo. The brightest star in the chain is Porrima. South of Porrima lays the brightest star in the constellation, called Spica. Saturn can be found to the east of this.

Credit: Adrian West

Thierry Legault: Astrophotography is an ‘Adrenaline Rush’

Thierry Legault with the equipment he uses for satellite images. Images courtesy of Thierry Legault.

[/caption]

During one of the final space shuttle missions, photographer Thierry Legault traveled nearly 4,000 km across various locations in Europe to try and capture the shuttle docked to the International Space Station as the two spacecraft transited across the surface of the Sun.

“Essentially, I was trying to catch the clear sky so I could take images of an event that would last less than a second,” Legault said from his home in France.

This type of dedication to his craft, along with his attention to detail and quality has earned Legault the reputation as one of the top amateur astrophotographers in the world.

Amazingly, he started his astrophotography hobby — and his specialty of imaging objects in front of the Sun — just by chance. And now Legault has been shooting breathtaking images of spacecraft in orbit and astronomical objects and events for nearly 20 years.

“I began in 1993 with one of the first CCD cameras, the first year that CCD cameras were available for amateurs,” Legault said. “It was a wonderful time, because it was a time of pioneers, and it was a revolution after film.”

An Airplane in Front of the Sun Credit & Copyright: Thierry Legault

Intrigued by what could be done with digital equipment, he experimented by taking planetary and deep sky pictures and has now amassed a prolific portfolio of stunning images. In 2001 he took the first of the type of images he has become renown for.

“I took a picture of a plane in front of the Sun,” Legault recalled, “and it was published on APOD (Astronomy Picture of the Day), and so now I have taken many images of things in front of the Sun.”

Image of the solar transit of the International Space Station (ISS) and Space Shuttle Atlantis, 50 minutes after undocking from the ISS, before return to Earth, taken from the area of Mamers, Normandie, France on September 17, 2006. Credit and copyright, Thierry Legault

In 2006 he took pictures of the space station and space shuttle side by side just as the shuttle undocked. It was published by newspapers around the world, including a double page in the Guardian, was shown on CNN and other news shows, and was everywhere on the internet.

“It was an incredible success, which was very surprising. This type of imaging is very fun for me, as I like the challenge,” Legault said. “But it is interesting how taking a picture of a spaceship in front of the Sun is really something for non-astronomers, but yet I never received so much interest for all the other astronomy images I have taken.”

Legault said he has received emails and letters from people around the world expressing how much they enjoy his transit images.

One of the setups Legault uses for solar imaging. Image courtesy Thierry Legault

Living in the suburbs of Paris means there are plenty of lights to interfere with his astrophotography.

“Where I live is not a problem for taking pictures of some satellites, the Sun, the Moon and planets,” he said. “For deep space imaging and for the space station, I have to put everything in the van and drive 20-30 kilometers and go to the country; also for solar or lunar transits I have to go to the place where the transit is visible.”

This is the first image ever taken from the ground, of an astronaut in extravehicular activity (EVA1). Steve Bowen, attached to the end of the ISS robotic arm (MSS), was working on a defective ammonia pump. The pump was hooked to the ISS mobile base system (MBS). All major elements of the robotic arm are visible, including the structures of the motorized joints and some elements along the arms (smaller than the astronaut). Credit and copyright, Thierry Legault.

For the STS-131 mission in May of 2010, Legault traveled to Spain, Switzerland, various parts of France, and for the STS-133 mission in February 2011, where he took the first-ever ground-based image of astronaut in spacewalk he drove to Germany, and to both the south and north of France, and between 3,000 and 4,000 kilometers.

All this driving and weeks of preparation is for an event that he never sees live with his own eyes, and usually lasts about a half a second. He uses CalSky.com to calculate the exact moment and exact location he will need to be to capture an event.

“For transits I have to calculate the place, and considering the width of the visibility path is usually between 5-10 kilometers, but I have to be close to the center of this path,” Legault explained, “because if I am at the edge, it is just like a solar eclipse where the transit is shorter and shorter. And the edge of visibility line of the transit lasts very short. So the precision of where I have to be is within one kilometer.”

Legault studies maps, and has a radio synchronized watch to know very accurately when the transit event will happen.

“My camera has a continuous shuttering for 4 seconds, so I begin the sequence 2 seconds before the calculated time,” he said. “I don’t look through the camera – I never see the space station when it appears, I am just looking at my watch!”

Atlantis during the STS-135 mission docked to the International Space Station, July 15, 2011. Credit: Thierry Legault.

For a transit event, he gets get a total of 16 images – 4 images every second, and only after he enlarges the images will he know if he succeeded or not.

“There is a kind of feeling that is short and intense — an adrenaline rush!” Legault said. “I suppose it is much like participating in a sport, but the feeling is addictive. I did it with a friend two years ago and now he is addicted too.”

Legault added that when he succeeds, it is a very satisfying feeling.

But Legault is not keeping the adrenaline rushes all to himself; he willingly shares his knowhow and techniques.

His website provides a wealth of knowledge about his techniques and equipment

In 2005 he wrote a book (in French) called Astrophotographie, that has sold over 6,000 copies, and he is working on getting it published in English. The book provides information on how to image constellations, stars, comets, eclipses, the Moon, planets, sun, and deep-sky objects, in accessible, nontechnical language. Legault also gives practical advice on equipment and technique, with answers to problems faced by every beginner. He also co-authored another book, “New Atlas of the Moon” with Serge Brunier, and in the March 2012 issue of Sky and Telescope, Legault wrote a detailed article on how to take detailed, ground-based images of the ISS.

Tomorrow on Universe Today, Legault will share his advice for avoiding “bad” astrophotography.

See Venus in Daylight This Weekend

Photo of Venus and the Moon taken on Jan 26, 2012. The new moon is at the top right and Venus is at the bottom left. Credit: Gadi Eidelheit.

[/caption]

The planet Venus is so bright that when conditions are right, it can be visible in full daylight. This weekend, and especially on Saturday, February 25, 2012, conditions should be just right for seeing Venus in the daytime. Our friend Gadi Eidelheit sent us his tips for seeing Venus, and says it is easier to see Venus when it is far from the Sun and less affected by its glare, so make sure that the Sun is blocked by a building or a tree. If you have a clear blue sky in your location early Saturday afternoon, try first locating the crescent Moon at about 1 pm local time. At this time, the Moon will be in the southeastern sky, about 60 degrees above the horizon.

When you find the Moon, look a short distance directly below it to find Venus. The planet will appear as a tiny white dot in the sky. You can also use sky maps or internet sites (such as Heavens-Above) to find out where Venus is relative to the Moon.

If you don’t see Venus during the day, try to see Venus immediately at sunset; and right now, the Moon, Venus and Jupiter are lining up for triple conjunction at dusk, and with clear skies, it will be a great view that is almost impossible to miss!

But for seeing Venus on subsequent days, try to stand in the same position where you saw it before, but 20 minutes before sunset. Try to locate Venus a little higher up and to the East from where it was a day before. Do so for several days, each time a little earlier.

You can also try to use binoculars to locate Venus. Safety first, make sure that the Sun is completely blocked and that you can not accidentally look directly at it through the binoculars! Although Venus is bright, it will not appear through binoculars if they are not focused properly. In order to use binoculars, focus it beforehand (such as the evening before) on Venus and make sure that the focus does not change. Now the binoculars are focused and you can use them to see Venus in the day. After you find Venus through the binoculars, try to see it without them.

If you get images of Venus in the daytime or of the triple conjunction, you can submit them to our Flickr page.

If your location does not have clear skies for the triple conjunction, The online Slooh Space Camera will webcast views from various observatories around the world, beginning at 0230 GMT (9:30 pm EST, 6:30 pm PST) both nights this weekend (Feb. 26 and 27). Access the webcast here.

Slooh will provide footage from multiple observatories around the world, including Arizona and the Canary Islands off the coast of Africa. The broadcast can be accessed at Slooh’s homepage, found here: http://events.slooh.com/

Frederick Quintao on Google+ has provided instructions for seeing Venus in the daytime in Portuguese!