Astronomers Propose a 50-Meter Submillimeter Telescope

The Atacama Large Millimeter/submillimeter Array (ALMA) in northern Chile is our most powerful radio telescope. But astronomers are hungering for a new radio telescope made of one massive dish. Image Credit: A. Marinkovic/X-Cam/ALMA (ESO/NAOJ/NRAO)

Some parts of the Universe only reveal important details when observed in radio waves. That explains why we have ALMA, the Atacama Large Millimetre-submillimetre Array, a collection of 7-meter and 12-meter radio telescopes that work together as an interferometer. But, ALMA-type arrays have their limitations, and astronomers know what they need to overcome those limitations.

They need a radio telescope that’s just one single, massive dish.

Continue reading “Astronomers Propose a 50-Meter Submillimeter Telescope”

Now You Can See Exactly Where Hubble and JWST are Pointed

Graphics of the Hubble and James Webb Space Telescopes. Credit: NASA/STScI.

Hubble and JWST are busily scanning the sky, sending home enormous amounts of data. They shift from target to target, completing the required observations.

But have you ever wondered what those two space telescopes are doing right at this moment? Now, you can do just that at the new Space Telescope Live website. It will show you what each observatory is scanning, where the objects are in the sky, and what researchers hope to learn. You can even go back or forward in time and see what each telescope has been looking at in the past or what observations are coming up.

Continue reading “Now You Can See Exactly Where Hubble and JWST are Pointed”

What Kinds of Astronomy Could Be Done With a Telescope on the Moon?

An illustration of a lunar telescope inside a crater. Credits: Saptarshi Bandyopadhyay/NIAC.

For decades, astronomers have said that one of the most optimal places to build large telescopes is on the surface of the Moon. The Moon has several advantages over Earth- and space-based telescopes that make it worth considering as a future home for giant observatories. A new paper lists all the advantages, including how telescopes on the lunar surface wouldn’t be blocked by an atmosphere or impacted by wind, and how the low gravity would allow gigantic structures to be built that could be upgraded over time by astronauts.

“Progress on the big questions in astronomy, such as life on certain exoplanets or dark matter, will ultimately require high angular resolution, a large collecting area and access to the full optical spectrum,” write French astronomers Jean Schneider, Pierre Kervella, and Antoine Labeyrie. “All astronomy will benefit from the advantages provided by the localization on the Moon.”  

And even though it might be decades before we have a permanent presence on the Moon, the astronomers suggest we should start with small telescopes now.

Continue reading “What Kinds of Astronomy Could Be Done With a Telescope on the Moon?”

A New Space Telescope will Map the Universe and Help Protect the Earth from Asteroids

This artist's illustration shows NASA's SPHEREx observatory in orbit. The mission will launch in 2025. Image Credit: By NASA/JPL - https://www.jpl.nasa.gov/missions/spherex, Public Domain, https://commons.wikimedia.org/w/index.php?curid=143819030

Can we secure our place in the Solar System? Not in any absolute sense because nature can be very unpredictable. But we can make the effort to safeguard our civilization by cataloguing potentially dangerous asteroids. An upcoming space telescope will help.

Continue reading “A New Space Telescope will Map the Universe and Help Protect the Earth from Asteroids”

The Extremely Large Telescope’s Dome is on the Move

A webcam image of the construction of the Extremely Large Telescope (ELT) located on Cerro Armazones in the Chilean Atacama Desert, on January 29, 2024. Credit: ESO.

Construction of the Extremely Large Telescope (ELT) reached a milestone, with the structure of the dome completed just enough where engineers were able to rotate the dome’s skeleton for the first time.

ESO released a timelapse video this week of the dome’s movement, sped up from the actual snail’s pace of 1 centimeter per second. When the telescope is completed – currently set for sometime in 2028 — the rotation of the dome will allow the telescope to track objects in the night sky over the Chilean Atacama desert. The final operating speed will be at pace of 5 kilometers per hour.

Take note of the size of the humans moving about on the video. They appear like tiny ants compared to the immense size of the aptly named ELT.

Continue reading “The Extremely Large Telescope’s Dome is on the Move”

Vera Rubin Will Help Us Find the Weird and Wonderful Things Happening in the Solar System

The Vera Rubin Observatory at twilight on April 2021. It's been a long wait, but the observatory should see first light later this year. Image Credit: Rubin Obs/NSF/AURA

The Vera Rubin Observatory (VRO) is something special among telescopes. It’s not built for better angular resolution and increased resolving power like the European Extremely Large Telescope or the Giant Magellan Telescope. It’s built around a massive digital camera and will repeatedly capture broad, deep views of the entire sky rather than focus on any individual objects.

By repeatedly surveying the sky, the VRO will spot any changes or astronomical transients. Astronomers call this type of observation Time Domain Astronomy.

Continue reading “Vera Rubin Will Help Us Find the Weird and Wonderful Things Happening in the Solar System”

Enjoy the Holiday-Themed Christmas Tree Cluster

The Christmas Tree Cluster, (NGC 2264). Credit: X-ray: NASA/CXC/SAO; Optical: T.A. Rector (NRAO/AUI/NSF and NOIRLab/NSF/AURA) and B.A. Wolpa (NOIRLab/NSF/AURA); Infrared: NASA/NSF/IPAC/CalTech/Univ. of Massachusetts; Image Processing: NASA/CXC/SAO/L. Frattare & J.Major
The Christmas Tree Cluster, (NGC 2264). Credit: X-ray: NASA/CXC/SAO; Optical: T.A. Rector (NRAO/AUI/NSF and NOIRLab/NSF/AURA) and B.A. Wolpa (NOIRLab/NSF/AURA); Infrared: NASA/NSF/IPAC/CalTech/Univ. of Massachusetts; Image Processing: NASA/CXC/SAO/L. Frattare & J.Major

Just in time for the holidays, a new composite image of the Christmas Tree Cluster (NGC 2264) has been released. This image is a group effort: the blue and white stars in the cluster giving off X-rays are seen by Chandra, while the faint green nebula was imaged by the WIYN 0.9-meter telescope on Kitt Peak.

Continue reading “Enjoy the Holiday-Themed Christmas Tree Cluster”

Vera Rubin Will Generate a Mind-Boggling Amount of Data

The LSST, or Vera Rubin Survey Telescope, under construction at Cerro Pachon, Chile. Image Credit: LSST

When the Vera C. Rubin Observatory comes online in 2025, it will be one of the most powerful tools available to astronomers, capturing huge portions of the sky every night with its 8.4-meter mirror and 3.2-gigapixel camera. Each image will be analyzed within 60 seconds, alerting astronomers to transient events like supernovae. An incredible five petabytes (5,000 terabytes) of new raw images will be recorded each year and made available for astronomers to study.

Not surprisingly, astronomers can’t wait to get their hands on the high-resolution data. A new paper outlines how the huge amounts of data will be processed, organized, and disseminated. The entire process will require several facilities on three continents over the course of the projected ten-year-long survey.

Continue reading “Vera Rubin Will Generate a Mind-Boggling Amount of Data”

Vera Rubin Observatory Could Find Up to 70 Interstellar Objects a Year

The Vera C. Rubin Observatory is under construction at Cerro Pachon, in Chile. This image shows construction progress in late 2019. The observatory should be able to spot interstellar objects like Oumuamua. Image Credit: Wil O'Mullaine/LSST .

Astronomers have discovered two known interstellar objects (ISO), ‘Oumuamua and 21/Borisov. But there could be thousands of these objects passing through the Solar System at any time. According to a new paper, the upcoming Vera Rubin Telescope will be a fantastic interstellar object hunter, and could possibly find up to 70 objects a year coming from other star systems.

Continue reading “Vera Rubin Observatory Could Find Up to 70 Interstellar Objects a Year”

What a Mess. When the Milky Way and Andromeda Merge, it'll Look Like This

This mess is the billion-year-old aftermath of a double spiral galaxy collision. At the heart of this chaotic interaction, entwined and caught amid the chaos, is a pair of supermassive black holes — the closest such pair ever recorded from Earth. The image was taken by Gemini South, one half of the International Gemini Observatory. Credit: International Gemini Observatory/NOIRLab/NSF/AURA

No need to panic, but the Andromeda Galaxy is barreling towards us. It is due to begin merging with the our Milky Way Galaxy in a few billion years. From an outside observer, that process will very likely look like this new picture captured by the Gemini South Observatory. This is NGC 7727, a peculiar galaxy in the constellation Aquarius, about 90 million light-years away. Two giant spiral galaxies are merging, their gravitational interactions are hurling giant tidal tails of stars into the cosmos.

Continue reading “What a Mess. When the Milky Way and Andromeda Merge, it'll Look Like This”