China’s FAST Telescope, the World’s Largest Single Radio Dish Telescope, is Now Fully Operational

After years of construction, China’s new radio telescope is in action. The telescope, called FAST (Five-hundred-meter Aperture Spherical Radio Telescope) has double the collecting power of the Arecibo Observatory in Puerto Rico, which has a 305 meter dish. Until now, Arecibo was the world’s largest radio dish of its type.

Continue reading “China’s FAST Telescope, the World’s Largest Single Radio Dish Telescope, is Now Fully Operational”

Great News! The Large Synoptic Survey Telescope Might be Named for Vera Rubin

The U.S. House of Representatives have passed a bill to change the name of the Large Synoptic Survey Telescope (LSST.) Instead of that explanatory yet cumbersome name, it will be named after American astronomer Vera Rubin. Rubin is well-known for her pioneering work in discovering dark matter.

Continue reading “Great News! The Large Synoptic Survey Telescope Might be Named for Vera Rubin”

New Instrument is Searching for Planets Around Alpha Centauri

Alpha Centauri is the closest star system to us, at 4.37 light-years (about 25 trillion miles) away. In 2016, astronomers discovered an exoplanet orbiting one of the three stars in the Alpha Centauri system. Spurred on by that discovery, the European Southern Observatory (ESO) has developed a new instrument to find any other planets that might be in the Alpha Centauri system, and it’s busy looking right now.

Continue reading “New Instrument is Searching for Planets Around Alpha Centauri”

A Very Rare Planet Discovered. Less Massive than Neptune, Hotter than Mercury. Very Few Should Exist

Astronomers have discovered a very rare, very unusual planet in a distant solar system. The planet, called NGTS-4b, is three times the size of Earth, and about 20% smaller than Neptune. It’s hotter than our very own Mercury. At about 1,000 degrees Celsius, it would be the hottest planet if it were in our Solar System.

But what really separates this planet is its location. It’s located in what’s called the Neptunian Desert.

Continue reading “A Very Rare Planet Discovered. Less Massive than Neptune, Hotter than Mercury. Very Few Should Exist”

Uh oh, Hubble’s Wide Field Camera 3 is Down

On January 8, 2019, the Wide Field Camera 3 on the Hubble Space Telescope suspended operations due to a hardware problem. Image Credit: NASA/STScI.

On January 8th, an important piece of equipment on the Hubble Space Telescope went down. The Wide Field Camera 3 (WFC3) suspended its operations because of a hardware. The Hubble team is investigating the anomaly, and during this time the space telescope’s other instruments are working normally and continuing their science operations.

The WFC3 was installed on the Hubble in 2009. It replaced the Wide Field and Planetary Camera 2 (WFPC2). The WFC3 is the most technologically advanced instrument on the Hubble, and it has captured some of the most stunning and famous images ever captured.

Continue reading “Uh oh, Hubble’s Wide Field Camera 3 is Down”

New SPECULOOS Telescope Sees First Light. Soon it’ll be Seeing Habitable Planets Around Ultra-Cool Stars

This first light image from the Callisto telescope at the SPECULOOS Southern Observatory (SSO) shows the famous Horsehead Nebula . First light for a newly commissioned telescope is a tremendously exciting time, and usually well-known astronomical objects such as this are captured to celebrate a new telescope commencing operations. Image Credit: SPECULOOS Team/E. Jehin/ESO

Our newest planet-hunting telescope is up and running at the ESO’s Paranal Observatory in the Atacama Desert in Chile. SPECULOOS, which stands for Planets EClipsing ULtra-cOOl Stars, is actually four 1-meter telescopes working together. The first images from the ‘scopes are in, and though it hasn’t found any other Earths yet, the images are still impressive.

Continue reading “New SPECULOOS Telescope Sees First Light. Soon it’ll be Seeing Habitable Planets Around Ultra-Cool Stars”

Sunspot Solar Observatory has been Shut Down by the FBI and Nobody’s Saying Why

The Dunn Solar Telescope at the Sunspot Solar Observatory. The observatory was shut down and all staff vacated due to security reasons. Image: Sunspot Solar Observatory.

Update: Sept. 18th.

The mystery surrounding the closure of the Sunspot Solar Observatory has been (mostly) cleared up. After being closed and vacated on Sept. 6th due to an unspecified security threat, the facility is now open, and will resume normal scientific activities next week.

In a statement, Shari Lifson, spokesperson for the Association of Universities for Research in Astronomy (AURA), the body that operates the Sunspot Observatory, said that the facility was closed as a “precautionary measure.”

Continue reading “Sunspot Solar Observatory has been Shut Down by the FBI and Nobody’s Saying Why”

Astronomers Find The Most Distant Supernova Ever: 10.5 Billion Light-Years Away

Astronomers have discovered the most distant supernova yet, at a distance of 10.5 billion light years from Earth. The supernova, named DES16C2nm, is a cataclysmic explosion that signaled the end of a massive star some 10.5 billion years ago. Only now is the light reaching us. The team of astronomers behind the discovery have published their results in a new paper available at arXiv.

“…sometimes you just have to go out and look up to find something amazing.” – Dr. Bob Nichol, University of Portsmouth.

The supernova was discovered by astronomers involved with the Dark Energy Survey (DES), a collaboration of astronomers in different countries. The DES’s job is to map several hundred million galaxies, to help us find out more about dark energy. Dark Energy is the mysterious force that we think is causing the accelerated expansion of the Universe.

DES16C2nm was first detected in August 2016. Its distance and extreme brightness were confirmed in October that year with three of our most powerful telescopes – the Very Large Telescope and the Magellan Telescope in Chile, and the Keck Observatory, in Hawaii.

This image from 2015 shows the same area of sky before DES16C2nm exploded. Image: Mat Smith and DES collaboration.

DES16C2nm is what’s known as a superluminous supernova (SLSN), a type of supernova only discovered 10 years ago. SLSNs are the rarest—and the brightest—type of supernova that we know of. After the supernova exploded, it left behind a neutron star, which is the densest type of object in the universe. The extreme brightness of SLSNs, which can be 100 times brighter than other supernovae, are thought to be caused by material falling into the neutron star.

“It’s thrilling to be part of the survey that has discovered the oldest known supernova.” – Dr Mathew Smith, lead author, University of Southampton

Lead author of the study Dr Mathew Smith, of the University of Southampton, said: “It’s thrilling to be part of the survey that has discovered the oldest known supernova. DES16C2nm is extremely distant, extremely bright, and extremely rare – not the sort of thing you stumble across every day as an astronomer.”

Dr. Smith went on to say that not only is the discovery exciting just for being so distant, ancient, and rare. It’s also providing insights into the cause of SLSNs: “The ultraviolet light from SLSN informs us of the amount of metal produced in the explosion and the temperature of the explosion itself, both of which are key to understanding what causes and drives these cosmic explosions.”

“Now we know how to find these objects at even greater distances, we are actively looking for more of them as part of the Dark Energy Survey.” – Co-author Mark Sullivan, University of Southampton.

Now that the international team behind the Dark Energy Survey has found one of the SLSNs, they want to find more. Co-author Mark Sullivan, also of the University of Southampton, said: “Finding more distant events, to determine the variety and sheer number of these events, is the next step. Now we know how to find these objects at even greater distances, we are actively looking for more of them as part of the Dark Energy Survey.”

The instrument used by DES is the newly constructed Dark Energy Camera (DECam), which is mounted on the Victor M. Blanco 4-meter Telescope at the Cerro Tololo Inter-American Observatory (CTIO) in the Chilean Andes. DECam is an extremely sensitive 570-megapixel digital camera designed and built just for the Dark Energy Survey.

The DECam in operation at its home in the Chilean Andes. The extremely sensitive, 570 megapixel camera is mounted on the Victor M. Blanco 4-meter Telescope at the Cerro Tololo Inter-American Observatory. Image: DES/CTIO

The Dark Energy Survey involves more than 400 scientists from over 40 international institutions. It began in 2013, and will wrap up its five year mission sometime in 2018. The DES is using 525 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. DES is designed to help us answer a burning question.

According to Einstein’s General Relativity Theory, gravity should be causing the expansion of the universe to slow down. And we thought it was, until 1998 when astronomers studying distant supernovae found that the opposite is true. For some reason, the expansion is speeding up. There are really only two ways of explaining this. Either the theory of General Relativity needs to be replaced, or a large portion of the universe—about 70%—consists of something exotic that we’re calling Dark Energy. And this Dark Energy exerts a force opposite to the attractive force exerted by “normal” matter, causing the expansion of the universe to accelerate.

“…sometimes you just have to go out and look up to find something amazing.” – Dr. Bob Nichol, University of Portsmouth.

To help answer this question, the DES is imaging 5,000 square degrees of the southern sky in five optical filters to obtain detailed information about each of the 300 million galaxies. A small amount of the survey time is also used to observe smaller patches of sky once a week or so, to discover and study thousands of supernovae and other astrophysical transients. And this is how DES16C2nm was discovered.

Study co-author Bob Nichol, Professor of Astrophysics and Director of the Institute of Cosmology and Gravitation at the University of Portsmouth, commented: “Such supernovae were not thought of when we started DES over a decade ago. Such discoveries show the importance of empirical science; sometimes you just have to go out and look up to find something amazing.”