Apollo 11 Artifact Caught In Legal Dispute

The massive Saturn V rocket launches the Apollo 11 mission to the Moon on July 16, 1969. Image: NASA
The massive Saturn V rocket launches the Apollo 11 mission to the Moon on July 16, 1969. Image: NASA

A bag that travelled to the Moon and back is at the heart of a legal dispute involving NASA and a woman named Nancy Carlson. Carlson currently owns the bag and obtained it legally. But NASA is in possession of the bag, and the US Attorney’s Office wants the courts to quash Carlson’s purchase of the bag, so they can retain ownership of this important piece of space memorabilia.

The lawsuit over the lunar sample bags was first reported by Roxana Hegeman of the Associated Press, and covered by Robert Pearlman at collectspace.com.

The story of the Apollo 11 bag is bit of a tangled web. To understand it, we have to look at a third figure, Max Ary. Ary was the founder and long-time director of the Kansas Cosmosphere and Space Center. In 2005, Ary was convicted for stealing and selling museum artifacts.

Hundreds of space artifacts and memorabilia, some on loan from NASA, had gone missing. In 2003, the Apollo 11 bag was found in a box in Ary’s garage during the execution of a search warrant as part of the case against him. However, the bag was misidentified due to a spreadsheet error, and sold to Carlson at a government auction for $995.

Sample collection on the surface of the Moon. Apollo 16 astronaut Charles M. Duke Jr. is shown collecting samples with the Lunar Roving Vehicle in the left background. Image: NASA
Sample collection on the surface of the Moon. Apollo 16 astronaut Charles M. Duke Jr. is shown collecting samples with the Lunar Roving Vehicle in the left background. Image: NASA

NASA only found out about the Apollo 11 bag after Carlson purchased it. Carlson sent it to the Johnson Space Center in Houston to be authenticated. Once NASA realized what the bag was, they set the legal process in motion to set aside the forfeiture and sale. The US Attorney’s office argued that NASA was not properly notified of the bag’s forfeiture because it was not labelled properly.

NASA’s attorney’s wrote “NASA was denied the opportunity to assert its interest in the lunar bag. Had NASA been given notice of the forfeiture action and/or had all the facts about the lunar bag been known, the lunar [sample return] bag would never have gone to a government auction.”

The attorneys added that “The true identity and ownership of the lunar bag are now known. The failure to give proper notice to NASA can be corrected by setting aside the forfeiture and rescinding its sale,” they stated. “These are unusual circumstances that warrant the particular relief sought.”

If this seems like quite a bit of fuss over a bag, remember that this bag travelled to the Moon and back, making it very rare. Apollo 11 astronauts used it to collect the first samples from the Moon, and dust fragments from the Moon are embedded in its fabric. It’s a very valuable historic and scientific artifact. The government said in a statement that the bag is “a rare artifact, if not a national treasure.”

Carlson, who obtained the bag legally at an auction, is an attorney and is now suing NASA for “unwarranted seizure of my personal property… without any legal provocation.” This after she voluntarily submitted the bag to NASA for authentication, and after NASA offered to reimburse her purchase price and an additional $1,000 dollars “in appreciation for your assistance in returning the bag” and “to offset any inconvenience you may have suffered.”

There’s no question that artifacts like these belong in NASA’s public collection, and on display in a museum. But Carlson obtained the bag through a legal auction. Maybe, as the bag’s purchaser, Carlson is hoping that NASA will tender a larger offer for return of the bag, and she can make some profit. That’s pure speculation of course. Perhaps she’s just very keen on owning this piece of history.

As for Max Ary, the man who set all this in motion years ago, he is now out of prison and maintains his innocence. Ary collected other space artifacts and memorabilia and sold them from his home, and he claims that it was just a mix up. He was convicted though, and he served just over 2 years of his 3 year prison sentence. He was also ordered to pay $132,000 in restitution.

Sources: Collectspace.com, Roxana Hegeman (AP)

The Hype Machine Deflates After CERN Data Shows No New Particle

Image of the results obtained by colliding lead ions in the ALICE detector. Credit: CERN

This summer in Chicago, from August 3rd until the 10th, theorists and experimental physicists from around the world will be participating in the International Conference of High Energy Physics (ICHEP). One of the highlights of this conference comes from CERN Laboratories, where particle physicists are showcasing the wealth of new data that the Large Hadron Collider (LHC) has produced so far this year.

But amidst all the excitement that comes from being able to peer into the more than 100 latest results, some bad news also had to be shared. Thanks to all the new data provided by the LHC, the chance that a new elementary particle was discovered – a possibility that had begun to appear likely eight months ago – has now faded. Too bad, because the existence of this new particle would have been groundbreaking!

The indications of this particle first appeared back in December of 2015, when teams of physicists using two of CERN’s particle detectors (ATLAS and CMS) noted that the collisions performed by the LHC were producing more pairs of photons than expected, and with a combined energy of 750 gigaelectronvolts. While the most likely explanation was a statistical fluke, there was another tantalizing possibility – that they were seeing evidence of a new particle.

The ATLAS detector, one of two general-purpose detectors at the Large Hadron Collider (LHC). Credit: CERN
The ATLAS instrument, one of two general-purpose detectors at the Large Hadron Collider (LHC). Credit: CERN

If this particle were in fact real, then it was likely to be a heavier version of the Higgs boson. This particle, which gives other elementary particles their mass, had been discovered in 2012 by researchers at CERN. But whereas the discover of the Higgs boson confirmed the Standard Model of Particle Physics (which has been the scientific convention for the past 50 years), the possible existence of this particle was inconsistent with it.

Another, perhaps even more exciting, theory was that the particle was the long-sought-after gravitron, the theoretical particle that acts as the “force carrier” for gravity. If indeed it was this particle, then scientists would finally have a way for explaining how General Relativity and Quantum Mechanics go together – something that has eluded them for decades and inhibited the development of a Theory of Everything (ToE).

For this reason, there has been a fair degree of excitement in the scientific community, with over 500 scientific papers produced on the subject. However, thanks to the massive amounts of data provided in the past few months, the CERN researchers were forced to announce on Friday at ICEP 2016 that there was no new evidence of a particle to be had.

The results were presented by representatives of the teams that first noticed the unusual data last December. Representing CERN’s ATLAS detector, which first noted the photon pairs, was Bruno Lenzi. Meanwhile, Chiara Rovelli representing the competing team that uses the Compact Muon Solenoid (CMS), which confirmed the readings.

The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider. Credit: CERN
The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider. Credit: CERN

As they showed, the readings which indicated a bump in photon pairs last December have since gone into the flatline, removing any doubt as to whether or not it was a fluke. However, as Tiziano Campores – a spokesman for C.M.S. – was quoted by the New York Times as saying on the eve of the announcement, the teams had always been clear about this not being a likely possibility:

“We don’t see anything. In fact, there is even a small deficit exactly at that point. It’s disappointing because so much hype has been made about it. [But] we have always been very cool about it.”

These results were also stated in a paper submitted to CERN by the C.M.S. team on the same day. And CERN Laboratories echoed these statement in a recent press release which addressed the latest data-haul being presented at ICEP 2016:

“In particular, the intriguing hint of a possible resonance at 750 GeV decaying into photon pairs, which caused considerable interest from the 2015 data, has not reappeared in the much larger 2016 data set and thus appears to be a statistical fluctuation.”

This was all disappointing news, since the discovery of a new particle could have shed some light on the many questions arising out of the discovery of the Higgs boson. Ever since it was first observed in 2012, and later confirmed, scientists have been struggling to understand how it is that the very thing that gives other particles their mass could be so “light”.

The Large Hadron Collider - destined to deliver fabulous science data, but uncertain if these will include an evidence basis for quantum gravity theories. Credit: CERN.
The Large Hadron Collider – which discovered the Higgs Boson in 2012 – appears to have confirmed the Standard Model yet again. Credit: CERN

Despite being the heaviest elementary particle – with a mass of 125 billion electron volts – quantum theory predicted that the Higgs boson had to be trillions of times heavier. In order to explain this, theoretical physicists have been wondering if in fact there are some other forces at work that keep the Higgs boson’s mass at bay – i.e. some new particles. While no new exotic particles have been discovered just yet, the results so far have still been encouraging.

For instance, they showed that LHC experiments have already recorded about five times more data in the past eight months than they did in all of last year. They also offered scientists a glimpse of how subatomic particles behave at energies of 13 trillion electronvolts (13 TeV), a new level that was reached last year. This energy level has been made possible from the upgrades performed on the LHC during its two-year hiatus; prior to which, it was functioning at only half-power.

Another thing worth bragging about was the fact that the LHC surpassed all previous performance records this past June, reaching a peak luminosity of 1 billion collisions per second. Being able to conduct experiments at this energy level, and involving this many collisions, has provided LHC researchers with a large enough data set that they are able to conduct more precise measurements of Standard Model processes.

In particular, they will be able to look for anomalous particle interactions at high mass, which constitutes an indirect test for physics beyond the Standard Model – specifically new particles predicted by the theory of Supersymmetry and others. And while they have yet to discover any new exotic particles, the results so far have still been encouraging, mainly because they show that the LHC is producing more results than ever.

This is the signature of one of 100s of trillions of particle collisions detected at the Large Hadron Collider. The combined analysis lead to the discovery of the Higgs Boson. This article describes one team in dissension with the results. (Photo Credit: CERN)
Data representation from the CMS experiment, showing the decay of protons into two photons (dashed yellow lines and green towers). Credit: CERN

And while discovering something that could explain the questions arising from the discovery of the Higgs bosons would have been a major breakthrough, many agree that it was simply too soon to get our hopes up. As Fabiola Gianotti, the Director-General at CERN, said:

“We’re just at the beginning of the journey. The superb performance of the LHC accelerator, experiments and computing bodes extremely well for a detailed and comprehensive exploration of the several TeV energy scale, and significant progress in our understanding of fundamental physics.”

For the time being, it seems we are all going to have to be patient and wait on more scientific results to be produced. And we can all take solace in the fact that, at least for now, the Standard Model still appears to be the correct one. Clearly, there are no short cuts when it comes to figuring out how the Universe works and how all its fundamental forces fit together.

Further Reading: CERN

North Korea Aims To Place Its Flag On The Moon

North Koreans dance under a flashcard display of a satellite during the Arirang Mass Games celebrations in Pyonyang, July 26, 2013. Credit: AP Photo/Wong Maye-E

Space exploration was once considered the province of two superpowers, with only tertiary participation from other nations. But since the turn of the century, more and more nations are joining in. China and India, for example, have placed landers on the Moon, satellites around Mars, and are even working on a space station. And as if that weren’t enough, private industry is also making its presence felt, largely through SpaceX and Blue Origins‘ development of reusable rockets.

But in the latest announcement to come out of the world’s last Stalinist regime, it seems that North Korea also hopes to join the 100 mile-high club (the space race, not the other thing!) In a recent interview with the Associated Press, a North Korean official indicated that the country is busy working on a five year plan that will put more satellites into orbit by 2020, and mount a mission to the moon within 10 years time.

According to the official – Hyon Kwang Il, the director of the scientific research department of North Korea’s National Aerospace Development Administration – the 5-year plan is focused on the deployment of more Earth observations satellites, as well as what will be the country’s first geostationary communications satellite.

Visitors takes photos of an illuminated model of a globe at the Sci-Tech Complex in Pyongyang, North Korea. Credit: Kim Kwang Hyon/AP
Visitors takes photos of an illuminated model of a globe at the Sci-Tech Complex in Pyongyang, North Korea. Credit: Kim Kwang Hyon/AP

He further indicated that universities in North Korea are expanding their programs to train rocket scientists, with the ultimate purpose of mounting an unmanned Moon mission sometime in the 2020s. If this statement is to be believed, then this plan would constitute significant steps being taken by the isolated regime to establish a foothold in space.

As Hyon indicated in an interview with AP on July 28th, this will all be taking place despite the ongoing embargo and attempts to stifle North Korea’s technological ambitions:

“Even though the U.S. and its allies try to block our space development, our aerospace scientists will conquer space and definitely plant the flag of the DPRK on the moon… We are planning to develop the Earth observation satellites and to solve communications problems by developing geostationary satellites. All of this work will be the basis for the flight to the moon.”

Considering the announcements to come out of this isolated, totalitarian state in the past – i.e. having a cure for HIV, Ebola and cancer, finding a unicorn lair, and having invisible phones – you might be asking yourself, “how seriously should I take this?” The answer: with cautious skepticism. Granted, North Korea’s state-controlled media frequently releases propaganda statements that are so outlandish that they make us laugh out loud.

Still, this latest claim does not seem so farfetched. Already, North Korea has deployed two Earth observation satellites as part of its Kwangmyongsong program, which began in earnest in 1998. Back in February, the fifth satellite in this program (Kwangmyongsong-5) was successfully launched into orbit. And while this was only the second successful launch, it does show that country is developing a certain degree of competency when it comes to space technology.

Image released by the Korean Central News Agency (KCNA) of the rocket said to be carrying North Korea's Kwangmyongsong-4 satellite, Feb.7, 2016. Credit: AP
Image released by the Korean Central News Agency (KCNA) of the rocket said to be carrying North Korea’s Kwangmyongsong-4 satellite, Feb. 7, 2016. Credit: AP

The Unha rockets that were used to deliver the satellites into orbit are also considered to be capable. An expandable carrier rocket, the Unha relies on a delivery system that is similar to the Taepodong-2 long-range ballistic missile (which is a modified version of the Russian Scud). What’s more, recent satellite images of the Sohae Satellite Launching Station (located in the northeastern North Pyongan Province) has revealed that an enlarged launch tower is under construction.

This could be an indication that an enlarged version (Unha-X) might be under development, which is consistent with propaganda posters that are also advertising the new rocket. And this past Wednesday, the country test-fired what was believed to be a medium-range ballistic missile into the seas off Japan, which is the fourth reported weapons launch to take place in the past two weeks. Clearly, the regime is working to develop its rocket capabilities, which is essential to any space program.

Beyond that, the success other nations have had in recent years conducting unmanned mission to the Moon – like China’s Chang’e program –  could serve as an indication that the North Korean regime is entirely serious about planting a flag there as well. “Our country has started to accomplish our plan and we have started to gain a lot of successes,” said Hyon. “No matter what anyone thinks, our country will launch more satellites.”

Seriousness or not, whether or not North Korea can actually achieve their more ambitious goal of reaching the Moon in a decade remains to be seen. And it will only come with a whole lot of time, effort, and the country burning through another significant chunk of its GDP (as with its nuclear tests). In the meantime, we better get used to the idea of Low-Earth Orbit getting a bit more crowded!

And in the meantime, be sure to enjoy this video from the Onion, which presents what is only a semi-satirical take on the regime’s space plans:

Further Reading: Associated Press

New Poll Shows 2-1 Margin Of Support From Hawaiians For Thirty Meter Telescope

Artist's impression of the top view of the proposed Thirty Meter Telescope complex. Credit: tmt.org

Ever since it was approved for construction, the Thirty Meter Telescope has been the subject of controversy. A proposed astronomical observatory that is planned to be built on Mauna Kea – Hawaii’s famous dormant volcano and the home of the Mauna Kea Observatories – the construction of this facility has been delayed multiple times due to resistance from the local community.

Stressing the impact the facility will have on local wild life, the associated noise and traffic, and the fact that the proposed site is on land sacred to Hawaii’s indigenous people, there are many locals who have protested the facility’s construction. But after multiple delays, and the cancellation of the facility’s building permits, it appears that public support may be firmly behind the creation of the TMT.

Planning for the Thirty Meter Telescope began in 2000, when astronomers began considering the construction of telescopes that measured more than 20 meters in diameter. In time, the University of California and Caltech began conducting a series of studies, which would eventually culminate in the plans for the TMT. Site proposals also began to be considered by the TMT board, which led to the selection of Mauna Kea in 2009.

Mauna Kea summit as seen from the northeast. Credit: University of Hawaii.
Mauna Kea summit as seen from the northeast. Credit: University of Hawaii.

However, after opposition and protests halted construction on three occasions – on Oct. 14th, 2014, then again on April 2th and June 24th of 2015 – the State Supreme Court of Hawaii invalidated the TMT’s building permits. Since that time, multiple polls have been conducted to gauge public support for the project. Whereas a previous one, which was conducting in Oct. 2015, indicated that 59% of Big Island residents supported it (and 39% opposed it) the most recent poll yielded different results.

This poll, which was conducted in July of 2016 by Honolulu-based Ward Research, Inc. shows that 60% of Big Island residents now support moving ahead with construction, while 31% remain opposed. While not a huge change, it does indicate that support for the project now outweighs opposition by a 2 to 1 margin since the last time residents were asked, roughly nine months ago.

The first poll surveyed 613 Hawaii Big Island residents, aged 18 years and older and from a variety of backgrounds. The most recent poll surveyed 404 Hawaii residents at least 18 years old via both cellphone and landline (with a margin of error of plus or minus 4.9 percent).

The recent poll also indicated that the majority of respondents, ranging from 66% to 76%, believe that TMT will provide economic and educational opportunities, and that not moving forward would be bad for the island and its residents. Also of interest was the fact that support for TMT’s construction was split among Indigenous Hawaiians, with 46 percent of those polled in support and 45 percent opposed.

Artists concept of the Thirty Meter Telescope Observatory. Credit: TMT
Artists concept of the Thirty Meter Telescope Observatory. Credit: TMT

As Ed Stone, the TMT Executive Director, said of the results in a recent press release:

“It was important for us to understand how Hawaii Island residents feel about the project, and the latest poll results demonstrate that opposition to TMT on Hawaii Island is decreasing. That’s significant and we are most grateful that the community’s support of the project remains high. The findings also show that the general public on Hawaii Island understands the benefits TMT will bring in terms of Hawaii’s economy and education, both of which are very important to TMT.”

What is perhaps most relevant is the fact that while this most-recent poll shows virtually no change in the amount of support, it does show that opposition has decreased. The reason for this is not clear, but according to Kealoha Pisciotta of the Mauna Kea Hui – which is litigating against TMT’s construction – the change is attributable to the PR efforts of TMT, which hired Honolulu-based PR firm to promote their agenda.

Pisciotta also stressed that the state Constitution of Hawaii protects the cultural and traditional practices that will be affected by this massive project, which is something residents don’t appear to understand. Faced with the promise of benefits – which includes TMT’s annual $1 million contribution to The Hawaii Island New Knowledge (THINK) Fund, which provides for STEM education.

Mauna Kea
Mauna Kea observed from space. Credit: NASA/EO

This is not to say that those polled rejected the concerns of those advocating for protection of Hawaiian heritage and culture. In fact, 89% of respondents – the largest return in the poll – indicated that “there should be a way for science and Hawaiian culture to co-exist”. While this is easier said than done, it does show that compromise is the most popular option, and could present a mutually-satisfactory way of moving forward.

What’s more, this is hardly the first time that Mauna Kea has been at the center of controversy. Ever since construction began on the Astronomy Precinct in 1967, there has been opposition from environmentalists and the Indigenous community. Not only is the Precinct located on land protected by the Historical Preservation Act of 1966 due to its significance to Hawaiian culture, it is also the habitat of an endangered species of bird (the Palila).

Nevertheless, Mauna Kea remains the preferred choice for the location of the TMT, though the board is evaluating alternative sites in case the project cannot move forward. Stone and his colleagues hope to resume construction of the TMT facility by April of 2018, and begin gathering images of the cosmos in the near-ultraviolet to mid-infrared by the 2020s.

Further Reading: tmt.org

HiRISE Drops 1,000 Stunning New Mars Images For Your Viewing Pleasure

A possible 'Recurring Slope Lineae (RSL), dark streaks on slopes that appeared to ebb and flow over time that may or may not be caused by water on Mars. This RSL is in Ceraunius Fossae. Credit: NASA/JPL/University of Arizona.

We frequently call the HiRISE camera on board the Mars Reconnaissance Orbiter “our favorite camera” and for good reason. HiRISE, the High Resolution Imaging Science Experiment, is the largest and most powerful camera ever flown on a planetary mission, sending back incredibly beautiful, high-resolution images of Mars. While previous cameras on other Mars orbiters can identify objects about the size of a school bus, HiRISE brings it to human scale, imaging objects as small as 3 feet (1 meter) across.

The HiRISE team has just released more than 1,000 new observations of Mars for the Planetary Data System archive, showing a wide range of gullies, dunes, craters, geological layering and other features on the Red Planet. Take a look at some of the highlights (click on each image for higher resolution versions and more info):

Chloride and Paleo Dunes in Terra Sirenum. Credit: NASA/JPL/University of Arizona.
Chloride and Paleo Dunes in Terra Sirenum. Credit: NASA/JPL/University of Arizona.

MRO orbits at about 300 km above the Martian surface. The width of a HiRISE image covers about about 6 km, with a 1.2 km strip of color in the center. The length of the images can be up to 37 km. If you click on each of these images here, or go to the HiRISE website, you can see the full images in all their glory. To fully appreciate the images, you can download the special HiView application, which allows you to see the images in various formats.

Dunes Within Arkhangelsky Crater. Credit: NASA/JPL/University of Arizona
Dunes Within Arkhangelsky Crater. Credit: NASA/JPL/University of Arizona

HiRISE has been nicknamed “The People’s Camera“ because the team allows the public to choose specific targets for the camera to image. Check out the HiWISH page here if you’d like a certain spot on Mars imaged.

Crater Near Hydaspis Chaos. Credit: NASA/JPL/University of Arizona.
Crater Near Hydaspis Chaos. Credit: NASA/JPL/University of Arizona.

The lead image (the link to the image on the HiRISE site is here) shows a possible recurring slope lineae (RSL), mysterious dark streaks on slopes that appeared to ebb and flow over time. They darken and appear to flow down steep slopes during warm seasons, and then fade in cooler seasons. One possibility is this is evidence of liquid water present on Mars today. Some scientists said it could be a salty, briny liquid water flowing down the slopes. But a recent analysis says the RSLs show no mineralogical evidence for abundant liquid water or its by-products, and so it might be mechanisms other than the flow of water — such as the freeze and thaw of carbon dioxide frost — as being the major drivers of recent RSLs.

Check out the full release of images from August 2016 here.

Focusing On ‘Second-Earth’ Candidates In The Kepler Catalog

Artist’s impression of how an an Earth-like exoplanet might look. Credit: ESO.

The ongoing hunt for exoplanets has yielded some very interesting returns in recent years. All told, the Kepler mission has discovered more than 4000 candidates since it began its mission in March of 2009. Amidst the many “Super-Jupiters” and assorted gas giants (which account for the majority of Kepler’s discoveries) astronomers have been particularly interested in those exoplanets which resemble Earth.

And now, an international team of scientists has finished perusing the Kepler catalog in an effort to determine just how many of these planets are in fact “Earth-like”. Their study, titled “A Catalog of Kepler Habitable Zone Exoplanet Candidates” (which will be published soon in the Astrophysical Journal), explains how the team discovered 216 planets that are both terrestrial and located within their parent star’s “habitable zone” (HZ).

The international team was made up of researchers from NASA, San Francisco State University, Arizona State University, Caltech, University of Hawaii-Manoa, the University of Bordeaux, Cornell University and the Harvard-Smithsonian Center for Astrophysics. Having spent the past three years looking over the more than 4000 entries, they have determined that 20 of the candidates are most like Earth (i.e. likely habitable).

This figure shows the habitable zone for stars of different temperatures, as well as the location of terrestrial size planetary candidates and confirmed Kepler planets described in new research from SF State astronomer Stephen Kane. Some of the Solar System terrestrial planets are also shown for comparison. Credit: Chester Harman Read more at: http://phys.org/news/2016-08-team-second-earth-candidates.html#jCp
Figure showing the habitable zone for different types of stars, as well as the location of terrestrial size Kepler candidates. Credit: Chester Harman

As Stephen Kane, an associate professor of physics and astronomy at San Fransisco University and lead author of the study, explained in a recent statement:

“This is the complete catalog of all of the Kepler discoveries that are in the habitable zone of their host stars. That means we can focus in on the planets in this paper and perform follow-up studies to learn more about them, including if they are indeed habitable.”

In addition to isolating 216 terrestrial planets from the Kepler catalog, they also devised a system of four categories to determine which of these were most like Earth. These included “Recent Venus”, where conditions are like that of Venus (i.e. extremely hot); “Runaway Greenhouse”, where planets are undergoing serious heating; “Maximum Greenhouse”, where planets are within their star’s HZ; and “Recent Mars”, where conditions approximate those of Mars.

From this, they determined that of the Kepler candidates, 20 had radii less than twice that of Earth (i.e. on the smaller end of the Super-Earth category) and existed within their star’s HZ. In other words, of all the planets discovered in our local Universe, they were able to isolate those where liquid water can exist on the surface, and the gravity would likely be comparable to Earth’s and not crushing!

Earlier today, NASA announced that Kepler had confirmed the existence of 1,284 new exoplanets, the most announced at any given time. Credit: NASA
Earlier today, NASA announced that Kepler had confirmed the existence of 1,284 new exoplanets, the most announced at any given time. Credit: NASA

This is certainly exciting news, since one of the most important aspects of exoplanet hunting has been finding worlds that could support life. Naturally, it might sound a bit anthropocentric or naive to assume that planets which have similar conditions to our own would be the most likely places for it to emerge. But this is what is known as the “low-hanging fruit” approach, where scientists seek out conditions which they know can lead to life.

“There are a lot of planetary candidates out there, and there is a limited amount of telescope time in which we can study them,” said Kane. “This study is a really big milestone toward answering the key questions of how common is life in the universe and how common are planets like the Earth.”

Professor Kane is renowned for being one of the world’s leading “planet-hunters”. In addition to discovering several hundred exoplanets (using data obtained by the Kepler mission) he is also a contributor to two upcoming satellite missions – the NASA Transiting Exoplanet Survey Satellite (TESS) and the European Space Agency’s Characterizing ExOPLanet Satellite (CHEOPS).

These next-generation exoplanet hunters will pick up where Kepler left off, and are likely to benefit greatly from this recent study.

Further Reading: arXiv

The Closest Supernova Since 1604 Is Hissing At Us

Artist’s impression of the supernova flare seen in the Large Magellanic Cloud on February 23rd, 1987. Credit: CAASTRO / Mats Björklund (Magipics).

Thirty years ago, a star that went by the designation of SN 1987A collapsed spectacularly, creating a supernova that was visible from Earth. This was the largest supernova to be visible to the naked eye since Kepler’s Supernova in 1604. Today, this supernova remnant (which is located approximately 168,000 light-years away) is being used by astronomers in the Australian Outback to help refine our understanding of stellar explosions.

Led by a student from the University of Sydney, this international research team is observing the remnant at the lowest-ever radio frequencies. Previously, astronomers knew much about the star’s immediate past by studying the effect the star’s collapse had on the neighboring Large Magellanic Cloud. But by detecting the star’s faintest hisses of radio static, the team was able to observe a great deal more of its history.

The team’s findings, which were published yesterday in the journal Monthly Notices of the Royal Astronomical Society, detail how the astronomers were able to look millions of years farther back in time. Prior to this, astronomers could only observe a tiny fraction of the star’s life cycle before it exploded – 20,000 years (or 0.1%) of its multi-million year life span.

Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)
Artist’s impression of the star in its multi-million year long and previously unobservable phase as a large, red supergiant. Credit: CAASTRO / Mats Björklund (Magipics)

As such, they were only able to see the star when it was in its final, blue supergiant phase. But with the help of the Murchison Widefield Array (MWA) – a low-frequency radio telescope located at the Murchison Radio-astronomy Observatory (MRO) in the West Australian desert – the radio astronomers were able to see all the way back to when the star was still in its long-lasting red supergiant phase.

In so doing, they were able to observe some interesting things about how this star behaved leading up to the final phase in its life. For instance, they found that SN 1987A lost its matter at a slower rate during its red supergiant phase than was previously assumed. They also observed that it generated slower than expected winds during this period, which pushed into its surrounding environment.

Joseph Callingham, a PhD candidate with the University of Sydney and the ARC Center of Excellence for All-Sky Astrophysics (CAASTRO), is the leader of this research effort. As he stated in a recent RAS press release:

“Just like excavating and studying ancient ruins that teach us about the life of a past civilization, my colleagues and I have used low-frequency radio observations as a window into the star’s life. Our new data improves our knowledge of the composition of space in the region of SN 1987A; we can now go back to our simulations and tweak them, to better reconstruct the physics of supernova explosions.”

Aerial photograph of the core region of the MWA telescope. Credit: mwatelescope.org
Aerial photograph of the core region of the MWA telescope. Credit: mwatelescope.org

The key to finding this new information was the quiet and (some would say) temperamental conditions that the MWA requires to do its thing. Like all radio telescopes, the MWA is located in a remote area to avoid interference from local radio sources, not to mention a dry and elevated area to avoid interference from atmospheric water vapor.

As Professor Gaensler – the former CAASTRO Director and the supervisor of the project – explained, such methods allow for impressive new views of the Universe. “Nobody knew what was happening at low radio frequencies,” he said, “because the signals from our own earthbound FM radio drown out the faint signals from space. Now, by studying the strength of the radio signal, astronomers for the first time can calculate how dense the surrounding gas is, and thus understand the environment of the star before it died.”

These findings will likely help astronomers to understand the life cycle of stars better, which will come in handy when trying to determine what our Sun has in store for us down the road. Further applications will include the hunt for extra-terrestrial life, with astronomers being able to make more accurate estimates on how stellar evolution could effect the odds of life forming in different star systems.

In addition to being home to the MWA, the Murchison Radio-astronomy Observatory (MRO) is also the planned site of the future Square Kilometer Array (SKA). The MWA is one of three telescopes – along with the South African MeerKAT array and the Australian SKA Pathfinder (ASKAP) array – that are designated as a Precursor for the SKA.

Further Reading: Royal Astronomical Society

Did We Arrive Early To The Universe’s Life Party?

Artist's impression of an exoplanet orbiting a low-mass star. Credit: ESO/L. Calçada

The Fermi Paradox essentially states that given the age of the Universe, and the sheer number of stars in it, there really ought to be evidence of intelligent life out there. This argument is based in part on the fact that there is a large gap between the age of the Universe (13.8 billion years) and the age of our Solar System (4.5 billion years ago). Surely, in that intervening 9.3 billion years, life has had plenty of time to evolve in other star system!

Continue reading “Did We Arrive Early To The Universe’s Life Party?”

NASA Estimates SpaceX 2018 Mars Mission Will Cost Only $300 Million

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2020. Credit: SpaceX

Ever since Musk founded SpaceX is 2002, with the intention of eventually colonizing Mars, every move he has made has been the subject of attention. And for the past two years, a great deal of this attention has been focused specifically on the development of the Falcon Heavy rocket and the Dragon 2 capsule – the components with which Musk hopes to mount a lander mission to Mars in 2018.

Among other things, there is much speculation about how much this is going to cost. Given that one of SpaceX’s guiding principles is making space exploration cost-effective, just how much money is Musk hoping to spend on this important step towards a crewed mission? As it turns out, NASA produced some estimates at a recent meeting, which indicated that SpaceX is spending over $300 million on its proposed Mars mission.

These estimates were given during a NASA Advisory Council meeting, which took place in Cleveland on July 26th between members of the technology committee. During the course of the meeting, James L. Reuter – the Deputy Associate Administrator for Programs at NASA’s Space Technology Mission Directorate – provided an overview of NASA’s agreement with SpaceX, which was signed in December of 2014 and updated this past April.

Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX
Artists concept for sending SpaceX Red Dragon spacecraft to land propulsively on Mars as early as 2018. Credit: SpaceX

In accordance with this agreement, NASA will be providing support for the company’s plan to send an uncrewed Dragon 2 capsule (named “Red Dragon”) to Mars by May of 2018. Intrinsic to this mission is the plan to conduct a propulsive landing on Mars, which would test the Dragon 2‘s SuperDraco Descent Landing capability. Another key feature of this mission will involve using the Falcon Heavy to deploy the capsule.

The terms of this agreement do not involve the transfer of funds, but entails active collaboration that would be to the benefit parties. As Reuters indicated in his presentation, which NASA’s Office of Communications shared with Universe Today via email (and will be available on the STMD’s NASA page soon):

“Building on an existing no-funds-exchanged collaboration with SpaceX, NASA is providing technical support for the firm’s plan to attempt to land an uncrewed Dragon 2 spacecraft on Mars. This collaboration could provide valuable entry, descent and landing (EDL) data to NASA for our journey to Mars, while providing support to American industry. We have similar agreements with dozens of U.S. commercial, government, and non-profit partners.”

Further to this agreement is NASA’s commitment to a budget of $32 million over the next four years, the timetable of which were partially-illustrated in the presentation: “NASA will contribute existing agency resources already dedicated to [Entry, Descent, Landing] work, with an estimated value of approximately $32M over four years with approximately $6M in [Fiscal Year] 2016.”

Diagram showing SpaceX's planned "Red Dragon" mission to Mars. Credit: NASA/SpaceX
Diagram showing SpaceX’s planned “Red Dragon” mission to Mars. Credit: NASA/SpaceX

According to Article 21 of the Space Act Agreement between NASA and SpaceX, this will include providing SpaceX with: “Deep space communications and telemetry; Deep space navigation and trajectory design; Entry, descent and landing system analysis and engineering support; Mars entry aerodynamic and aerothermal database development; General interplanetary mission advice and hardware consultation; and planetary protection consultation and advice.”

For their part, SpaceX has not yet disclosed how much their Martian mission plan will cost. But according to Jeff Foust of SpaceNews, Reuter provided a basic estimate of about $300 million based on a 10 to 1 assessment of NASA’s own financial commitment: “They did talk to us about a 10-to-1 arrangement in terms of cost: theirs 10, ours 1,” said Reuter. “I think that’s in the ballpark.”

As for why NASA has chosen to help SpaceX make this mission happen, this was also spelled out in the course of the meeting. According to Reuter’s presentation: “NASA conducted a fairly high-level technical feasibility assessment and determined there is a reasonable likelihood of mission success that would be enhanced with the addition of NASA’s technical expertise.”

Such a mission would provide NASA with valuable landing data, which would prove very useful when mounting its crewed mission in the 2030s. Other items discussed included NASA-SpaceX collaborative activities for the remainder of 2016 – which involved a “[f]ocus on system design, based heavily on Dragon 2 version used for ISS crew and cargo transportation”.

Artistic concepts of the Falcon Heavy rocket (left) and the Dragon capsule deployed on the surface of Mars (right). Credit: SpaceX
Artistic concepts of the Falcon Heavy rocket (left) and the Dragon capsule deployed on the surface of Mars (right). Credit: SpaceX

It was also made clear that the Falcon Heavy, which SpaceX is close to completing, will serve as the launch vehicle. SpaceX intends to conduct its first flight test (Falcon Heavy Demo Flight 1) of the heavy-lifter in December of 2016. Three more test flights are scheduled to take place between 2017 and the launch of the Mars lander mission, which is still scheduled for May of 2018.

In addition to helping NASA prepare for its mission to the Red Planet, SpaceX’s progress with both the Falcon Heavy and Dragon 2 are also crucial to Musk’s long-term plan for a crewed mission to Mars – the architecture of which has yet to be announced. They are also extremely important in the development of the Mars Colonial Transporter, which Musk plans to use to create a permanent settlement on Mars.

And while $300 million is just a ballpark estimate at this juncture, it is clear that SpaceX will have to commit considerable resources to the enterprise. What’s more, people must keep in mind that this would be merely the first in a series of major commitments that the company will have to make in order to mount a crewed mission by 2024, to say nothing of building a Martian colony!

In the meantime, be sure to check out this animation of the Crew Dragon in flight:

Further Reading: NASA STMD
TOTH: SpaceNews

Chinese Fireball Freaks Out Las Vegas

Astronomers have confirmed that the fiery debris spotted over the south-western US this week was a Chinese rocket. Credit: NBC

Seeing a fireball erupt in the sky is not an unusual occurrence. Especially during late July, when the Delta Aquirid meteor shower is so near to peaking. At times like this, dozens of fiery objects can be observed streaking across the atmosphere. But on this occasion, the light show that was spotted over Las Vegas earlier this week had a stranger cause.

The fireball appeared on Wednesday July 27th, at around 9:30 p.m. (Pacific Time), and could be seen from California to Utah. News and videos of the fiery apparition were quickly posted on social media, where astronomers began to notice something odd. And as it turned out, it was NOT the result of a meteor shower, but was in fact was the second stage of a rocket hitting the atmosphere, courtesy of the Chinese National Space Agency.

Such was the conclusion of Phil Plait, an astronomer and writer for Slate. After seeing a video shot of the display, he took to Twitter to question the explanation that it was the result of the Delta Aquirids. Based on his observations, he asserted that the event was actually the result of space debris burning up in the atmosphere.

His posts encouraged Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics, to do some checking. After looking into the matter, McDowell determined that the cause was a spent stage of a Chinese rocket falling back to Earth. As he posted on Twitter:

“Observation reports from Utah indicate the second stage from the first Chang Zheng 7 rocket, launched Jun 25, reentered at 0440 UTC.”

The Chang Zheng 7 is the latest in a line of Chinese rockets. It’s name translates to “Long March”, in honor of Mao’s forces marching into China’s interior during the Second Sino-Japanese War (1937-1945). A liquid-fueled carrier rocket designed to handle medium to heavy payloads, this rocket was developed to replace the Chinese Space Agency’s Long March 2F crew-rated launch vehicle.

This rocket is expected to play a critical role in creation of the Chinese Space Station, and will serve as the launch vehicle for the Tianzhou robotic cargo spacecraft in the meantime. Monday, June 25th was the inaugural launch of the rocket, and after the second stage was spent, it re-entered the Earth’s atmosphere at 04:36 UTC (9:36 p.m. Pacific Time) on Wednesday.

The 2nd stage then began to burn up as it moved across the sky from southwest to northeast, moving at speeds of 20,000 km/h (12,427 mph). It eventually disintegrated after becoming visible all across the south-western US, burning up at an altitude of about 100 km (62.13 mi). At this point, observers reported hearing a large boom, and many were fortunate enough to get the whole thing on video (as you can see from the ones included here).

While discarded space vehicles burn up in the atmosphere all the time, this was one of those rare occasions when the object happened to weight 6 metric tons (6.6 short tons)! We’re just fortunate that space launches are so rigorously planned so as to prevent them from causing accidents and extensive property damage, unlike certain meteorites that show up uninvited (looking at you Chelyabinsk meteor!)

TOTH: Slate