Neutron Stars Could be Heating Up From Dark Matter Annihilation

Artist’s impression of the magnetar in the star cluster Westerlund 1. Credit: ESO/L. Calçada

One of the big mysteries about dark matter particles is whether they interact with each other. We still don’t know the exact nature of what dark matter is. Some models argue that dark matter only interacts gravitationally, but many more posit that dark matter particles can collide with each other, clump together, and even decay into particles we can see. If that’s the case, then objects with particularly strong gravitational fields such as black holes, neutron stars, and white dwarfs might capture and concentrate dark matter. This could in turn affect how these objects appear. As a case in point, a recent study looks at the interplay between dark matter and neutron stars.

Continue reading “Neutron Stars Could be Heating Up From Dark Matter Annihilation”

A Neutron Star Merged with a Surprisingly Light Black Hole

Artwork of a neutron star–black hole merger. Credit: Carl Knox, OzGrav-Swinburne University.

Galactic collisions, meteor impacts and even stellar mergers are not uncommon events. neutron stars colliding with black holes however are a little more rare, in fact, until now, we have never observed one. The fourth LIGO-Virgo-KAGRA observing detected gravitational waves from a collision between a black hole and neutron star 650 million light years away. The black hole was tiny though with a mass between 2.5 to 4.5 times that of the Sun. 

Continue reading “A Neutron Star Merged with a Surprisingly Light Black Hole”

It Takes a Supercomputer to Properly Simulate a Neutron Star’s Surface

Neutron stars, the remains of massive stars that have imploded and gone supernova at the end of their life, can still create massive flares. These incredible bursts of energy release X-rays that propagate through space. It is a complex process to simulate but astronomers have turned to a supercomputer to help. Modelling the twisting magnetic fields, the interaction with gas and dust, the surface of flaring neutron stars has been revealed in incredible 3D.

Continue reading “It Takes a Supercomputer to Properly Simulate a Neutron Star’s Surface”

Neutron Stars are Jetting Material Away at 40% the Speed of Light

Artists impression of jets

It’s a well known fact that black holes absorb anything that falls into them. Often before material ‘vanishes’ inside it forms into an accretion disk around them. Like the progenitor stars, the black holes have powerful magnetic fields and these can generate jets that blast away from the black hole. A similar process occurs in neutron stars that are orbiting other stars and recent observations holes have shown that some material in the jets travel at speeds 35-40% the speed of light. 

Continue reading “Neutron Stars are Jetting Material Away at 40% the Speed of Light”

The Maximum Mass of a Neutron Star is 2.25 Solar Masses

An outbursting, magnetically strong neutron star called a magnetar is seen here in an artist's illustration. Courtesy: NASA.
An outbursting, magnetically strong neutron star called a magnetar is seen here in an artist's illustration. Courtesy: NASA.

When stars grow old and die, their mass determines their ultimate fate. Many supermassive stars have futures as neutron stars. But, the question is, how massive can their neutron stars get? That’s one that Professor Fan Yizhong and his team at Purple Mountain Observatory in China set out to answer.

Continue reading “The Maximum Mass of a Neutron Star is 2.25 Solar Masses”

Another Clue Into the True Nature of Fast Radio Bursts

Artist's concept of a magnetar. Credit: NASA/JPL-Caltech

Fast radio bursts (FRBs) are strange events. They can last only milliseconds, but during that time can outshine a galaxy. Some FRBs are repeaters, meaning that they can occur more than once from the same location, while others seem to occur just once. We still aren’t entirely sure what causes them, or even if the two types have the same cause. But thanks to a collaboration of observations from ground-based radio telescopes and space-based X-ray observatories, we are starting to figure FRBs out.

Continue reading “Another Clue Into the True Nature of Fast Radio Bursts”

Black Holes and Neutron Stars are Finally Linked to Supernovae

A star in a binary system dies in a catastrophic explosion. Such supernovae often result in neutron stars or black holes. Courtesy ESO/L. Calçada
This artist’s impression is based on the aftermath of a supernova explosion as seen by two teams of astronomers with both ESO’s Very Large Telescope (VLT) and ESO’s New Technology Telescope (NTT). The supernova observed, SN 2022jli, occurred when a massive star died in a fiery explosion, leaving behind a compact object — a neutron star or a black hole. This dying star, however, had a companion which was able to survive this violent event. The periodic interactions between the compact object and its companion left periodic signals in the data, which revealed that the supernova explosion had indeed resulted in a compact object.

Everybody knows that the explosive deaths of supermassive stars (called supernovae) lead to the creation of black holes or neutron stars, right? At least, that’s the evolutionary path that astronomers suggest happens. And, these compact objects exist throughout the Universe. But, no one’s ever seen the actual birth process of a neutron star or black hole in action before.

Continue reading “Black Holes and Neutron Stars are Finally Linked to Supernovae”

Do Neutron Stars Have Mountains? Gravitational Wave Observatories Could Detect Them

Light bursts from the collision of two neutron stars. Credit: NASA's Goddard Space Flight Center/CI Lab

The surface gravity of a neutron star is so incredibly intense that it can cause atoms to collapse into a dense cluster of neutrons. The interiors of neutron stars may be dense enough to allow quarks to escape the bounds of nuclei. So it’s hard to imagine neutron stars as active bodies, with tectonic crusts and perhaps even mountains. But we have evidence to support this idea, and we could learn even more through gravitational waves.

Continue reading “Do Neutron Stars Have Mountains? Gravitational Wave Observatories Could Detect Them”

The Most Massive Neutron Stars Probably Have Cores of Quark Matter

Illustration of a quark core in a neutron star. Credit: Jyrki Hokkanen, CSC - IT Center for Science

Atoms are made of three things: protons, neutrons, and electrons. Electrons are a type of fundamental particle, but protons and neutrons are composite particles made of up and down quarks. Protons have 2 ups and 1 down, while neutrons have 2 downs and 1 up. Because of the curious nature of the strong force, these quarks are always bound to each other, so they can never be truly free particles like electrons, at least in the vacuum of empty space. But a new study in Nature Communications finds that they can liberate themselves within the hearts of neutron stars.

Continue reading “The Most Massive Neutron Stars Probably Have Cores of Quark Matter”

Simulation Perfectly Matches What We See When Neutron Stars Collide

Numerical simulation of the resulting ejecta material of two merging neutron stars. Red colors refer to ejected material with a high fraction of neutrons which will appear typically redder than blue material that contains a higher fraction of protons. © I. Markin (University of Potsdam)
Numerical simulation of the resulting ejecta material of two merging neutron stars. Red colors refer to ejected material with a high fraction of neutrons which will appear typically redder than blue material that contains a higher fraction of protons. © I. Markin (University of Potsdam)

There are many mysteries in the world of astronomy and a fair number relate to the processes during the end of the life of a super massive star. Throw in the complexity of collisions and you have a real head scratching problem on your hands. In 2017 colliding neutron stars were detected and the data has allowed a new simulation to be tested with predictions beautifully matching observation.

Continue reading “Simulation Perfectly Matches What We See When Neutron Stars Collide”