Send Your Name to the Moon

The Lunar Reconnaissance Orbiter - artistic impression (NASA)

Have you ever dreamt of travelling to the Moon? Unfortunately, for the time being, this will be a privilege only for an elite few astronauts and robotic explorers. But NASA has just released news that you will have the opportunity to send your name to the Moon on board their next big Moon mission, the Lunar Reconnaissance Orbiter. So get over to the mission site and send your name that will be embedded into a computer chip, allowing a small part of you to orbit our natural satellite over 360,000 km (220 000 miles) away…

Last month I looked into how long it would take to travel to the Moon and the results were wide-ranging. From an impressive eight hour zip past the Moon by the Pluto mission, New Horizons to a slow spiral route taken by the SMART-1 lunar probe, taking over a year. The next NASA mission, the Lunar Reconnaissance Orbiter (LRO), is likely to take about four days (just a little longer than the manned Apollo 11 mission in July 1969). It is scheduled for launch on an Atlas V 401 rocket in late 2008 and the mission is expected to last for about a year.

Thank goodness we’re not travelling by car, according to the LRO mission facts page, it would take 135 days (that’s nearly 5 months!) to get there when travelling at an average speed of 70 miles per hour.

The LRO is another step toward building a Moon base (by 2020), the stepping stone toward colonizing Mars. The craft will orbit the Moon at an altitude of 50 km (31 miles), taking global data, constructing temperature maps, high-resolution colour imaging and measuring the Moon’s albedo. Of course, like all planetary missions to the Moon and Mars, the LRO will look out for water. As the Moon will likely become mankind’s first extra-terrestrial settlement, looking for the location of Moon water will be paramount when considering possible locations for colonization.

This is all exciting stuff, but what can we do apart from watch the LRO launch and begin sending back data? Wouldn’t it be nice if we could somehow get involved? Although we’re not going to be asked to help out at mission control any time soon, NASA is offering us the chance to send our names to the Moon. But how can this be done? First things first, watch the NASA trailer, and then follow these instructions:

  1. Go to “NASA’s Return to the Moon” page.
  2. Type in your first name and last name.
  3. Click “continue” and download your certificate – your name is going to the Moon!

My LRO Certificate - My name is going to the Moon!

But how will your name be taken to the Moon? It won’t be engraved into the LRO’s bodywork (although that would have been nice!); it will be held on a microchip embedded into the spaceship’s circuitry. The database of names will be taken on board the LRO and will remain with it for the entire duration of the mission. Anyone who submits their name will be exploring the Moon in their own small way. I’ve signed up (see my certificate, pictured) and you have until June 27, 2008 to do the same.

Will see you on board the LRO!

Sources: LRO mission site, Press release

The “Best Engineering Tool” in Space: Duct Tape

The fender on the Apollo 17 moon buggy was repaired with duct tape (NASA)

The uses for duct tape seem to be endless. From the Apollo missions in the 1970’s to the International Space Station today, duct tape has been used as quick fixes and semi-permanent solutions to a variety of tasks. In a story released today from NASA documenting the events of the Apollo 17 in 1972, duct tape became the saviour of astronauts Gene Cernan and Jack Schmitt as they sped around on the lunar surface in their moonbuggy. Damage to the buggy’s wheel arch could have put the pair at risk and may have curtailed the surface mission (pictured). But with a flash of inspiration and “can do” attitude Cernan and Schmitt found the answer in a roll of grey sticky tape…

It would seem duct tape holds the world together as it is, and it is becoming clear that the tape may hold the frontier of space together too. I recently came across the NASA Astronomy Picture of the Day with a view from the ISS looking over Rick Linnehan as he carried out an EVA during the STS-123 mission in March. As many blogs commented, “wow, even the space station is held together with duct tape!“, duct tape and Velcro did indeed appear to be the best way for astronauts to attach things, fix things and cover up things. In the Great Moonbuggy Race in Huntsville, Alabama, Prof. Paul Shiue of Christian Brothers University even joked that duct tape was his team’s “best engineering tool”. It seems the space station crew agrees with Prof. Shiue as is evident in the photo below.

Duct tape is used extensively on the ISS... along with Velcro (NASA)

I think people are surprised that such a common, everyday tool can be utilized in space too, but I’d argue that this kind of versatile and strong tape should be in space doing its bit for space exploration. It seems NASA thinks the same thing. Back in 1972, the use of duct tape turned a potentially dangerous situation into mission success for the Apollo 17 astronauts.

During Gene Cernan and Jack Schmitt’s Moon walk, they employed the use of a moonbuggy to get around the dusty terrain. As is becoming abundantly clear, Moon dust will be one of the biggest challenges to mankind’s efforts on the Earth’s only natural satellite. For starters, this fine Moon “regolith” (dust formed from pulverized rock after countless meteorite impacts) will get everywhere. It is so fine that that it will likely obscure vision and could cause a host of respiratory problems. But the critical issue facing the Apollo astronauts was the dark Moon dust getting stuck to their spacesuits. The moonbuggy was designed to suppress the dust from being kicked up from the surface and spayed over the passengers. Should the spacesuits have a layer of dust over the top, solar electromagnetic radiation would be absorbed very efficiently, causing the astronauts to overheat. At all costs, spacesuits and equipment would need to be “dusted off” to prevent any problems.

The repaired Apollo 17 buggy (NASA)

Within two hours of the Lunar lander Challenger landing on December 11th, 1972 (at 02:23:35 UTC), Cernan and Schmitt were busy loading the moonbuggy with geology tools and experiments. In a seemingly minor error, the hammer strapped to Cernan’s suited leg caught the buggy’s rear fender and ripped it half off. It may not sound like much; after all who needs a fender on the Moon? But this was a big problem. If they were to use the buggy in this condition, huge plumes of dust would be kicked up (known as “rooster tails”) and showered over the astronauts, sticking to their suits, possibly causing serious overheating issues. Lunar dust is also very abrasive and static, should it get wiped off visors, the glass will get scratched, impeding vision. Joints, latches and hinges would also get severely damaged by the stuff.

Fortunately the astronauts had packed duct tape and were able to do a make-shift job at fixing the fender. Unfortunately the harsh vacuum of space, the continuous exposure to the Sun and the ever present dust caused the tape to lose its “stick”. A more permanent solution was required. After communication with mission control, a solution was found. Using a combination of duct tape and laminated maps, the fender could be reconstructed. The EVA continued and the mission was a success.

See the NASA video of Gene Cernan carrying out duct tape repairs on the Moon »

The Apollo 17 mission is the last time man walked on the Moon, and remains the most extreme place where duct tape was called into use.

For the complete and absorbing story about the duct tape repair job by Gene Cernan, check out the full NASA article

It’s That Time of the Month for the Moon

Moon in Earths Magnetic tail. Image Credit: Science @ NASA

It happens every month and specifically every time the moon is full. According to scientists, for about three days on both sides of a full moon, the lunar surface could transform from a tranquil, inert landscape to an electrically charged, potentially dangerous environment. During this time, the moon ploughs through Earth’s magnetic “tail” — an extension of Earth’s magnetic field. Out in space, the solar wind stretches out the magnetic bubble that surrounds our planet, creating a long “magnetotail” in the downwind direction. When the moon comes in contact with this field, it could cause lunar dust storms and discharges of static electricity. Future lunar explorers might possibly have to take extra precautions during that time of the month.

“Earth’s magnetotail extends well beyond the orbit of the Moon and, once a month, the Moon orbits through it,” said scientist Tim Stubbs from the Goddard Space Flight Center. “This can have consequences ranging from lunar ‘dust storms’ to electrostatic discharges.”

When the moon crosses this magnetotail, it comes in contact with a gigantic “plasma sheet” of hot charged particles trapped in the tail. The lightest and most mobile of these particles, electrons, pepper the Moon’s surface and give the Moon a negative charge.

Scientists say that on the Moon’s dayside this effect is neutralized somewhat by sunlight. The ultraviolet photons knock electrons back off the surface, keeping the build-up of charge at relatively low levels. But on the nightside of the Moon, where it’s cold and dark, electrons accumulate and voltages can climb to hundreds or thousands of volts.

Stubbs said that astronauts walking across the dusty charged-up lunar terrain may find themselves crackling with electricity like “a sock pulled out of a hot dryer.” Touching another astronaut, a doorknob, a piece of sensitive electronics—any of these simple actions could produce an unwelcome zap. “Proper grounding is strongly recommended,” Stubbs said.

Moon dust could become charged enough to actually lift from the surface. There’s evidence from the Surveyor 7 lunar lander that when sufficiently charged-up, lunar dust particles could actually float above the lunar surface. This dust could cause problems as it clings to spacesuits, clogs machinery, scratches helmet faceplates (moondust is very abrasive) and generally make life difficult for astronauts.

Much of this is pure speculation, however, Stubbs said, as no one has been on the moon during this time. “Apollo astronauts never landed on a full Moon and they never experienced the magnetotail.”

The best direct evidence of this event comes from NASA’s Lunar Prospector spacecraft, which orbited the Moon in 1998-99 and monitored many magnetotail crossings. During some crossings, the spacecraft sensed big changes in the lunar nightside voltage, jumping from -200 V to -1000 V, according to Jasper Halekas of UC Berkeley who has been studying the data.

Scientists also say this phenomenon would be worse during a solar storm.

More research will have to be done regarding this monthly cycle and how it might affect those living on the moon in the future.

Original News Source: Science @ NASA

NASA Official Wants a Six Month Stay on Moon

Lunar footprint from the Apollo missions (NASA)

NASA is exploring the possible designs for lunar bases, intended for an extended stay on the Moon. A NASA official from the Advanced Capabilities Division also said on Friday that they may be inspired by a concept based on the technology of the International Space Station (ISS). Very little official indication about the future of NASA’s lunar policy has come to light, so this is interesting news. Although the statement was suitably sketchy, a six-month extended mission to the Moon seems to be most likely. How does this development compare with the lunar settlement designs already proposed?

When Carl Walz, director of NASA’s Advanced Capabilities Division, says “I would anticipate that we would build something similar as what we are building for the ISS, but maybe something different,” I think we can conclude that his department is keeping its options open as far as the future of Moon bases is concerned. But it seems settlement design isn’t very far along either…

Moon base rover concept - could be used for long-term missions (NASA)

Putting uncertainties in lunar base designs to one side, Waltz did confirm that he envisions a long-term, six-month stay over on the Moon, “We need to establish a long, extended presence on the moon, up to six months — same as the time we spend at ISS,” the veteran astronaut told AFP during a forum on the future of NASA at the University of Miami, Florida. The ISS remains mankind’s best experiment into long-term living in space, so its little wonder the station should be used as a model for Moon bases.

The ISS is due for completion in 2010 and houses three scientists for several months at a time. Also, there is enough room for the regular Shuttle crews who arrive to deliver experiments and attach modules. It’s not hard to imagine a future manned lunar base can be used in a similar way, perhaps have a small long-period contingent of scientists, allowing space for short-term visits.

The Apollo 15 lunar rover, awaiting the return of man to the Moon (NASA)

NASA hopes to return to the Moon by 2020 to build a permanent outpost on our planet’s natural satellite. The settlement will need transportation, communication and power systems (see Building a Base on the Moon: Part 4 – Infrastructure and Transportation), allowing lunar astronauts to have the freedom to carry out scientific research on the lunar surface. Many lunar base concepts utilize local materials to fabricate many aspects of a permanent lunar habitat, and continued research by satellites such as the Japanese probe SELENE will aid future colonists prospect for useful minerals and ores.

We will live at the moon, work at the moon, do sites at the moon and use its resources.” – Walz

It looks as if NASA is working toward a modular settlement design, using the technology that powers the ISS and would be in keeping with “erectable”, or modular designs. Initially, building Moon bases on Earth (or low Earth orbit) and sending them to the lunar surface appears to be the most viable solution. Once a human presence can be established on the Moon, it seems possible that Mars habitats could be fabricated there and sent to the Red Planet. Exciting times.

More about building a manned base on the Moon:

Source: Physorg.com

New Earthrise and Earthset Movies from Kaguya

Ian reported yesterday on the high definition topographical maps recently released by the Japanese SELENE mission, also known as Kaguya, which will provide exact locations of essential minerals to future lunar explorers. And now, via Emily Lakdawalla at the Planetary Society comes more from Kaguya — movies of an Earthrise and Earthset from the moon. While the movies don’t provide much as far as scientific data, they are off the charts as far being aesthetically pleasing and just tremendously magnificent. Emily grabbed individual frames from the longer, but smoother high-definition movies that the Japanese Space Agency JAXA created from the HD Camera on board the moon-orbiting Kaguya to create quick little movies. Above is the Earthrise quick movie.


Here’s the quick Earthset movie Emily created. And here’s the links to the hi-def versions at JAXA for Earthrise and Earthset.

However, these longer and smoother movies are still only 25% of the full resolution of the movies. JAXA has not been releasing the full resolution Kaguya data on the internet, as they are “saving” the really high-def stuff for commercial and educational purposes.

Emily reported that HD camera on board the Kaguya spacecraft generates too much data for live transmission; instead the video is compressed and stored within the camera system. Then, it takes about 20 minutes to transmit a 1-minute video to Earth. See Emily’s post for more info.

Original News Source: The Planetary Society

Japanese Moon Mission Returns Detailed Maps of the Lunar Surface

The JAXA Moon satellite Selene map of the Lunar relief (JAXA)

The Japanese SELENE lunar orbiter has returned some of the most detailed maps of the Moon to date. The new collection of high-definition maps includes topological data and mineral location. Critically, the locations of uranium, thorium and potassium have been mapped, essential for mission planners when considering the future of manned settlements on the Moon. Seeing the lunar relief mapped to such fine detail makes for an impressive sight. So far six million data points have been collected and there’s more to come…

Selene topological map of the surface of the Moon (JAXA)
The SELENE mission was launched on September 14th, 2007 from Tanegashima Space Center on a H-IIA carrier rocket. SELENE stands for “Selenological and Engineering Explorer”, but Selene was also the Greek lunar deity. The orbiter arrived into lunar orbit on October 3rd and began science operations soon after. Since then, the spacecraft has been using a large number of instruments to characterise the surface of the Moon from analysing its mineral distribution to measuring its terrain. It has been described as the largest Moon mission since the US Apollo program.
A full-disk map of the Moon (JAXA)
According to the JAXA press release, these new maps are ten-times more accurate than previous maps. Using the laser altimeter (LALT) instrument, 3D data of the shapes and altitudes of surface features are promising to give the most advanced relief mapping capabilities ever performed on a planetary body other than the Earth. It has also been indicated that deposits of uranium, potassium and thorium have been pinpointed through the use of one of its onboard spectrometers. This will have massive implications for the future of manned exploration of the natural satellite. It is likely that a nuclear source of energy would be required for future lunar settlements, if there are quantities of uranium to be mined, this will have an impact on where the settlement should be located.
SELENE relief map (colour) (JAXA)
So, when venturing out onto the cold, lonely lunar surface, be sure to pack the newest edition of the Selene high-definition map to plot your journey…

Sources: JAXA, Gizmodo

What’s Up – The Weekend SkyWatcher’s Forecast

Theophilus - Credit: Wes Higgins

Greetings, fellow SkyWatchers! If we’ve explored the Moon in “Astronomy For Kids”, then by all means let’s explore the Moon in Astronomy for BIG kids! This weekend would be an great opportunity to dust off your telescopes or binoculars and do a little moongazing, because… Here’s what’s up!

Friday, April 11 – Tonight we’ll begin our SkyWatcher’s Weekend by heading toward the lunar surface to view a very fine old crater on the northwest shore of Mare Nectaris – Theophilus. Slightly south of midpoint on the terminator, this crater contains an unusually large multiple-peaked central mountain which can be spotted in binoculars. Theophilus is an odd crater: it’s shaped like a parabola – with no area on the floor being flat. It stretches across a distance of 100 kilometers and dives down 440 meters below the surface. Viewable in binoculars, Theophilus tonight it will appear dark, shadowed by its massive west wall, but if you’re using a telescope, look for sunrise on its 1400 meter summit!

Wes HigginsSaturday, April 12 – Today marks the 1851 birth of Edward Maunder – a bank teller turned assistant Royal Astronomer. Assigned to photographing and cataloging sunspots, Maunder was the first to discover solar minimum times and equate these with climate change. Maunder was also the first to suggest that Mars had no “canals,” only delicate changes in surface features. Smart man!

On Saturday night, Mars will play a very important role in observing as it will be slightly more than a degree away from the Moon’s limb for many observers. As grand as observing can be when the planet is near, it doesn’t even come close to the details that can be seen on the Moon. An outstanding feature visible tonight will be crater Maurolycus just southwest of the three rings of Theophilus, Cyrillus and Catharina. This Lunar Club challenge spans 114 kilometers and goes below the lunar surface by 4730 meters. Be sure to look for Gemma Frisius just to its north.

Wes HigginsSunday, April 13 – Tonight, let’s have a look at the Moon as challenge craters Cassini and Cassini A have now come into view just south of the black slash of the Alpine Valley. For more advanced lunar observers, head a bit further south to the Haemus Mountains to look for the bright punctuation of a small crater. You’ll find it right on the southwest shore of Mare Serenitatis! Now power up and look for a curious feature with an even more curious name…Rima Sulpicius Gallus. It is nothing more than a lunar wrinkle which accompanies the crater of the same name – a long-gone Roman counselor. Can you trace its 90 kilometer length?

Wishing you clear skies!

This week’s awesome lunar images belong to noneother than Wes Higgins. Many thanks!

Moon for Kids

New Moon Schedules
Moon Phases

Right now, while the sky still gets dark early, is a great time to enjoy looking at the Moon with your small children or grandchildren. Even if you don’t have a telescope or binoculars, there are lots of fun ways that you can both enjoy our mysterious Moon together. Each evening as it gets dark, go outside and take a look at where the Moon is. There are nights when it will be cloudy, so it makes the game even more fun!

Having the Moon in the sky is something that we noticed all our lives, but most of us don’t think very much about it. When was the last time you saw the Moon? What did it look like? If you went outside, where would you find it? By learning to keep a “Moon Journal” you will soon learn much more about Earth’s nearest neighbor.

Keeping a Moon Journal is easy. All you need is a pencil and paper, and to understand where the cardinal directions are outside. If you have a compass, that’s great. But if you do not, remember to watch where the Sun sets. Next you need to choose a place! Look for an area that you can see most of the southern sky. Use your compass to find south or keep your right shoulder to the direction the Sun set. Don’t worry if there are things in the way, because trees, houses and even power wires will help with what we’re going to do. Mark the spot you chose by drawing an X on the pavement with a piece of chalk, or poking a stick into the ground. You must remember to return to this same spot each time.

Simple sketches make for lunar fun!Now you are ready to begin observing! The most important part about keeping a Moon Journal is to look for the Moon the same time each night. Right now about 8:30 or 9:00 will do very well. Go outside and look for the Moon. Do you see it? Good! Make a very simple picture of where you see the Moon in the sky and be sure to include things like a house or tree in your picture. It doesn’t have to be any more difficult than what you see here. Try your observations for several nights and see if you can learn to predict where the Moon will appear and what it will look like!

Now, let’s experiment with why the Moon has phases. All it takes is a bright flashlight and a ball on a stick. (Even an apple on a fork makes a great Moon, and you can eat it, too!) Whoever is holding the flashlight becomes the Sun and the Earth is your head. If you hold the ball out at arm’s length just above the flashlight while facing the Sun, you can’t see it. This is New Moon. The Moon is still in the sky, but we can’t see it because of the bright sunlight. Now keep the ball at arm’s length and turn slowly counterclockwise and watch what happens. That’s right! You see the ball go through phases, just like our Moon. When your back is towards the Sun, you see the ball as whole, and it will be Full Moon. The Moon will rise on the opposite side of the Earth at the same time the Sun goes down. Keep turning and you’ll see the phases reverse as the Moon moves back towards the Sun again.

Ask your child if he or she has ever seen the Moon during the daytime. Where in the sky do they think the Sun and the Moon needs to be for this to happen? What would happen if the Moon was in front of the Sun? How about the Earth?

Simple experiments like this are a great way to teach children more about astronomy!

Building a Moon Base: Part 4 – Infrastructure and Transportation

In this exciting but challenging period of space exploration, the time is fast approaching for serious design concepts for the first habitats that will be built on the lunar landscape. In previous articles, we have examined the hazards associated with such an endeavor, we have looked at the structures available to us, we have even detailed a particular hangar-like structure that might use locally mined materials. Now, we look into the possible infrastructure elements that will be needed to support a viable colony on the Moon. Florian Ruess, a structural engineer who is working on the future of habitats in extreme environments, also took some time with the Universe Today to give his opinions on our future on lunar soil…

Imagine trying to build a structure on the surface of the Moon. Two of the biggest obstacles the first lunar settlers will come across are the very low gravity and the fine dust causing all sorts of construction issues. Although it seems likely that the first habitats will be built by automated processes before we even set foot on the moon, fabrication of a settlement infrastructure will be of primary concern to engineers so construction can be made as efficient as possible.

The basic, but optimal shape for a lunar habitat module linked with other modules (image courtesy of Florian Ruess)

Infrastructure will be one of the most important factors concerning mission planners. How will building materials be fabricated? How will the material be supplied to construction workers? How will precious water and food be supplied to the fledgling lunar colony? Can supply vehicles go from A to B with little effort?

Historic examples of the effectiveness of efficient transportation infrastructure can be seen in the coalescence of cities around rivers (traditionally the quickest way to transport people and material around a country). Canals were instrumental in bringing cities to life during the Industrial Revolution in the UK in the late 18th century. As railway lines linked the East and West of North America in the last half of the 19th century, acceleration in population growth was experienced by people uprooting and “homesteading” the new, accessible farmlands. Over the last 50 years, the “Southern California freeway effect” is responsible for the proliferation of gas stations, restaurants, shops, followed by residential areas for workers – eventually, whole towns and cities are based around the ease of access for transportation.

Concepts of a lunar infrastructure (credit: NASA)

Future settlement of the Moon and Mars will most likely be based on a similar principle; the success of a lunar settlement will heavily depend on the efficiency of the transport structure.

It seems likely that most transportation around the Moon will depend on wheeled methods, following from terrestrial vehicles and tried and tested “Moon buggies” from the Apollo missions in the 1960s and ’70s. There are some significant drawbacks, however. Addressing this issue, Florian Ruess, structural engineer and collaborator with Haym Benaroya (whose publication this article is based) point out some problems with this mode of transport:

For any mission there will always be the need for individual transportation and the obvious solution is some wheeled vehicle. But there are a couple of serious issues with this solution:

  • Reduced traction. 1/6 gravity and the lunar soil make traction a problem just like [the Mars Exploration Rovers] Spirit and Opportunity on Mars one can get stuck easily or need to much power to get around.
  • Dust. Apollo experience shows that a lot of dust is levitated by wheeled vehicles. This dust is hazardous to machines and humans when breathed in.”

– Florian Ruess (private communication)

So traveling around in a modified “dune buggy” might not be the answer for an established Moonbase, some form of road infrastructure would be needed if wheeled transportation is used.

Neil Armstrong's footprint in the lunar regolith (credit: NASA)

Disturbing dust on the lunar surface is far from being a minor problem. From NASA’s experience with the Apollo missions, by far the biggest contributor to dust generation was the takeoff and landing of lunar modules. 50% of the regolith is smaller than fine sand and approximately 20% is smaller than the “dusty” 0.02mm that preserved the Neil Armstrong’s first boot prints. It is this very fine component of the regolith that can cause a host of mechanical and health problems:

  1. Vision impairment
  2. Incorrect instrument readings
  3. Dust coating
  4. Loss of traction
  5. Clogging of mechanisms
  6. Abrasion
  7. Thermal control problems
  8. Seal failures
  9. Inhalation

It, therefore, seems obvious that dust creation should be kept to the bare minimum as this factor could be a severe hindrance to the infrastructure of the settlement.

Roads are would be the perfect answer to the new lunar colony. They would provide wheeled vehicles with the much-needed traction (thus having a knock-on effect with the fuel efficiency of the vehicle) and may significantly reduce the amount of dust suspension, especially if the road surface is raised above the surrounding regolith. Roads, however, have their drawbacks. They are enormously costly and may be very difficult to build. Fusing regolith to form a tough surface may be an answer, but as pointed out by Ruess, “…this requires enormous energies, which cannot be provided by solar power alone.” So an alternate form of energy would be required to perform such a construction.

(a) Basic Roman road design features, (b) 2000 road design, (c) model of force distribution (credit: Haym Benaroya, Leonhard Bernold)

Although road construction would be highly desirable, it may not be possible, at least in the early stages of lunar settlement development. One emerging development in alternative space transportation is the vertical take-off and landing method, but as previously stated, rocket-powered take-off and landing produce vast amounts of dust. But should there be multiple bases on the Moon, this might be a possibility, “…a lot of people recommend different solutions for routes that will be used frequently like getting from the landing pad to the settlement or from one settlement to the next,” Ruess adds.

Lunar habitat with a cable-based transportation infrastructure (credit: H. Benaroya, L. Bernold)

Another solution is an established form of transportation. Totally avoiding contact with the surface, thus cutting down on dust and avoiding obstacles, a lunar cable car might be a viable possibility. It seems likely that such a cable car transportation network would be highly effective. “Very large spans will be possible on the Moon and therefore infrastructure cost not exorbitant,” Ruess points out. This possibility is being seriously considered by lunar settlement planners.

Looking back on the previous articles in the series, Florian Ruess comments on whether lunar bases can be mobile and points out some of the severe difficulties facing settlement planners if locally mined materials are to be used:

I am not a big fan of mobile bases. Such a system that includes power generation, communications and especially long-term meteoroid and radiation protection does not seem feasible to me. But the wheeled vehicles could be pressurized designs capable of serving several-day-long science missions. This would be a good solution to expand the capabilities of a permanent base.

Local materials are a crucial yet difficult issue. My research so far has shown that only after a certain presence has been established and experience with lunar issues and materials has been gained we would be in a position to dare and build habitats from local materials. Certainly not before humans set foot on the Moon. And please forget about the much-cited lunar concrete! There are so many showstoppers for this imaginary material that I don’t even want to start mentioning them. The only early local material application I see is meteoroid and radiation protection using regolith as shielding material.

“Building a Moon Base” is based on research by Haym Benaroya and Leonhard Bernold (“Engineering of lunar bases“)

Plus an exclusive interview with Florian Ruess, extreme habitat structural engineer and founder of Habitats for Extreme Environments – HE2

-Florian Ruess, private communication.

Many thanks to Florian Ruess for his time in contributing to this article. For further information about his work and extreme environment habitat designs, visit his website at HE-squared.com.

For more information about the future of lunar settlement, check out the Moon Society and the collaborative resource, Lunarpedia.

Making Lunar Soil Usable

lunara-greenhouse.thumbnail.jpg

Based on what we currently know about the makeup of the lunar regolith, future colonists on the moon will not be able to use the soil on hand to grow food. But in a new experiment, bacteria called cyanobacteria grew quite well in simulated lunar soil. While this wouldn’t be a food source for humans, it would enable lunar soil to be broken down to extract resources for making rocket fuel and fertilizer for crops. This could help with the feasibility of setting up a base on the moon, aiding in reducing costs for certain supplies.

Lunar soil isn’t conducive for growing plants from Earth because many of the nutrients in the soil are locked up in tough minerals that the plants cannot break down. But a group led by Igor Brown of NASA’s Johnson Space Center added the cyanobacteria taken from hot springs in Yellowstone National Park in Wyoming (US), to materials designed to approximate the lunar soil. They found that when water, air and light were supplied, the cyanobacteria grew quite well. Cyanobacteria were found to produce acids that work very well to break down tough minerals, including ilmenite, which is relatively abundant on the moon.

Breaking down the same minerals artificially would require heating them to very high temperatures, which would use precious energy, Brown said. Cyanobacteria, on the other hand, use only sunlight for energy, although they do their extraction work more slowly than heating the soil artificially.

Cyanobacteria typically grow in water-rich environments. They are technically a type of bacteria, but like plants, they produce their own food via photosynthesis.

Brown says he envisions growth chambers for cyanobacteria being set up on the Moon, as part of a multi-step process for making use of the resources bound in the lunar soil. The chambers would be supplied with water, sunlight and lunar soil to allow the cyanobacteria to grow.

Cyanobacteria harvested from the chambers could then be further processed to make use of the elements they extract from the lunar soil. For example, they could be broken down by other bacteria, resulting in a nutrient-rich soup that could be used as fertilizer for food plants grown in hydroponic greenhouses. Methane given off by the breakdown of the cyanobacteria could be used as rocket fuel.

Original News Source: New Scientist