SpaceX’s SN8 Starship Soars and Belly-Flops, but Fails to Stick the Landing. Oh Well, Bring on the SN9!

At long last, SpaceX has conducted the first high-altitude test flight with its prototype Starship vehicle! During the launch, the eighth iteration of their spacecraft (SN8) flew to an altitude of 12.5 km (~7.8 mi; 41,000 ft) and conducted some fancy maneuvers before returning to its landing pad. Unfortunately, the landing was a bit hot and the SN8 exploded as soon as it touched down.

Despite failing to make it home in one piece (technically it did, but then exploded), the SN8 validated the Starship design for high-altitude flight, a major stepping stone towards spaceflight. What’s more, the data they gathered from this test and the failed landing is already being used to prepare for the next flight. So really, this test was a very important milestone on the road to conducting regular flights to the Moon and Mars.

Continue reading “SpaceX’s SN8 Starship Soars and Belly-Flops, but Fails to Stick the Landing. Oh Well, Bring on the SN9!”

China is Building a Floating Spaceport for Rocket Launches

In the near future, launch facilities located at sea are expected to be a lot more common. SpaceX announced that it is hoping to create offshore facilities in the near future for the sake of launching the Starship away from populated areas. And China, the latest member of the superpowers-in-space club, is currently building the “Eastern Aerospace Port” off the coast of Haiyang city in the eastern province of Shandong.

This mobile launch facility is being developed by the China Aerospace Science and Technology Corporation (CASC), the country’s largest aerospace and defense contractor. Once fully operational, it will be used to launch light vehicles, as well as for building and maintaining rockets, satellites, and related space applications. As China’s fifth launch facility, it will give the country’s space program a new degree of flexibility.

Continue reading “China is Building a Floating Spaceport for Rocket Launches”

Perseverance Rover Rumbles Off the Launchpad to Mars

NASA’s Mars 2020 Perseverance rover is now successfully on its journey to Mars, launching from Space Launch Complex 41 at Cape Canaveral Air Force Station at 7:50 am EDT (1150 GMT). Just minutes before the Atlas 5 rocket rumbled off the launchpad, a 2.9 magnitude earthquake rumbled out in California, giving a minor shake to the Jet Propulsion Laboratory in Pasadena, the Control Center for the rover.

Continue reading “Perseverance Rover Rumbles Off the Launchpad to Mars”

Once Starship Prototypes are Done Exploding, we could see an Orbital Launch this Year

SpaceX has had a lot of ups and downs lately. On Saturday, May 30th, the company made history when their Crew Dragon spacecraft took off from the NASA Kennedy Space Center, carrying two astronauts to space. But just a day before, SpaceX engineers and ground crews watched their fourth Starship prototype (SN4) explode on its testbed during a static fire test, making it the fourth prototype in a row to be lost.

But according to recent news from a SpaceX engineer and executive, as well as an internal email from Elon Musk to SpaceX employees, it is clear that the company is all-in with the Starship prototype and could conduct an orbital flight before the end of the year. An ambitious goal, but you don’t get to be the head of a company that makes reusability a thing and restores domestic launch capability to US soil by being a pessimist!

Continue reading “Once Starship Prototypes are Done Exploding, we could see an Orbital Launch this Year”

If Rockets were Transparent: Video Shows You How Rockets Use up Their Propellant

I always remember hearing the comparison of how the Space Shuttle’s main engines would drain an average family swimming pool in under 25 seconds. Or that the Saturn V used the equivalent of 763 elephants of fuel. But just how much fuel does a rocket burn during its ascent to orbit? As you might expect, the amount varies with different rockets.

A great new video provides an incredible visual of how much fuel is burned by four different rockets, from launch to the various stage separations by showing what rocket launches would look like if the rockets were completely transparent.

Continue reading “If Rockets were Transparent: Video Shows You How Rockets Use up Their Propellant”

Third Falcon Heavy Launch Blasts 24 Payloads Into Orbit Including a Solar Sail. Doesn’t Quite Stick the Landing

In what Elon Musk is calling their “most difficult” mission so far, SpaceX launched the Falcon Heavy rocket for the third time. The launch took place at 2:30 am ET Tuesday from a launch pad at Kennedy Space Center in Florida. The mission was called STP-2, and Universe Today sent a photographer to capture all the action.

Continue reading “Third Falcon Heavy Launch Blasts 24 Payloads Into Orbit Including a Solar Sail. Doesn’t Quite Stick the Landing”

Good News: a SpaceX Cargo Resupply is Off to the Space Station. Bad News: Failed Hydraulics in the Grid Fins Caused the First Stage Booster to Crash Into the Ocean

It’s been a busy time for Elon Musk and SpaceX, lately. Earlier this week, the company launched 64 satellites (and a art project known as the Orbital Reflector) in what was the largest rideshare mission in history. The mission was also historic because it involved a booster making its third successful landing. And this was after Musk released more details about his proposed BFR, henceforth known as the “Starship

And earlier today (Wednesday Dec. 5th), SpaceX launched its sixteenth Commercial Resupply Services mission (CRS-16) to the International Space Station (ISS). While the deployment of the Dragon spacecraft was successful, the first stage booster did not make it back to the landing pad. After suffering from an apparent malfunction in one of its grid fins, the booster fell into the sea – but remained intact and will be retrieved.

Continue reading “Good News: a SpaceX Cargo Resupply is Off to the Space Station. Bad News: Failed Hydraulics in the Grid Fins Caused the First Stage Booster to Crash Into the Ocean”

Soyuz Launch Carrying Two Astronauts is Forced to Abort, Landing Safely Back on Earth

Soyuz MS-10 shortly after launch, but before the failure. The craft executed an emergency ballistic landing and both crew members are safe. Image: NASA

The Soyuz MS-10 spacecraft carrying crew to the ISS was aborted shortly after launch on Thursday, Oct. 11th when its booster failed. The spacecraft executed an emergency ballistic landing with a sharp angle of descent. Both crew members on board—American astronaut Nick Hague and Russian cosmonaut Alexey Ovchinin—exited the capsule safely and are in good condition.

Continue reading “Soyuz Launch Carrying Two Astronauts is Forced to Abort, Landing Safely Back on Earth”

Here’s What Really Happened to That Camera That Melted During a Rocket Launch

NASA photographers have always understood that taking pictures of space launches is a risky business. No one is more familiar with this than Bill Ingalls, a NASA photographer who has taking pictures for the agency for the past 30 years. Both within the agency and without, his creativity and efforts are well known, as his ability to always know exactly where to set up his cameras to get the perfect shots.

Which naturally begs the question, what happened to the camera featured in the image above? This photograph, which shows one of Ingalls remote cameras thoroughly-melted, has been making the rounds on social media of late. As the accompanying gif (seen below) shows, the camera was not far from the launch pad and was then quickly consumed by the resulting fire.

As Ingalls explained in a recent NASA press release, the destruction of the camera was the result of an unexpected brush fire that was triggered when flames from the launching rocket set some of the nearby grass on fire.

“I had six remotes, two outside the launch pad safety perimeter and four inside,” he said. “Unfortunately, the launch started a grass fire that toasted one of the cameras outside the perimeter.”

The event he was photographing was the launch of the NASA/German Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) satellite, which took place at Vandenberg Air Force Base on May 22nd, 2018. As part of a partnership between NASA and the German Research Center for Geosciences (GFZ), this satellite is the successor to the original GRACE mission, which began orbiting Earth on March 17th, 2002.

Unfortunately, the launch triggered a brush fire which engulfed the camera and cause its body to melt. Firefighters reported to the scene to put out the fire, who then met Ingalls where he returned to the site. Luckily for Ingalls, and the viewing public, he was able to force open the body and retrieve the memory card, which had not been damaged. As a result, the footage of the fire as it approached the camera was caught.

NASA Photographer Bill Ingalls’s remote camera setup before the NASA/German GRACE-FO launch from Vandenberg Air Force Base on May 22, 2018. Credits: NASA/Bill Ingalls

Oddly enough, this camera was the one posted furthest from the launch pad, about 400 meters (a quarter of a mile) away. The four other cameras that were set up inside the perimeter were undamaged, as was the other remote camera. But before anyone starts thinking that this remote was the unfortunate one, the “toasty” camera, as Ingalls calls it, is likely to put on display at NASA Headquarters in Washington, DC.

In the meantime, Ingalls will be traveling to Kazakhstan to photograph the June 3rd landing of the International Space Station’s Expedition 55 crew. He anticipates that that assignment, unlike this last one, will have no surprises!

Further Reading: NASA

Station Astronauts Unload Cygnus Science; Antares Launch Gallery

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Astronauts aboard the International Space Station are now busily unloading nearly four tons of science experiments, research gear, station equipment and crew supplies – following the spectacular launch of the Orbital ATK Antares rocket earlier this week on Sunday Nov. 12 from Virginia’s eastern shore that propelled the Cygnus cargo freighter to an on time arrival two days later on Tuesday Nov. 14.

The Orbital ATK Cygnus spacecraft was christened the S.S. Gene Cernan and named in honor of NASA’s Apollo 17 lunar landing commander; Gene Cernan.

Among the goodies delivered by the newly arrived S.S. Gene Cernan Cygnus OA-8 supply run to resident the crew of six astronauts and cosmonauts from the US, Russia and Italy are ice cream, pizza and presents for the holidays. They are enjoying the fruits of the earthy labor of thousands of space workers celebrating the mission’s success.

The six-member Expedition 53 crew poses for a portrait inside the Japanese Kibo laboratory module with the VICTORY art spacesuit that was hand-painted by cancer patients in Russia and the United States. On the left (from top to bottom) are NASA astronauts Joe Acaba and Mark Vande Hei with cosmonaut Alexander Misurkin of Roscosmos. On the right (from top to bottom) are European Space Agency astronaut Paolo Nespoli, cosmonaut Sergey Ryazanskiy of Roscosmos and Expedition 53 Commander Randy Bresnik of NASA. Credit: NASA/ESA/Roscosmos

The journey began with the flawless liftoff of the two stage Antares rocket shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Check out the expanding gallery of launch imagery and videos captured by this author and several space colleagues of Antares prelaunch activities around the launch pad and through Sunday’s stunningly beautiful sunrise blastoff.

After a carefully choreographed series of intricate thruster firings to raise its orbit in an orbital pursuit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

The Orbital ATK Cygnus OA-8 spacecraft is pictured after it had been grappled with the Canadarm2 robotic arm by astronauts Paolo Nespoli and Randy Bresnik on Nov. 14, 2017. Credit: NASA

Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik then deftly maneuvered the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm to grapple and successfully capture the Cygnus cargo freighter at 5:04 a.m., Tuesday Nov. 14.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, then maneuvered the arm and robotic hand grappling Cygnus towards the exterior hull and berthed the cargo ship at the Earth-facing port of the stations Unity module.

The berthing operation was completed at 7:15 a.m. after all 16 bolts were driven home for hard mating as the station was flying 252 miles over the North Pacific in orbital night.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Apollo 17 was NASA’s final lunar landing mission. Gere Cernan was the last man to walk on the Moon.

A portrait of Gene Cernan greets the astronauts as they open the hatch to the Cygnus cargo spacecraft named in his honor. Credit: NASA

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and release 14 CubeSats using a NanoRacks deployer, a record number for the spacecraft.

It will then be commanded to fire its main engine to lower its orbit and carry out a fiery and destructive re-entry into Earth’s atmosphere over the Pacific Ocean as it disposes of several tons of trash.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 manifest includes:

Crew Supplies 2,734.1 lbs. / 1,240 kg
Science Investigations 1631.42 lbs. / 740 kg
Spacewalk Equipment 291.0 lbs. / 132 kg
Vehicle Hardware 1,875.2 lbs. / 851 kg
Computer Resources 75.0 lbs. / 34 kg

Total Cargo: 7,359.0 lbs. / 3,338 kg
Total Pressurized Cargo with Packaging: 7,118.7 lbs. / 3,229 kg
Unpressurized Cargo (NanoRacks Deployer): 240.3 lbs. / 109 kg

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Orbital ATK’s Antares rocket and S.S. Gene Cernan Cygnus OA-8 resupply ship pierce the oceanside clouds over NASA Wallops Flight Facility in Virginia, after sunrise liftoff on Nov. 12, 2017 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

The Orbital ATK Antares rocket topped with the Cygnus OA-8 spacecraft creates a beautiful water reflection in this prelaunch nighttime view across the inland waterways. Launch is targeted for Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Hardware for the Orbital ATK Antares rocket launching the Cygnus OA-8 resupply mission to the International Space Station on Nov. 11, 2017 – as it was being assembled for flight inside the Horizontal Integration Facility at NASA’s Wallops Flight Facility. Credit: Ken Kremer/kenkremer.com

Orbital ATK Cygnus OA-8 mission patch. Credit: Orbital ATK