This illustration depicts a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian's Star or Tabby's Star. Credit: NASA/JPL-Caltech
The mystery of KIC 8462852 (aka. Boyajian’s Star or Tabby’s Star) continues to excite and intrigue! Ever since it was first seen to be undergoing strange and sudden dips in brightness (back in October of 2015) astronomers have been speculating as to what could be causing this. Since that time, various explanations have been offered, including large asteroids, a large planet, a debris disc or even an alien megastructure.
Many studies have been produced that have sought to assign some other natural explanation to the star’s behavior. The latest comes from an international team of scientists – which included Tabetha Boyajian, the lead author on the original 2016 paper. According to this latest study, which was recently published in The Astrophysical Journal, the star’s long-term dimming patterns are likely the result of an uneven dust cloud moving around the star. Continue reading “Not an Alien Megastructure, a Cloud of Dust on a 700-Day Orbit”
Artist's impression of rocky exoplanets orbiting Gliese 832, a red dwarf star just 16 light-years from Earth. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).
The Kepler space telescope is surely the gift that keeps on giving. After being deployed in 2009, it went on to detect a total of 2,335 confirmed exoplanets and 582 multi-planet systems. Even after two of its reaction wheels failed, it carried on with its K2 mission, which has discovered an additional 520 candidates, 148 of which have been confirmed. And with yet another extension, which will last beyond 2018, it shows no signs of stopping!
In the most recent catalog to be released by the Kepler mission, an additional 219 new planet candidates have been added to its database. More significantly, 10 of these planets were found to be terrestrial (i.e. rocky), of comparable in size to Earth and orbited within their star’s habitable zone – the distance where surface temperatures would be warm enough to support liquid water.
These findings were presented at a news conference on Monday, June 19th, at NASA’s Ames Research Center. Of all the catalogs of Kepler candidates that have been released to date, this one is the most comprehensive and detailed. The eighth in a series of Kepler exoplanet catalogs, this one is based on data that was obtained from the first four years of the mission and is the final catalog that covers the spacecraft’s observations of the Cygnus constellation.
Credits: NASA/Wendy Stenzel
Since 2014, Kepler has ceased looking at a set starfield in the Cygnus constellation and has been collecting data on its second mission – observing fields on the plane of the ecliptic of the Milky Way Galaxy. With the release of this catalog, there are now 4,034 planet candidates that have been identified by Kepler – of which 2,335 have been verified.
An important aspect of this catalog were the methods that were used for producing it, which were the most sophisticated to date. As with all planets detected by Kepler, the latest finds were all made using the transit method. This consists of monitoring stars for occasional dips in brightness, which is used to confirm the presence of planets transiting between the star and the observer.
To ensure that the detections in this latest catalog were real, the team relied on two approaches to eliminate false positives. This consisted of introducing simulated transits into the dataset to make sure the dips that Kepler detected were consistent with planets. Then, they added false signals to see how often the analysis mistook these for planet transits. From this, they were able to tell which planets were overcounted and which were undercounted.
This led to another exciting find, which was the indication that for all of the smaller exoplanets discovered by Kepler, most fell within one of two distinct groupings. Essentially, half the planets that we know of in the galaxy are either rocky in nature and larger than Earth (i.e. Super-Earth’s), or are gas giants that are comparable in size to Neptune (i.e. smaller gas giants).
This conclusion was reached by a team of researchers who used the W.M. Keck Observatory to measure the sizes of 1,300 stars in the Kepler field of view. From this, they were able to determine the radii of 2,000 Kepler planets with extreme precision, and found that there was a clear division between rocky, Earth-sized planets and gaseous planets smaller than Neptune – with few in between.
As Benjamin Fulton, a doctoral candidate at the University of Hawaii in Manoa and the lead author of this study, explained:
“We like to think of this study as classifying planets in the same way that biologists identify new species of animals. Finding two distinct groups of exoplanets is like discovering mammals and lizards make up distinct branches of a family tree.”
These results are sure to have drastic implications when it comes to knowing the frequency of different types of planets in our galaxy, as well as the study of planet formation. For instance, they noted that most rocky planets discovered by Kepler are up to 75% larger than Earth. And for reasons that are not yet clear, about half of them take on hydrogen and helium, which swells their size to the point that they become almost Neptune-sized.
Histogram shows the number of planets per 100 stars as a function of planet size relative to Earth. Credits: NASA/Ames Research Center/CalTech/University of Hawaii/B.J. Fulton
These findings could similarly have significant implications in the search for habitable planets and extra-terrestrial life. As Mario Perez, Kepler program scientist in the Astrophysics Division of NASA’s Science Mission Directorate, said during the presentation:
“The Kepler data set is unique, as it is the only one containing a population of these near Earth-analogs – planets with roughly the same size and orbit as Earth. Understanding their frequency in the galaxy will help inform the design of future NASA missions to directly image another Earth.”
From this information, scientists will be able to know with a greater degree of certainty just how many “Earth-like” planets exist within our galaxy. The most recent estimates place the number of planets in the Milky Way at about 100 billion. And based on this data, it would seem that many of these are similar in composition to Earth, albeit larger.
Combined with a statistical models of how many of these can be found within a circumstellar habitable zone, we should have a better idea of just how many potentially-life-bearing worlds are out there. If nothing else, this should simplify some of the math in the Drake Equation!
In the meantime, the Kepler space telescope will continue to make observations of nearby star systems in order to learn more about their exoplanets. This includes the TRAPPIST-1 system and its seven Earth-sized, rocky planets. Its a safe bet that before it is finally retired after 2018, it will have some more surprises in store for us!
Artist's impression of Kepler-1649b, the "Venus-like" world orbiting an M-class star 219 light-years from Earth. Credit: Danielle Futselaar
It has been an exciting time for exoplanet research of late! Back in February, the world was astounded when astronomers from the European Southern Observatory (ESO) announced the discovery of seven planets in the TRAPPIST-1 system, all of which were comparable in size to Earth, and three of which were found to orbit within the star’s habitable zone.
And now, a team of international astronomers has announced the discovery of an extra-solar body that is similar to another terrestrial planet in our own Solar System. It’s known as Kepler-1649b, a planet that appears to be similar in size and density to Earth and is located in a star system just 219 light-years away. But in terms of its atmosphere, this planet appears to be decidedly more “Venus-like” (i.e. insanely hot!)
Diagram comparing the Solar System to Kepler 69 and its system of exoplanets. Credit: NASA Ames/JPL-Caltech
Needless to say, this discovery is a significant one, and the implications of it go beyond exoplanet research. For some time, astronomers have wondered how – given their similar sizes, densities, and the fact that they both orbit within the Sun’s habitable zone – that Earth could develop conditions favorable to life while Venus would become so hostile. As such, having a “Venus-like” planet that is close enough to study presents some exciting opportunities.
In the past, the Kepler mission has located several extra-solar planets that were similar in some ways to Venus. For instance, a few years ago, astronomers detected a Super-Earth – Kepler-69b, which appeared to measure 2.24 times the diameter of Earth – that was in a Venus-like orbit around its host the star. And then there was GJ 1132b, a Venus-like exoplanet candidate that is about 1.5 times the mass of Earth, and located just 39 light-years away.
In addition, dozens of smaller planet candidates have been discovered that astronomers think could have atmospheres similar to that of Venus. But in the case of Kepler-1649b, the team behind the discovery were able to determine that the planet had a sub-Earth radius (similar in size to Venus) and receives a similar amount of light (aka. incident flux) from its star as Venus does from Earth.
However, they also noted that the planet also differs from Venus in a few key ways – not the least of which are its orbital period and the type of star it orbits. As Dr. Angelo told Universe Today via email:
“The planet is similar to Venus in terms of it’s size and the amount of light it receives from it’s host star. This means it could potentially have surface temperatures similar to Venus as well. It differs from Venus because it orbits a star that is much smaller, cooler, and redder than our sun. It completes its orbit in just 9 days, which places it close to its host star and subjects it to potential factors that Venus does not experience, including exposure to magnetic radiation and tidal locking. Also, since it orbits a cooler star, it receives more lower-energy radiation from its host star than Earth receives from the Sun.”
Artist’s impression of a Venus-like exoplanet orbiting close to its host star. Credit: CfA/Dana Berry
In other words, while the planet appears to receive a comparable amount of light/heat from its host star, it is also subject to far more low-energy radiation. And as a potentially tidally-locked planet, the surface’s exposure to this radiation would be entirely disproportionate. And last, its proximity to its star means it would be subject to greater tidal forces than Venus – all of which has drastic implications for the planet’s geological activity and seasonal variations.
Despite these differences, Kepler-1649b remains the most Venus-like planet discovered to date. Looking to the future, it is hoped that next-generations instruments – like the Transiting Exoplanet Survey Satellite (TESS), the James Webb Telescope and the Gaia spacecraft – will allow for more detailed studies. From these, astronomers hope to more accurately determine the size and distance of the planet, as well as the temperature of its host star.
This information will, in turn, help us learn a great deal more about what goes into making a planet “habitable”. As Angelo explained:
“Understanding how hotter planets develop thick, Venus-like atmospheres that make them inhabitable will be important in constraining our definition of a ‘habitable zone’. This may become possible in the future when we develop instruments sensitive enough to determine chemical compositions of planet atmospheres (around dim stars) using a method called ‘transit spectroscopy’, which looks at the light from the host star that has passed through the planet’s atmosphere during transit.”
The development of such instruments will be especially useful given joust how many exoplanets are being detected around neighboring red dwarf stars. Given that they account for roughly 85% of stars in the Milky Way, knowing whether or not they can have habitable planets will certainly be of interest!
Artist's concept of KIC 8462852, which has experienced unusual changes in luminosity over the past few years. Credit: NASA, JPL-Caltech
Last fall, astronomers were surprised when the Kepler mission reported some anomalous readings from KIC 8462852 (aka. Tabby’s Star). After noticing a strange and sudden drop in brightness, speculation began as to what could be causing it – with some going so far as to suggest that it was an alien megastructure. Naturally, the speculation didn’t last long, as further observations revealed no signs of intelligent life or artificial structures.
But the mystery of the strange dimming has not gone away. What’s more, in a paper posted this past Friday to arXiv, Benjamin T. Montet and Joshua D. Simon (astronomers from the Cahill Center for Astronomy and Astrophysics at Caltech and the Carnegie Institute of Science, respectively) have shown how an analysis of the star’s long-term behavior has only deepened the mystery further.
To recap, dips in brightness are quite common when observing distant stars. In fact, this is one of the primary techniques employed by the Kepler mission and other telescopes to determine if planets are orbiting a star (known as Transit Method). However, the “light curve” of Tabby’s Star – named after the lead author of the study that first detailed the phenomena (Tabetha S. Boyajian) – was particularly pronounced and unusual.
Freeman Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com
According to the study, the star would experience a ~20% dip in brightness, which would last for between 5 and 80 days. This was not consistent with a transitting planet, and Boyajian and her colleagues hypothesized that it was due to a swarm of cold, dusty comet fragments in a highly eccentric orbit accounted for the dimming.
However, others speculated that it could be the result of an alien megastructure known as Dyson Sphere (or Swarm), a series of structures that encompass a star in whole or in part. However, the SETI Institute quickly weighed in and indicated that radio reconnaissance of KIC 8462852 found no evidence of technology-related radio signals from the star.
Other suggestions were made as well, but as Dr. Simon of the Carnegie Institute of Science explained via email, they fell short. “Because the brief dimming events identified by Boyajian et al. were unprecedented, they sparked a wide range of ideas to explain them,” he said. “So far, none of the proposals have been very compelling – in general, they can explain some of the behavior of KIC 8462852, but not all of it.”
To put the observations made last Fall into a larger context, Montet and Simon decided to examine the full-frame photometeric images of KIC 8462852 obtained by Kepler over the last four years. What they found was that the total brightness of the star had been diminishing quite astonishingly during that time, a fact which only deepens the mystery of the star’s light curve.
Photometry of KIC8462852 obtained by the Kepler mission, showing a period of more rapid decline during the later period of observation. Credit: Montet & Simon 2016
As Dr. Montet told Universe Today via email:
“Every 30 minutes, Kepler measures the brightness of 160,000 stars in its field of view (100 square degrees, or approximately as big as your hand at arm’s length). The Kepler data processing pipeline intentionally removes long-term trends, because they are hard to separate from instrumental effects and they make the search for planets harder. Once a month though, they download the full frame, so the brightness of every object in the field can be measured. From this data, we can separate the instrumental effects from astrophysical effects by seeing how the brightness of any particular star changes relative to all its neighboring stars.”
Specifically, they found that over the course of the first 1000 days of observation, the star experienced a relatively consistent drop in brightness of 0.341% ± 0.041%, which worked out to a total dimming of 0.9%. However, during the next 200 days, the star dimmed much more rapidly, with its total stellar flux dropping by more than 2%.
For the final 200 days, the star’s magnitude once again consistent and similar to what it was during the first 1000 – roughly equivalent to 0.341%. What is impressive about this is the highly anomalous nature of it, and how it only makes the star seem stranger. As Simon put it:
“Our results show that over the four years KIC 8462852 was observed by Kepler, it steadily dimmed. For the first 2.7 years of the Kepler mission the star faded by about 0.9%. Its brightness then decreased much faster for the next six months, declining by almost 2.5% more, for a total brightness change of around 3%. We haven’t yet found any other Kepler stars that faded by that much over the four-year mission, or that decreased by 2.5% in six months.”
Artist’s conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech
Of the over 150,000 stars monitored by the Kepler mission, Tabby’s Starr is the only one known to exhibit this type of behavior. In addition, Monetet and Cahill compared the results they obtained to data from 193 nearby stars that had been observed by Kepler, as well as data obtained on 355 stars with similar stellar parameters.
From this rather large sampling, they found that a 0.6% change in luminosity over a four year period – which worked out to about 0.341% per year – was quite common. But none ever experienced the rapid decline of more than 2% that KIC 8462852 experienced during that 200 days interval, or the cumulative fading of 3% that it experienced overall.
Montet and Cahill looked for possible explanations, considering whether the rapid decline could be caused by a cloud of transiting circumstellar material. But whereas some phenomena can explain the long-term trend, and other the short-term trend, no one explanation can account for it all. As Montet explained:
“We propose in our paper that a cloud of gas and dust from the remnants of a planetesimal after a collision in the outer solar system of this star could explain the 2.5% dip of the star (as it passes along our line of sight). Additionally, if some clumps of matter from this collision were collided into high-eccentricity comet-like orbits, they could explain the flickering from Boyajian et al., but this model doesn’t do a nice job of explaining the long-term dimming. Other researchers are working to develop different models to explain what we see, but they’re still working on these models and haven’t submitted them for publication yet. Broadly speaking, all three effects we observe cannot be explained by any known stellar phenomenon, so it’s almost certainly the result of some material along our line of sight passing between us and the star. We just have to figure out what!”
So the question remains, what accounts for this strange dimming effect around this star? Is there yet some singular stellar phenomena that could account for it all? Or is this just the result of good timing, with astronomers being fortunate enough to see a combination of a things at work in the same period? Hard to say, and the only way we will know for sure is to keep our eye on this strangely dimming star.
And in the meantime, will the alien enthusiasts not see this as a possible resolution to the Fermi Paradox? Most likely!
Artist’s impression of how an an Earth-like exoplanet might look. Credit: ESO.
The ongoing hunt for exoplanets has yielded some very interesting returns in recent years. All told, the Kepler mission has discovered more than 4000 candidates since it began its mission in March of 2009. Amidst the many “Super-Jupiters” and assorted gas giants (which account for the majority of Kepler’s discoveries) astronomers have been particularly interested in those exoplanets which resemble Earth.
And now, an international team of scientists has finished perusing the Kepler catalog in an effort to determine just how many of these planets are in fact “Earth-like”. Their study, titled “A Catalog of Kepler Habitable Zone Exoplanet Candidates” (which will be published soon in the AstrophysicalJournal), explains how the team discovered 216 planets that are both terrestrial and located within their parent star’s “habitable zone” (HZ).
The international team was made up of researchers from NASA, San Francisco State University, Arizona State University, Caltech, University of Hawaii-Manoa, the University of Bordeaux, Cornell University and the Harvard-Smithsonian Center for Astrophysics. Having spent the past three years looking over the more than 4000 entries, they have determined that 20 of the candidates are most like Earth (i.e. likely habitable).
Figure showing the habitable zone for different types of stars, as well as the location of terrestrial size Kepler candidates. Credit: Chester Harman
As Stephen Kane, an associate professor of physics and astronomy at San Fransisco University and lead author of the study, explained in a recent statement:
“This is the complete catalog of all of the Kepler discoveries that are in the habitable zone of their host stars. That means we can focus in on the planets in this paper and perform follow-up studies to learn more about them, including if they are indeed habitable.”
In addition to isolating 216 terrestrial planets from the Kepler catalog, they also devised a system of four categories to determine which of these were most like Earth. These included “Recent Venus”, where conditions are like that of Venus (i.e. extremely hot); “Runaway Greenhouse”, where planets are undergoing serious heating; “Maximum Greenhouse”, where planets are within their star’s HZ; and “Recent Mars”, where conditions approximate those of Mars.
From this, they determined that of the Kepler candidates, 20 had radii less than twice that of Earth (i.e. on the smaller end of the Super-Earth category) and existed within their star’s HZ. In other words, of all the planets discovered in our local Universe, they were able to isolate those where liquid water can exist on the surface, and the gravity would likely be comparable to Earth’s and not crushing!
Earlier today, NASA announced that Kepler had confirmed the existence of 1,284 new exoplanets, the most announced at any given time. Credit: NASA
This is certainly exciting news, since one of the most important aspects of exoplanet hunting has been finding worlds that could support life. Naturally, it might sound a bit anthropocentric or naive to assume that planets which have similar conditions to our own would be the most likely places for it to emerge. But this is what is known as the “low-hanging fruit” approach, where scientists seek out conditions which they know can lead to life.
“There are a lot of planetary candidates out there, and there is a limited amount of telescope time in which we can study them,” said Kane. “This study is a really big milestone toward answering the key questions of how common is life in the universe and how common are planets like the Earth.”
Professor Kane is renowned for being one of the world’s leading “planet-hunters”. In addition to discovering several hundred exoplanets (using data obtained by the Kepler mission) he is also a contributor to two upcoming satellite missions – the NASA Transiting Exoplanet Survey Satellite (TESS) and the European Space Agency’s Characterizing ExOPLanet Satellite (CHEOPS).
These next-generation exoplanet hunters will pick up where Kepler left off, and are likely to benefit greatly from this recent study.
A new study announced the discovery of a system hosting five transiting planets (image credit: jhmart1/deviantart).
A new study announced the discovery of a system hosting five transiting planets (image credit: jhmart1/deviantart).
NASA’s planet-discovering Kepler mission suffered a major mechanical failure in May 2013, but thanks to innovative techniques subsequently implemented by astronomers the satellite continues to uncover worlds beyond our Solar System (i.e., exoplanets). Indeed, Andrew Vanderburg (CfA) and colleagues just published results highlighting a new system found to host five transiting planets, which include: two sub-Neptune sized planets, a Neptune sized planet, a sub-Saturn sized planet, and a Jupiter sized planet.
The four new, but as yet unconfirmed, exoplanets. Image: University of British Columbia
A student at the University of British Columbia (UBC), Canada, has discovered four new exoplanets hidden in data from the Kepler spacecraft.
Michelle Kunimoto recently graduated from UBC with a Bachelor’s degree in physics and astronomy. As part of her coursework, she spent a few months looking closely at Kepler data, trying to find planets that others had overlooked.
In the end, she discovered four planets, (or planet candidates until they are independently confirmed.) The first planet is the size of Mercury, two are roughly Earth-sized, and one is slightly larger than Neptune. According to Kunimoto, the largest of the four, called KOI (Kepler Object of Interest) 408.05, is the most interesting. That one is 3,200 light years away from Earth and occupies the habitable zone of its star.
“Like our own Neptune, it’s unlikely to have a rocky surface or oceans,” said Kunimoto, who graduates today from UBC. “The exciting part is that like the large planets in our solar system, it could have large moons and these moons could have liquid water oceans.”
Her astronomy professor, Jaymie Matthews, shares her enthusiasm. “Pandora in the movie Avatar was not a planet, but a moon of a giant planet,” he said. And we all know what lived there.
On its initial mission, Kepler looked at 150,000 stars in the Milky Way. Kepler looks for dips in the brightness of these stars, which can be caused by planets passing between us and the star. These dips are called light curves, and they can tell us quite a bit about an exoplanet.
“A star is just a pinpoint of light so I’m looking for subtle dips in a star’s brightness every time a planet passes in front of it,” said Kunimoto. “These dips are known as transits, and they’re the only way we can know the diameter of a planet outside the solar system.”
Michelle Kunimoto and her prof., Jaymie Matthews, at the University of British Columbia in Vancouver, Canada. Image: Martin Dee/UBC
One of the limitations of the Kepler mission is that it’s biased against planets that take a long time to orbit their star. That’s because the longer the orbit is, the fewer transits can be witnessed in a given amount of time. The “warm Neptune” KOI 408.05 found by Kunimoto takes 637 days to orbit its sun.
This long orbit explains why the planet was not found initially, and also why Kunimoto is receiving recognition for her discovery. It took a substantial commitment and effort to uncover it. Kepler has discovered almost 5,000 planet and planet candidates, and of those, only 20 have longer orbits than KOI 408.05.
Kunimoto and Matthews have submitted the findings to the Astronomical Journal. They may be the first of many submissions for Kunimoto, as she is returning to UBC next year to earn a Master’s Degree in physics and astronomy, when she will hunt for more planets and investigate their habitability.
The fun didn’t end with her exoplanet discovery, however. As a Star Trek fan (who isn’t one?) she was lucky enough to meet William Shatner at an event at the University, and to share her discovery with Captain James Tiberius Kirk.
It makes you wonder what other surprises might lie hidden in the Kepler data, and what else might be uncovered. Might a life-bearing planet or moon, maybe the only one, be found in Kepler’s data at some future time?
Exoplanet Kepler 62f would need an atmosphere rich in carbon dioxide for water to be in liquid form. Artist's Illustration: NASA Ames/JPL-Caltech/T. Pyle
A team of astronomers suggests that an exoplanet named 62f could be habitable. Kepler data suggests that 62f is likely a rocky planet, and could have oceans. The exoplanet is 40% larger than Earth and is 1200 light years away.
62f is part of a planetary system discovered by the Kepler mission in 2013. There are 5 planets in the system, and they orbit a star that is both cooler and smaller than our Sun. The target of this study, 62f, is the outermost of the planets in the system.
Kepler can’t tell us if a planet is habitable or not. It can only tell us something about its potential habitability. The team, led by Aomawa Shields from the UCLA department of physics and astronomy, used different modeling methods to determine if 62f could be habitable, and the answer is, maybe.
According to the study, much of 62f’s potential habitability revolves around the CO2 component of its atmosphere, if it indeed has an atmosphere. As a greenhouse gas, CO2 can have a significant effect on the temperature of a planet, and hence, a significant effect on its habitability.
Earth’s atmosphere is only 0.04% carbon dioxide (and rising.) 62f would likely need to have much more CO2 than that if it were to support life. It would also require other atmospheric characteristics, .
The study modelled parameters for CO2 concentration, atmospheric density, and orbital characteristics. They simulated:
An atmospheric thickness from the same as Earth’s up to 12 times thicker.
Carbon dioxide concentrations ranging from the same as Earth’s up to 2500 times Earth’s level.
Multiple different orbital configurations.
It may look like the study casts its net pretty wide in order to declare a planet potentially habitable. But the simulations were pretty robust, and relied on more than a single, established modelling method to produce these results. With that in mind, the team found that there are multiple scenarios that could make 62f habitable.
“We found there are multiple atmospheric compositions that allow it to be warm enough to have surface liquid water,” said Shields, a University of California President’s Postdoctoral Program Fellow. “This makes it a strong candidate for a habitable planet.”
Our dear, sweet Earth is the only planet where life is confirmed. Here it is, as seen on July 6, 2015 from a distance of one million miles by a NASA scientific camera aboard the Deep Space Climate Observatory spacecraft. Credits: NASA
As mentioned earlier, CO2 concentration is a big part of it. According to Shields, the planet would need an atmospheric entirely composed of CO2, and an atmosphere five times as dense as Earth’s to be habitable through its entire year. That means that there would be 2500 times more carbon dioxide than Earth has. This would work because the planet’s orbit may take it far enough away from the star for water to freeze, but an atmosphere this dense and this high in CO2 would keep the planet warm.
But there are other conditions that would make 62f habitable, and these include the planet’s orbital characteristics.
“But if it doesn’t have a mechanism to generate lots of carbon dioxide in its atmosphere to keep temperatures warm, and all it had was an Earth-like amount of carbon dioxide, certain orbital configurations could allow Kepler-62f’s surface temperatures to temporarily get above freezing during a portion of its year,” said Shields. “And this might help melt ice sheets formed at other times in the planet’s orbit.”
Shields and her team used multiple modelling methods to produce these results. The climate was modelled using the Community Climate System Model and the Laboratoire de Me´te´orologie Dynamique Generic model. The planet’s orbital characteristics were modelled using HNBody. This study represents the first time that these modelling methods were combined, and this combined method can be used on other planets.
Shields said, “This will help us understand how likely certain planets are to be habitable over a wide range of factors, for which we don’t yet have data from telescopes. And it will allow us to generate a prioritized list of targets to follow up on more closely with the next generation of telescopes that can look for the atmospheric fingerprints of life on another world.”
There are over 2300 confirmed exoplanets, and many more candidates yet to be confirmed. Only a handful of them have been confirmed as being in the habitable zone around their host star. Of course, we don’t know if life can exist on other planets, even if they do reproduce the same kind of habitability that Earth has. We just have no way of knowing, yet.
That will change when instruments like the James Webb Space Telescope are able to peer into the atmospheres of exoplanets and tell us something about any bio-markers that might be present.
But until then, and until we actually visit another world with a probe of some design, we need to use modelling like the type employed in this study, to get us closer to answering the question of life on other worlds.
Results of a study combining Kepler observations with Herschel data show that 2007 OR10 is the largest unnamed dwarf planet in our Solar System, and the third largest overall. Illustration: Konkoly Observatory/András Pál, Hungarian Astronomical Association/Iván Éder, NASA/JHUAPL/SwRI
Depending on shifting definitions of what exactly is or isn’t a dwarf planet, our Solar System has about half a dozen dwarf planets. They are: Pluto, Eris, Haumea, Makemake, Ceres, and 2007 OR10.
Even though 2007 OR10’s name makes it stand out from the rest, dwarf planets as a group are an odd bunch. They spend their time in the cold, outer reaches of the Solar System, with Ceres being the only exception. Ceres resides in the asteroid belt between Mars and Jupiter.
Their distance from Earth makes them difficult targets for observation, even with the largest telescopes we have. Even the keen eye of the Hubble Telescope, orbiting above Earth’s view-inhibiting atmosphere, struggles to get a good look at the dwarf planets. But astronomers using the Kepler spacecraft discovered that its extreme light sensitivity have made it a useful tool to study the dwarves.
In a paper published in The Astronomical Journal, a team led by Andras Pal, at Konkoly Observatory in Budapest, Hungary, have refined the measurement of 2007 OR10. Using the Kepler’s observational prowess, and combining it with archival data from the Herschel Space Observatory, the team has come up with a much more detailed understanding of 2007 OR10.
Previously, 2007 OR10 was thought to be about 1280 km (795 miles) in diameter. But the problem is the dwarf planet was only a faint, tiny, and distant point of light. Astronomers knew it was there, but didn’t know much else. Objects as far away as 2007 OR10, which is currently twice as far away from the Sun as Pluto is, can either be small, bright objects, or much larger, dimmer objects that reflect less light.
This is where the Kepler came in. It has exquisite sensitivity to tiny changes in light. Its whole mission is built around that sensitivity. It’s what has made Kepler such an effective tool for identifying exo-planets. Pointing it towards a tiny target like 2007 OR10, and monitoring the reflected light as the object rotates, is a logical use for Kepler.
Even so, Kepler alone wasn’t able to give the team a thorough understanding of the dwarf planet with the clumsy name.
Enter the Herschel Space Observatory, a powerful infrared space telescope. Herschel and its 3.5 metre (11.5 ft.) mirror were in operation at LaGrange 2 from 2009 to 2013. Herschel discovered many things in its mission-span, including solid evidence for comets being the source of water for planets, including Earth.
But the Herschel Observatory also bequeathed an enormous archive of data to astronomers and other space scientists. And that data was crucial to the new measurement of 2007 OR10.
Combining data and observations from multiple sources is not uncommon, and is often the only way to learn much about distant, tiny objects. In this case, the two telescopes were together able to determine the amount of sunlight reflected by the dwarf planet, using Kepler’s light sensitivity, and then measure the amount of that light later radiated back as heat, using Herschel’s infrared capabilities.
Combining those datasets gave a much clearer idea of the size, and reflectivity, of 2007 OR10. In this case, the team behind the new paper was able to determine that 2007 OR10 was significantly larger than previously thought. It’s measured size is now 1535 km (955 mi) in diameter. This is 255 km (160 mi) larger than previously measured.
It also tells us that the dwarf planet’s gravity is stronger, and the surface darker, than previously measured. This further cements the oddball status of 2007 OR10, since other dwarf planets are much brighter. Other observations of the planet have shown that is has a reddish color, which could be the result of methane ice on the surface.
Lead researcher Andras Pal said, “Our revised larger size for 2007 OR10 makes it increasingly likely the planet is covered in volatile ices of methane, carbon monoxide and nitrogen, which would be easily lost to space by a smaller object. It’s thrilling to tease out details like this about a distant, new world — especially since it has such an exceptionally dark and reddish surface for its size.”
Now that more is known about 2007 OR10, perhaps its time it was given a better name, something that’s easier to remember and that helps it fit in with its peer planets Pluto, Ceres, Eris, Haumea, and Makemake. According to convention, the honor of naming it goes to the planet’s discoverers, Meg Schwamb, Mike Brown and David Rabinowitz. They discovered it in 2007 during a search for distant bodies in the Solar System.
According to Schwamb, “The names of Pluto-sized bodies each tell a story about the characteristics of their respective objects. In the past, we haven’t known enough about 2007 OR10 to give it a name that would do it justice. I think we’re coming to a point where we can give 2007 OR10 its rightful name.”
The Universe is vast, and we need some numbered, structured way to name everything. And these names have to mean something scientifically. That’s why objects end up with names like 2007 OR10, or SDSS J0100+2802, the name given to a distant, ancient quasar. But objects closer to home, and certainly everything in our Solar System, deserves a more memory-friendly name.
So what’s it going to be? If you think you have a great name for the oddball dwarf named 2007 OR10, let us hear it in a tweet, or in the comments section.
An exoplanet seen from its moon (artist's impression). Via the IAU.
Is there life on other planets, somewhere in this enormous Universe? That’s probably the most compelling question we can ask. A lot of space science and space missions are pointed directly at that question.
The Kepler mission is designed to find exoplanets, which are planets orbiting other stars. More specifically, its aim is to find planets situated in the habitable zone around their star. And it’s done so. The Kepler mission has found 297 confirmed and candidate planets that are likely in the habitable zone of their star, and it’s only looked at a tiny patch of the sky.
But we don’t know if any of them harbour life, or if Mars ever did, or if anywhere ever did. We just don’t know. But since the question of life elsewhere in the Universe is so compelling, it’s driven people with intellectual curiosity to try and compute the likelihood of life on other planets.
One of the main ways people have tried to understand if life is prevalent in the Universe is through the Drake Equation, named after Dr. Frank Drake. He tried to come up with a way to compute the probability of the existence of other civilizations. The Drake Equation is a mainstay of the conversation around the existence of life in the Universe.
The Drake Equation is a way to calculate the probability of extraterrestrial civilizations in the Milky Way that were technologically advanced to communicate. When it was created in 1961, Drake himself explained that it was really just a way of starting a conversation about extraterrestrial civilizations, rather than a definitive calculation. Still, the equation is the starting point for a lot of conversations.
But the problem with the Drake equation, and with all of our attempts to understand the likelihood of life starting on other planets, is that we only have the Earth to go by. It seems like life on Earth started pretty early, and has been around for a long time. With that in mind, people have looked out into the Universe, estimated the number of planets in habitable zones, and concluded that life must be present, and even plentiful, in the Universe.
But we really only know two things: First, life on Earth began a few hundred million years after the planet was formed, when it was sufficiently cool and when there was liquid water. The second thing that we know is that a few billions of years after life started, creatures appeared which were sufficiently intelligent enough to wonder about life.
In 2012, two scientists published a paper which reminded us of this fact. David Spiegel, from Princeton University, and Edwin Turner, from the University of Tokyo, conducted what’s called a Bayesian analysis on how our understanding of the early emergence of life on Earth affects our understanding of the existence of life elsewhere.
A Bayesian analysis is a complicated matter for non-specialists, but in this paper it’s used to separate out the influence of data, and the influence of our prior beliefs, when estimating the probability of life on other worlds. What the two researchers concluded is that our prior beliefs about the existence of life elsewhere have a large effect on any probabilistic conclusions we make about life elsewhere. As the authors say in the paper, “Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young-Earth-like conditions.”
A key part of all this is that life may have had a head start on Earth. Since then, it’s taken about 3.5 billion years for creatures to evolve to the point where they can think about such things. So this is where we find ourselves; looking out into the Universe and searching and wondering. But it’s possible that life may take a lot longer to get going on other worlds. We just don’t know, but many of the guesses have assumed that abiogenesis on Earth is standard for other planets.
What it all boils down to, is that we only have one data point, which is life on Earth. And from that point, we have extrapolated outward, concluding hopefully that life is plentiful, and we will eventually find it. We’re certainly getting better at finding locations that should be suitable for life to arise.
What’s maddening about it all is that we just don’t know. We keep looking and searching, and developing technology to find habitable planets and identify bio-markers for life, but until we actually find life elsewhere, we still only have one data point: Earth. But Earth might be exceptional.
As Spiegel and Turner say in the conclusion of their paper, ” In short, if we should find evidence of life that arose wholly idependently of us – either via astronomical searches that reveal life on another planet or via geological and biological studies that find evidence of life on Earth with a different origin from us – we would have considerably stronger grounds to conclude that life is probably common in our galaxy.”
With our growing understanding of Mars, and with missions like the James Webb Space Telescope, we may one day soon have one more data point with which we can refine our probabilistic understanding of other life in the Universe.
Or, there could be a sadder outcome. Maybe life on Earth will perish before we ever find another living microbe on any other world.