Book Review: Martian Summer

[/caption]
The Mars Phoenix Lander has long since gone quiet on the frigid, dusty plains of Mars. Its legacy however remains. It will go down as the first mission to land in the Martian Polar Regions, the first to be led primarily by a University.

The University of Arizona took the lead on the mission with Peter Smith being the Mars Phoenix lander’s Principle Investigator or “PI.” Andrew Kessler was brought onto the Phoenix team to help promote Phoenix to the public. It was a controversial decision.

The media, by-and-large tends to focus on accidents, explosions or other failures. Given that Phoenix accomplished its objectives with nary a wrinkle – it is not hard to understand why the media paid it little attention. One need only look at the lander’s cousin, the Mars Exploration Rover Opportunity – who has been largely forgotten by the press – despite the fact that it has been working on the red planet for the past seven years (even though it was only slated to last 90 days).

The Mars Phoenix Lander thundered off of Cape Canaveral Air Force Station's Space Launch Complex 17 in the summer of 2007. About nine months later - it landed on the surface of Mars. Image Credit: NASA/JPL

One of the things that no media outlet wants to see is one of their employees repeatedly make what are known as “fact errors.” These can be as large as gross misrepresentations, or in this case, as small as not knowing the correcting spelling or pronunciation of an individual’s name. In this case, it was someone well-known in “space” circles, Keith Cowing — not “Cowling” as the author repeatedly states – even in the book’s index. Kessler could have easily verified the correct spelling by going to NASAWatch.com or by picking up a copy of New Moon Rising. Apparently he did neither.

The importance of this is simple. If he got something this simple wrong, what about the larger topics the book discusses? The author was sure to mention that his work has appeared on The Discovery Channel and The New York Times. One would think such respectable media outlets would ensure journalists made sure their work was free of fact-errors, especially since a portion of the book is spent assailing the work of other journalists.

Phoenix became the first spacecraft to be imaged in the process of landing on another world. This picture clearly captures the lander, still in its aeroshell, under parachute and on its way to the ground. This picture was taken by the Mars Reconnaissance Orbiter's HiRISE camera. Photo Credit: NASA/JPL/University of Arizona

One might ask, “Why so harsh?” Simply put, Kessler has massive potential. His writing style is easy to read and is perfectly suited for the general public. Kessler is a great writer and makes a complex subject accessible to all. He also makes it interesting, adding personal reflections and witticisms that other authors don’t. But glaring errors has the reader wondering about the author’s veracity.

But in Martian Summer, Kessler does provide a behind-the-scenes glimpse of what was going on during his time with the Mars Phoenix Lander project. It highlights the difficulties involved with mastering numerous skills required to reach another world. More importantly, it opens the door to the sheer wonder of it all.

Mars Phoenix Lander's landing site at the Martian North Pole. The inset image was taken by MRO some time after the lander fell silent. Image Credit: NASA/JPL/University of Arizona

Martian Summer is published by Pegasus Books and it weighs in at 352 pages (with 16 of them filled with color images). It details how Phoenix rose up out of the ashes that was the Mars Polar Lander and would go on to discover what may be an ocean of ice under the Martian North Pole. Phoenix was the first spacecraft to be imaged as it landed on the surface of another world. In all, it was an amazing mission that was supposed to last for 90 Martian “sols” – but went on to work for 155 sols.

Kessler works to remind us of the magic of spaceflight and exploration in a manner we can all understand. If you want an accurate scientific description – you won’t find it here (Kessler says so himself in the Author’s Note). What you will find is a peek behind the curtain at what makes a mission to Mars work – in all of its quirky glory.

NASA is currently planning to launch the next mission to Mars, the Mars Science Laboratory or MSL, next week on Nov. 25 at 10:21 a.m. EDT. Image Credit: NASA/JPL

An Inside Look at the ‘Astrovan’

We’ve all seen the specially made NASA van that takes the astronauts to the launchpad, but normally we don’t get to see what it is like on the inside. NASA just put out this video, letting us Earth-bound folks get a peek inside the shiny, silvery astronaut vehicle. And just take a look who got to drive it…

Massive Motion – NASA’s Mobile Launcher Moves to Launch Pad

Video of Mobile Launcher on its move out to Launch Complex 39B courtesy of Alan Walters/awaltersphoto.com

CAPE CANAVERAL, Fla – NASA decided that its Mobile Launcher (ML) needed a bit of a shakedown cruise – so it took it on a trip to Launch Complex – 39B (LC-39B). Along the way it stopped and reviewed data as to how the massive tower fared as it lumbered along at the blistering pace of a mile-an-hour. This does not make for riveting must-see video – unless you speed it up.

In the roughly minute-long video the ML moves along at a (somewhat) faster pace. The ML is part of the space agency’s plans to return NASA to the business of space exploration once again. If all goes according to plan, the ML will be the platform used to launch NASA’s Space Launch System or SLS.

[/caption]

As with so many aspects of space exploration, there is a type of art that flows from even the least aesthetic blocky components that are used to lift Heaven and Earth. For those with the right eye, even a metallic tower has a beauty all its own.

That is exactly what aerospace photographer Alan Walters does – find the path to let an object’s inner beauty shine through. The burly photographer has an artist’s eye and loves sharing the awe of all manners of space flight and spacecraft processing.

On Wednesday one of the most emotional aspects of the journey to the launch pad – was the resemblance of some of the images – to those shot during the Apollo era. This imagery could well be prescient as NASA is passing the responsibility of delivering crew and cargo to the International Space Station to commercial space firms as it turns its focus on launching crews to points beyond low-Earth-orbit.

In an image that is eerily similar to shots taken during the moonshots of the late 1960s and early 1970s NASA's Mobile Launcher moves out to Launch Complex-39B on Nov. 16, 2011. Photo Credit: Alan walters/awaltersphoto.com

The ML moved from next to Kennedy Space Center’s (KSC) Vehicle Assembly Building (VAB) to LC-39B to collect data from structural and functional engineering tests. Any relevant data that is gleaned from the journey will be used to modify the ML. The 355-foot-tall ML is being developed to support NASA’s exploration objectives.

“To be honest, I wasn’t expecting much from the move,” Walters said. “After the thing got moving, I began having Apollo flashbacks and I got more and more into photographing and getting video of this event. It made me hopeful about what we might be seeing fly out of Kennedy (Space Center) in the years to come.”

Spiraling upward into the sky, the Mobile Launcher rises some 355 feet into the air and could one day be the platform from which astronauts launch to visit other worlds. Photo Credit: Alan Walters/awaltersphoto.com

Orion Spacecraft to Launch in 2014

[/caption]
CAPE CANAVERAL, Fla – NASA has announced its intention to launch an unmanned flight of the Orion Spacecraft atop a United Launch Alliance (ULA) Delta IV Heavy launch vehicle – by 2014. This flight test will be added to the contract that the space agency has with aerospace firm Lockheed Martin. The Orion Multi-Purpose Crew Vehicle or Orion MPCV as it is more commonly known – will test out systems that will be employed on the Space Launch System (SLS). If successful, this will allow astronauts to travel beyond low-Earth-orbit (LEO) for the first time in over four decades.

“This flight test will provide invaluable data to support the deep space exploration missions this nation is embarking upon,” said NASA Associate Administrator for Communications David Weaver.

The flight has been dubbed Exploration Flight Test or EFT-1 and will be comprised of two high-apogee orbits that will conclude with a high-energy reentry into the Earth’s atmosphere. Like the Mercury, Gemini and Apollo capsules before it, the Orion MPCV will conduct a water landing.

The test mission will lift off from Cape Canaveral Air Force Station located in Florida. It is designed to provide the space agency with vital flight data regarding how the vehicle handles re-entry and other performance issues.

The test flight will be comprised of two high-apogee orbits followed by a splash down. This flight will provide NASA with crucial information that could potentially lead to changes in the Orion spacecraft's design. Image Credit: NASA

“The entry part of the test will produce data needed to develop a spacecraft capable of surviving speeds greater than 20,000 mph and safely return astronauts from beyond Earth orbit,” said Associate Administrator for Human Exploration and Operations William
Gerstenmaier. “This test is very important to the detailed design process in terms of the data we expect to receive.”

Presumably the use of a Delta IV Heavy would allow NASA to accelerate its human exploration objectives at an accelerated rate. Since the flight will be unmanned, there is no need to man-rate the launch vehicle and given the current economic issues facing the United States, the use of so-called “legacy” hardware could ensure that costs are kept down.

The past year has seen the development of the Orion spacecraft proceed at an accelerated pace. Photo Credit: NASA/Lockheed Martin

NASA has also stated its intention to release competitive solicitations for design proposals for new, advanced liquid or solid boosters to be used on the SLS. Another contract that will be opened for competition will be for payload adaptors for both crewed as well as cargo missions.

The Orion spacecraft was originally part of the Constellation Program. Its design has since been modified – but its mission to one day fly astronauts to the Moon, Mars and beyond – remains. The EFT-1 test flight will allow technicians and NASA officials to better determine what further changes need to be made to best aid the completion of NASA’s exploration goals.

The EFT-1 test flight could pave the way for flights back to the Moon, to the planet Mars and to other destinations throughout the solar system. Image Credit: NASA.gov

ASF 2011 Autograph Show: To Be the Shoulders of Tomorrow’s Titans

KENNEDY SPACE CENTER, Fla – Every year the Astronaut Scholarship Foundation (ASF) hosts its “Astronaut Autograph Show” at Kennedy Space Center in Florida. This year it was held on Nov. 5-6 at the Kennedy Space Center Visitor Complex’s Debus Center. The ASF coordinated with the operators of the Cocoa Beach Air Show to ensure that the show had a very dramatic ending. Continue reading “ASF 2011 Autograph Show: To Be the Shoulders of Tomorrow’s Titans”

Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – Video

[/caption]

After an absence of almost two decades, Russia is at last on the cusp of resuming an ambitious agenda of interplanetary science missions on Tuesday Nov. 8 3:16 p.m. EST (Nov. 9, 00:16 a.m. Moscow Time) by taking aim at Mars and scooping up the first ever soil and rocks gathered from the mysterious moon Phobos. Russia’s space program was hampered for many years by funding woes after the breakup of the former Soviet Union and doubts stemming from earlier mission failures. The Russian science ramp up comes just as US space leadership fades significantly due to dire NASA budget cutbacks directed by Washington politicians.

Russia’s daring and highly risky Phobos-Grunt soil sampling robot to the battered Martian moon Phobos now sits poised at the launch pad at the Baikonur Cosmodrome in Kazahkstan atop a specially upgraded booster dubbed the “Zenit-2SB” rocket according to Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interveiw with Universe Today. Roscosmos is the Russian Federal Space Agency. Watch the awesome Mars mission animation in my article here. See Zenit Rocket rollout video and images below.

“The Phobos-Grunt automatic interplanetary station will launch on November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST],” Kuznetsov confirmed to Universe Today.

The Roscosmos video and photos here show the Zenit rocket rollout starting from Building 45 where the final prelaunch processing was conducted late last week mounting the nose cone holding the Phobos-Grunt and companion Yinghuo-1 spacecraft to the upgraded Fregat upper stage.

Russia’s Phobos-Grunt automatic interplanetary station - lander. Credit: Roscosmos

If successful, Phobos Grunt will complete the Earth to Mars round trip voyage in some 34 months and the history making soil samples will plummet through the Earth’s atmosphere in August 2014 to waiting Russian military helicopters.

Following an 11 month interplanetary journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The probe is due to touchdown very gently on Phobos surface in Feb. 2013 using radar and precision thrusters accounting for the moon’s extremely weak gravity. After gathering samples with two robotic arms, the soil transferred to the Earth return capsule will take off in the ascent vehicle for the trip back home.

“The Zenit can launch spacecraft from Baikonur into LEO, MEO, HEO and elliptical near-Earth orbits (including GTO and geostationary orbit) and to escape trajectories as well,” Kuznetsov explained.

Zenit-2SB rocket rollout from Building 45 at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

The Zenit-2SB booster with Phobos-Grunt and the piggybacked Yinghuo-1 Mars orbiter from China were rolled out horizontally by train on a railed transporter on Nov. 6, raised and erected vertically into launch position at Launch Pad 45 at Baikonur.

“The ‘Zenit-2SB’ rocket belongs to the rocket family using nontoxic fuel components – liquid oxygen and kerosene,” Kuznetsov elaborated. “The Zenit was manufactured by the A.M. Makarov Yuzhny Machine-Building Plant in Ukraine.”

“This “Zenit-2” rocket modification has significant improvements,” Kuznetsov told me. “The improvements include a new navigation system, a new generation on-board computer, and better performance by mass reduction and increase in thrust of the second stage engine.”

Zenit-2SB rocket rollout on train car to Baikonur launch pad with Phobos-Grunt sampling return mission to Mars and Phobos. Credit: Roscosmos

Likewise the upper stage was upgraded for the historic science flight.

“The Zenit’s Fregat upper stage has also been modified. The “Phobos Grunt” automatic interplanetary station cruise propulsion system was built onto the base of the “Fregat-SB” upper stage. Its main task is to insert the automatic interplanetary station onto the Mars flight path and accomplish the escape trajectory.”

“The “Phobos Grunt” automatic interplanetary station mission was constructed by the Russian Academy of Sciences Space Research Institute in Moscow and the spacecraft was manufactured by NPO Lavochkin in Moscow,” Kuznetsov told me.

The 12,000 kg Phobos-Grunt automatic interplanetary station is equipped with a powerful 50 kg payload of some 20 science instruments provided by a wide ranging team of international scientists and science institutions from Europe and Asia.

The audacious goal is to bring back up to 200 grams of pristine regolith and rocks that help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System

Zenit-2SB rocket rollout on train to launch pad at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

Zenit-2SB rocket erected vertically to launch position at Baikonur launch pad with Russia’s Phobos-Grunt Mars spacecraft. Credit: Roscosmos

Russia’s Phobos-Grunt sample return mission to Mars and Phobos poised atop Zenit rocket at Pad 45 at Baikonur Cosmodrome. Kazakhstan. Liftoff set for November 9, 2011 at 00:26 a.m. Moscow time - Nov. 8, 3:36 p.m. EST. Credit: Roscosmos.

NASA’s Curiosity Mars Science Laboratory (MSL) Rover has also arrived at her Florida launch pad awaiting Nov. 25 liftoff.

Join me in wishing all the best to Roscosmos and NASA for this duo of fabulous Mars missions in 2011 that will help unravel our place in the Universe – like never before!

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats

[/caption]

Only time now stands in the way of Curiosity’s long awaited date with the Red Planet. NASA’s next, and perhaps last Mars rover was transported to the launch pad at Cape Canaveral Air Force Station and then hoisted on top of the mighty Atlas V rocket that will propel her on a 10 month interplanetary journey to Mars to seek out the potential habitats of Extraterrestrial life.

In less than three weeks on November 25 – the day after Thanksgiving – the Curiosity Mars Science Laboratory (MSL) rover will soar to space aboard the Atlas V booster. Touchdown astride a layered mountain at the Gale Crater landing site is set for August 2012.

Collage showing transport of Curiosity inside nose cone to Space Launch Complex 41 at Cape Canaveral, Florida. Credit: NASA

The $2.5 Billion rover must liftoff by Dec. 18 at the latest, when the launch window to Mars closes for another 26 months. Any delay would cost hundreds of millions of dollars.

Curiosity represents a quantum leap in science capabilities and is by far the most advanced robotic emissary sent to the surface of another celestial body. MSL will operate for a minimum of one Martian year, equivalent to 687 days on earth.

After years of meticulous design work and robotic construction by dedicated scientists and engineers at NASA’s Jet Propulsion Laboratory in California and months of vigilant final assembly and preflight processing at the Payload Hazardous Servicing Facility (PHSF) at NASA’s Kennedy Space Center in Florida, Curiosity was finally moved the last few miles (km) she’ll ever travel on Earth – in the dead of night – to Space Launch Complex 41 at the Cape.

Curiosity inside the Nose Cone to Mars. In the Payload Hazardous Servicing Facility at the Kennedy Space Center in Florida, the Atlas V rocket's payload fairing containing the Mars Science Laboratory (MSL) spacecraft stands securely atop the transporter that will carry it to Space Launch Complex 41. Credit: NASA/Kim Shiflett

The robo behemoth was tucked inside her protective aeroshell Mars entry capsule and clamshell-like nose cone, gingerly loaded onto the payload transporter inside the PHSF and arrived – after a careful drive – at Pad 41 at about 4:35 a.m. EDT on Nov. 3. The move was delayed one day by high winds at the Cape.

Employees at Space Launch Complex 41 keep watch as the payload fairing containing NASA's Mars Science Laboratory (MSL) spacecraft is lifted up the side of the Vertical Integration Facility. Credit: NASA/Kim Shiflett

Teams from rocket builder United Launch Alliance then hoisted MSL by crane on top of the Atlas V rocket already assembled inside the launch gantry known as the Vertical Integration Facility, or VIF, and bolted it to the venerable Centaur upper stage. Technicians also attached umbilicals for mechanical, electrical and gaseous connections.

Curiosity’s purpose is to search for evidence of habitats that could ever have supported microbial life on Mars and determine whether the ingredients of life exist on Mars today in the form of organic molecules – the building blocks of life.

We are all made of organic molecules – which is one of the essential requirements for the genesis of life along with water and an energy source. Mars harbors lots of water and is replete with energy sources, but confirmation of organics is what’s lacking.

Curiosity, inside the payload fairing at Pad 41, has been attached to a lifting device in order to be raised and attached to the Atlas V rocket inside the Vertical Integration Facility. The fairing will protect the payload from heat and aerodynamic pressure generated during ascent. Credit: NASA/Kim Shiflett

The Atlas V will launch in the configuration known as Atlas 541. The 4 indicates a total of four solid rocket motors (SRM) are attached to the base of the first stage. The 5 indicates a five meter diameter payload fairing. The 1 indicates use of a single engine Centaur upper stage.

One of the last but critical jobs remaining at the pad is installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source about a week before launch around Nov. 17. Technicians will install the MMRTG through small portholes on the side of the payload fairing and aeroshell.

The nuclear power source will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to other solar powered landed surface explorers like Pathfinder, Spirit, Opportunity, Phoenix and Phobos-Grunt.

The minivan sized rover measures three meters in length, roughly twice the size of the MER rovers; Spirit and Opportunity. MSL is equipped with 10 science instruments for a minimum two year expedition across Gale crater. The science payload weighs ten times more than any prior Mars rover mission.

The Atlas V rocket and Curiosity will roll out to the launch pad on Wednedsay, November 23, the day before Thanksgiving.

Meanwhile, Russia’s Phobos-Grunt mission to Mars and Phobos is on target to blast off on November 9, Moscow time [Nov 8, US time].

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

Read Ken’s continuing features about Curiosity starting here:
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Star Lab: Space Science on the Wings of Starfighters

[/caption]

CAPE CANAVERAL, Fla – A NewSpace company based out of New Port Richey in Florida is working to provide suborbital access to space for firms with scientific payloads. The Star Lab project is an experimental suborbital launcher, designed to provide frequent, less expensive access to sub-orbit. This could allow educational and scientific institutions across the nation to conduct experiments that would normally be impractical.

“If Star Lab proves itself viable, as we feel it will, this could open the door to a great many scientific institutions conducting their research by using the Star Lab vehicle,” said Mark Homnick the CEO of 4Frontiers Corporation.

On Oct. 27th, the Star Lab launcher was tested out while attached to the F-104 carrier aircraft via a series of fast-taxis up and down NASA's Shuttle Landing Facility located in Florida. Photo Credit: NASA.gov

4Frontiers is working to launch their Star Lab sounding rocket vehicle into sub-orbital space via an F-104 Starfighter that is part of the Starfighters demo team based out of Kennedy Space Center. 4Frontiers hopes to launch a prototype early next year with commercial flights to follow about six months later.

On Thursday Oct. 27, Star Lab began the first of its tests as it was mounted to a F-104 Starfighter and the aircraft then conducted several fast-taxi runs up and down NASA’s Shuttle Landing Facility (SLF) with the Star Lab vehicle affixed to one of its pylons. On the last of these fast taxis, the jet aircraft deployed its drogue chute. These maneuvers were conducted to collect data to test the Star Lab vehicle’s response.

In terms of providing access to space, compared to more conventional means, the Star Lab project is considered to be an innovative and cost-effective means for scientific firms to test their experiments in the micro-gravity environment. Photo Credit: Alan Walters/awaltersphoto.com

The Star Lab suborbital vehicle is an air-launched sounding rocket, which is designed to be reusable and can reach a maximum altitude of about 120km.

The Star Lab vehicle carrying scientific payloads is launched from the venerable F-104 Starfighter jet. After the Star Lab payload stage reaches its predetermined altitude, it will descend by parachute into the Atlantic Ocean off the coast of Florida. Star Lab is capable of carrying up to 13 payloads per flight.

Members of the Starfighters Demo Team along with technicians working on the Star Lab program work to attach the vehicle to the F-104 Starfighter. Photo Credit: Star Lab

All of these payloads will have access to the outside, sub-orbital space environment. One payload on each mission will be deployable by way of an ejectable nosecone on the Star Lab vehicle. 4Frontiers Corporation will handle integrating the payloads into the vehicle. After the craft splashes down, private recovery teams will collect and return it to 4Frontiers. It in turn will have the payloads off-loaded and the Star Lab vehicle will then be reprocessed for its next mission.

“Today, 4Frontiers and Starfighters, with the assistance of the Florida Space Grant Consortium, unveiled to the public for the first time the Star Lab suborbital project. Star Lab is an air-launched reusable sounding vehicle, built using COTS (Commercial Off The Shelf) technology and able to reach altitudes of up to 120km,” said 4Frontiers’ Business Development Manager Panayot Slavov. “With its very reasonable price structure, frequent flight schedule and numerous educational and research opportunities, the vehicle and the project will turn into the suborbital research platform of choice for all those who are interested in experimenting and learning about suborbital space.”

The project was created through a cooperative agreement between the 4Frontiers Corporation, Starfighters Aerospace, Embry-Riddle Aeronautical University and the University of Central Florida with funding provided by the NASA Florida Space Grant Consortium.

If all goes according to plan firms wanting to send their payloads into suborbit could achieve this goal via the Star Lab project. Photo Credit: Starfighters Aerospace