Volcanic Plumes Rise Above Lava Lakes on Io in this Juno Image

Juno's JunoCam instrument captured this image of two plumes rising from Io's surface. The image was taken from a distance of 3,800 km away. Image Credit: NASA/JPL-Caltech/SwRI/MSSS Image processing by Andrea Luck (CC BY)

As the most volcanic object in the Solar System, Jupiter’s moon Io attracts a lot of attention. NASA’s Juno spacecraft arrived at the Jovian system in July 2016, and in recent months, it’s been paying closer attention to Io.

Though Io’s internal workings have been mostly inscrutable, images and data from Juno are starting to provide a fuller picture of the strange moon’s volcanic inner life.

Continue reading “Volcanic Plumes Rise Above Lava Lakes on Io in this Juno Image”

Juno Reveals a Giant Lava Lake on Io

An artists rendition of Loki Patera, a lava lake on Jupiter’s moon Io. Credit: NASA.

NASA’s Juno spacecraft came within 1,500 km (930 miles) of the surface of Jupiter’s moon Io in two recent flybys. That’s close enough to reveal new details on the surface of this moon, the most volcanic object in the Solar System. Not only did Juno capture volcanic activity, but scientists were also able to create a visual animation from the data that shows what Io’s 200-km-long lava lake Loki Patera would look like if you could get even closer. There are islands at the center of a magma lake rimmed with hot lava. The lake’s surface is smooth as glass, like obsidian.

Continue reading “Juno Reveals a Giant Lava Lake on Io”

NASA’s Juno Probe Makes Another Close Flyby of Io

Processed image taken by JunoCam on Feb. 3rd, 2024, during the probe's second close flyby of Jupiter’s moon Io. Credit: NASA/SwRI/MSSS

The Juno spacecraft has revealed some fascinating things about Jupiter since it began exploring the system on July 4th, 2016. Not only is it the first robotic mission to study Jupiter up close while orbiting it since the Galileo spacecraft, which studied the gas giant and its satellites from 1995 to 2003. Juno is also the first robotic explorer to look below Jupiter’s dense clouds to investigate the planet’s magnetic field, composition, and structure. The data this has produced is helping scientists address questions about how Jupiter formed and the origins of the Solar System.

Since 2021, the probe has been in an extended mission phase, where it has been making flybys of some of Jupiter’s largest moons, including Ganymede, Europa, and Io. As it passes these satellites, Juno has captured some incredible images with its main imaging instrument, the JunoCam. On Saturday, February 3rd, 2024, the Juno spacecraft made another flyby of Io and took more captivating photos of the volcanic moon and its pockmarked surface. This was the second part of a twin flyby designed to provide new insight into Io’s volcanic nature and the interior structure of the satellite.

Continue reading “NASA’s Juno Probe Makes Another Close Flyby of Io”

Juno Makes its Closest Flyby of Io

NASA's Juno spacecraft captured this image of Jupiter's volcanic moon Io. Image Credit: NASA / JPL-Caltech / SwRI / MSSS / Kevin Gill

NASA’s Juno spacecraft has been getting closer and closer to Jupiter’s volcanic moon Io with each recent orbit. Juno is in its 57th orbit of Jupiter, and on December 30th, Juno came to within 1500 km (930 miles) of Io’s surface. It’s been more than 20 years since a spacecraft came this close.

Continue reading “Juno Makes its Closest Flyby of Io”

Juno Spots Salts and Organic Molecules on Ganymede’s Surface

Enhanced image of Ganymede taken by the JunoCam during the mission's flyby on June 7th, 2021. Credit: NASA/JPL-Caltech/SwRI/MSSS/Kalleheikki Kannisto

NASA’s Juno mission continues to orbit Jupiter, gathering data on its atmosphere, composition, gravitational field, magnetic field, and radiation environment. This data is helping scientists to learn more about the planet’s formation, internal structure, mass distribution, and what is driving its powerful winds. Periodically, the spacecraft also performs flybys of Jupiter’s largest satellites (the Galilean Moons), acquiring stunning images and vital data on their surfaces. These include optical and thermal images of Io’s many active volcanoes, Europa’s icy terrain, and infrared images of Ganymede.

During its last flyby of Ganymede (June 7th, 2021), Juno collected infrared images and spectra on the moon’s surface using its Jovian InfraRed Auroral Mapper (JIRAM) instrument. According to a recent study by an international team of researchers, this data revealed the presence of salt minerals and organic molecules on the icy moon’s surface. The findings could help scientists better understand the origin of Ganymede, the composition of its interior ocean, and the way material is exchanged between the surface and interior. In short, it could help scientists determine if life exists deep inside Ganymede’s ocean.

Continue reading “Juno Spots Salts and Organic Molecules on Ganymede’s Surface”

Io has 266 Active Volcanic Hotspots Linked by a Global Magma Ocean

NASA’s Galileo spacecraft captured this image of a volcanic eruption on Io in 1997. Image Credit:NASA, NASA-JPL, DLR

Jupiter’s Io stands apart from the Solar System’s other moons, with its numerous volcanoes and its surface dominated by lava flows. Io’s surface volcanism was confirmed in 1979 when the Voyager spacecraft imaged it, but its volcanic nature isn’t duplicated anywhere else in our system. Tidal heating is behind the moon’s eruptive nature, driven by Jupiter’s powerful gravity, and by resonance with other moons. But is there a magma ocean inside Io?

A final answer to that question has been elusive, but new research supports the idea of a magma ocean.

Continue reading “Io has 266 Active Volcanic Hotspots Linked by a Global Magma Ocean”

Juno Completes its Closest Flyby of Io Yet

Not since the Galileo mission ended 20 years ago have we seen such great images of Io. NASA's Juno spacecraft captured this image with its JunoCam instrument on October 15th from less than 12,000 km altitude. Ted Stryk processed the image. Image Credit: Ted Stryk/NASA/JPL-Caltech/SwRI/MSSS/

Jupiter’s ocean moons capture most of our attention because of their potential habitability. But Io, Jupiter’s bad-boy volcanic moon, is in a class of its own. There’s nothing else like it in the Solar System, and NASA’s Juno spacecraft captured new images of the volcanic satellite during its closest approach yet.

Continue reading “Juno Completes its Closest Flyby of Io Yet”

Exploring Io’s Volcanic Activity via Hubble and Webb Telescopes

Concept image of the various features within Jupiter’s surrounding environment that this new science campaign will examine, including its massive magnetic field, along with Io’s neutral clouds and plasma torus. (Credit: Southwest Research Institute/John Spencer)

The two most powerful space telescopes ever built, NASA’s James Webb Space Telescope (JWST) and Hubble Space Telescope, are about to gather data about the most volcanically body in the entire solar system, Jupiter’s first Galilean Moon, Io. This data will be used in combination with upcoming flybys of Io by NASA’s Juno spacecraft, which is currently surveying the Jupiter system and is slated to conduct these flybys later this year and early 2024. The purpose of examining this small, volcanic moon with these two powerful telescopes and one orbiting spacecraft is for scientists to gain a better understanding of how Io’s escaping atmosphere interacts with Jupiter’s surrounding magnetic and plasma environment.

Continue reading “Exploring Io’s Volcanic Activity via Hubble and Webb Telescopes”

Juno Shares Stunning New Images of Jupiter’s Volcanic Moon Io

Io, in all of its volcanic glory! Credit: NASA/JPL-Caltech/SwRI/MSSS/Thomas Thomopoulos ©

The Galilean Moons, named in honor of Galileo Galileo, who first observed them in 1610, are a fascinating collection of satellites. For decades, scientists have been immensely fascinated by the three icy companions – Europa, Ganymede, and Callisto – which have oceans in their interiors that possibly support life. But Io has also been a focal point of interest lately, owing to the volcanic activity on its surface and lava plumes reaching 300 to 500 km (186 to 310 mi) into space. Since 2016, NASA’s Juno probe has provided stunning images of Io as it continues to orbit its main science objective, Jupiter.

The latest was acquired by the Juno probe’s main camera (JunoCam) on July 31st, 2023, at 05:03 AM UTC (01:03 AM EDT; July 30th, 10:03 PM PDT) and showed Prometheus spewing out lava. This active volcano is located within a 28-km (17-mi) -wide volcanic pit named Prometheus Patera on the hemisphere facing away from Jupiter. Prometheus is known for its regular eruptions, hence its nickname in the astrogeological community, “Old Faithful of Io.” A processed image of the eruption was shared by the NASA Planetary Science Division via Twitter (see below).

Continue reading “Juno Shares Stunning New Images of Jupiter’s Volcanic Moon Io”

Jupiter’s “Stripes” Change Color. Now We Might Know Why

Infrared images of Jupiter obtained by a ground-based telescope displaying changes in the stripes of Jupiter's clouds between 2001 and 2011 (dashed blue lines). (Credit: Arrate Antuñano/NASA/IRTF/NSFCam/SpeX)

While Jupiter’s Great Red Spot is one of the most well-known spectacles in the solar system, Jupiter’s clouds and stripes that are responsible for the planet’s weather patterns are highly regarded, as well. Though not nearly as visible in an amateur astronomy telescope, Jupiter’s multicolored, rotating, and swirling cloud stripes are a sight to behold for any astronomy fan when seen in up-close images. And, what makes these stripes unique is they have been observed to change color from time to time, but the question of what causes this color change to occur has remained elusive.

Continue reading “Jupiter’s “Stripes” Change Color. Now We Might Know Why”