25 Years Since Voyager’s ‘Pale Blue Dot’ Images

These six narrow-angle color images were made from the first ever "portrait" of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. Venus, Earth, Jupiter, and Saturn, Uranus, Neptune are seen in these blown-up images, from left to right and top to bottom. Credit: NASA/JPL-Caltech

A quarter of a century has passed since NASA’s Voyager 1 spacecraft snapped the iconic image of Earth known as the “Pale Blue Dot” that shows all of humanity as merely a tiny point of light.

The outward bound Voyager 1 space probe took the ‘pale blue dot’ image of Earth 25 years ago on Valentine’s Day, on Feb. 14, 1990 when it looked back from its unique perch beyond the orbit of Neptune to capture the first ever “portrait” of the solar system from its outer realms.

Voyager 1 was 4 billion miles from Earth, 40 astronomical units (AU) from the sun and about 32 degrees above the ecliptic at that moment.

The idea for the images came from the world famous astronomer Carl Sagan, who was a member of the Voyager imaging team at the time.

He head the idea of pointing the spacecraft back toward its home for a last look as a way to inspire humanity. And to do so before the imaging system was shut down permanently thereafter to repurpose the computer controlling it, save on energy consumption and extend the probes lifetime, because it was so far away from any celestial objects.

Sagan later published a well known and regarded book in 1994 titled “Pale Blue Dot,” that refers to the image of Earth in Voyagers series.

This narrow-angle color image of the Earth, dubbed "Pale Blue Dot," is a part of the first ever "portrait" of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990.  Credit: NASA/JPL-Caltech
This narrow-angle color image of the Earth, dubbed “Pale Blue Dot,” is a part of the first ever “portrait” of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990. Credit: NASA/JPL-Caltech

“Twenty-five years ago, Voyager 1 looked back toward Earth and saw a ‘pale blue dot,’ ” an image that continues to inspire wonderment about the spot we call home,” said Ed Stone, project scientist for the Voyager mission, based at the California Institute of Technology, Pasadena, in a statement.

Six of the Solar System’s nine known planets at the time were imaged, including Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The other three didn’t make it in. Mercury was too close to the sun, Mars had too little sunlight and little Pluto was too dim.

Voyager snapped a series of images with its wide angle and narrow angle cameras. Altogether 60 images from the wide angle camera were compiled into the first “solar system mosaic.”

Voyager 1 was launched in 1977 from Cape Canaveral Air Force Station in Florida as part of a twin probe series with Voyager 2. They successfully conducted up close flyby observations of the gas giant outer planets including Jupiter, Saturn, Uranus and Neptune in the 1970s and 1980s.

Both probes still operate today as part of the Voyager Interstellar Mission.

“After taking these images in 1990, we began our interstellar mission. We had no idea how long the spacecraft would last,” Stone said.

Hurtling along at a distance of 130 astronomical units from the sun, Voyager 1 is the farthest human-made object from Earth.

Solar System Portrait - 60 Frame Mosaic. The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever "portrait" of our solar system as seen from the outside.   Missing are Mercury, Mars and Pluto Credit:  NASA/JPL-Caltech
Solar System Portrait – 60 Frame Mosaic. The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever “portrait” of our solar system as seen from the outside. Missing are Mercury, Mars and Pluto. Credit: NASA/JPL-Caltech

Voyager 1 still operates today as the first human made instrument to reach interstellar space and continues to forge new frontiers outwards to the unexplored cosmos where no human or robotic emissary as gone before.

Here’s what Sagan wrote in his “Pale Blue Dot” book:

“That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. … There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Obama Administration Proposes $18.5 Billion Budget for NASA – Bolden

In the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address at NASA's televised fiscal year 2016 budget rollout event with Kennedy Space Center Director Bob Cabana looking on, at right. NASA's Orion, SpaceX Dragon and Boeing CST-100 spacecraft were on display. Photo credit: NASA/Gianni Woods

The Obama Administration today (Feb. 2) proposed a NASA budget allocation of $18.5 Billion for the new Fiscal Year 2016, which amounts to a half-billion dollar increase over the enacted budget for FY 2015, and keeps the key manned capsule and heavy lift rocket programs on track to launch humans to deep space in the next decade and significantly supplements the commercial crew initiative to send our astronauts to low Earth orbit and the space station later this decade.

NASA Administrator Charles Bolden formally announced the rollout of NASA’s FY 2016 budget request today during a “state of the agency” address at the Kennedy Space Center (KSC), back dropped by the three vehicles at the core of the agency’s human spaceflight exploration strategy; Orion, the Boeing CST-100 and the SpaceX Dragon.

“To further advance these plans and keep on moving forward on our journey to Mars, President Obama today is proposing an FY 2016 budget of $18.5 billion for NASA, building on the significant investments the administration has made in America’s space program over the past six years,” Administrator Bolden said to NASA workers and the media gathered at the KSC facility where Orion is being manufactured.

“These vehicles are not things just on paper anymore! This is tangible evidence of what you [NASA] have been doing these past few years.”

In the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA's televised fiscal year 2016 budget rollout event.   Photo credit: NASA/Gianni Woods
In the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA’s televised fiscal year 2016 budget rollout event. Photo credit: NASA/Gianni Woods

Bolden said the $18.5 Billion budget request will enable the continuation of core elements of NASA’s main programs including first launch of the new commercial crew vehicles to orbit in 2017, maintaining the Orion capsule and the Space Launch System (SLS) rocket to further NASA’s initiative to send ‘Humans to Mars’ in the 2030s, extending the International Space Station (ISS) into the next decade, and launching the James Webb Space Telescope in 2018. JWST is the long awaited successor to NASA’s Hubble Space Telescope.

“NASA is firmly on a journey to Mars. Make no mistake, this journey will help guide and define our generation.”

Funding is also provided to enable the manned Asteroid Redirect Mission (ARM) by around 2025, to continue development of the next Mars rover, and to continue formulation studies of a robotic mission to Jupiter’s icy moon Europa.

“That’s a half billion-dollar increase over last year’s enacted budget, and it is a clear vote of confidence in you – the employees of NASA – and the ambitious exploration program you are executing,” said Bolden.

Overall the additional $500 million for FY 2016 translates to a 2.7% increase over FY 2015. That compares to about a 6.4% proposed boost for the overall US Federal Budget amounting to $4 Trillion.

The Boeing CST-100 and the SpaceX Dragon V2 will restore the US capability to ferry astronauts to and from the International Space Station (ISS).

In September 2014, Bolden announced the selections of Boeing and SpaceX to continue development and certification of their proposed spaceships under NASA’s Commercial Crew Program (CCP) and Launch America initiative started back in 2010.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

Since the retirement of the Space Shuttle program in 2011, all NASA astronauts have been totally dependent on Russia and their Soyuz capsule as the sole source provider for seats to the ISS.

“The commercial crew vehicles are absolutely critical to our journey to Mars, absolutely critical. SpaceX and Boeing have set up operations here on the Space Coast, bringing jobs, energy and excitement about the future with them. They will increase crew safety and drive down costs.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

CCP gets a hefty and needed increase from $805 Million in FY 2015 to $1.244 Billion in FY 2016.

To date the Congress has not fully funded the Administration’s CCP funding requests, since its inception in 2010.

The significant budget slashes amounting to 50% or more by Congress, have forced NASA to delay the first commercial crew flights of the private ‘space taxis’ from 2015 to 2017.

As a result, NASA has also been forced to continue paying the Russians for crew flights aboard the Soyuz that now cost over $70 million each under the latest contract signed with Roscosmos, the Russian Federal Space Agency.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

Bolden has repeatedly stated that NASA’s overriding goal is to send astronauts to Mars in the 2030s.

To accomplish the ‘Journey to Mars’ NASA is developing the Orion deep space crew capsule and mammoth SLS rocket.

However, both programs had their budgets cut in the FY 2016 proposal compared to FY 2015. The 2015 combined total of $3.245 Billion is reduced in 2016 to $2.863 Billion, or over 10%.

The first test flight of an unmanned Orion atop the SLS is now slated for liftoff on Nov. 2018, following NASA’s announcement of a launch delay from the prior target of December 2017.

Since the Journey to Mars goal is already underfunded, significant cuts will hinder progress.

Orion just completed its nearly flawless maiden unmanned test flight in December 2014 on the Exploration Flight Test-1 (EFT-1) mission.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

There are some losers in the new budget as well.

Rather incomprehensibly funding for the long lived Opportunity Mars Exploration Rover is zeroed out in 2016.

This comes despite the fact that the renowned robot just reached the summit of a Martian mountain at Cape Tribulation and is now less than 200 meters from a science goldmine of water altered minerals.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater's western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge.  This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Funding for the Lunar Reconnaissance Orbiter (LRO) is also zeroed out in FY 2016.

Both missions continue to function quite well with very valuable science returns. They were also zeroed out in FY 2015 but received continued funding after a senior level science review.

So their ultimate fate is unknown at this time.

Overall, Bolden was very upbeat about NASA’s future.

“I can unequivocally say that the state of NASA is strong,” Bolden said.

He concluded his remarks saying:

“Because of the dedication and determination of each and every one of you in our NASA Family, America’s space program is not just alive, it is thriving! Together with our commercial and international partners, academia and entrepreneurs, we’re launching the future. With the continued support of the Administration, the Congress and the American people, we’ll all get there together.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Launches Revolutionary Earth Science Satellite Measuring Soil Moisture Cycle

NASA's Soil Moisture Active Passive (SMAP) observatory, on a United Launch Alliance Delta II rocket, is seen after the mobile service tower was rolled back Friday, Jan. 30 at Space Launch Complex 2, Vandenberg Air Force Base, Calif. Image Credit: NASA/Bill Ingalls

NASA’s Soil Moisture Active Passive (SMAP) observatory, on a United Launch Alliance Delta II rocket, is seen after the mobile service tower was rolled back Friday, Jan. 30 at Space Launch Complex 2, Vandenberg Air Force Base, Calif.
Image Credit: NASA/Bill Ingalls
Story updated[/caption]

At dawn this morning (Jan. 31) NASA launched an advanced Earth science satellite aimed at making measurements of our planet’s surface soil moisture and freeze/thaw states from space that will revolutionize our understanding of the water, energy, and carbon cycles driving all life on Earth, aid weather forecasting and improve climate change models.

NASA’s new Soil Moisture Active Passive (SMAP) observatory thundered off the pad at 6:22 a.m. PST (9:22 a.m. EST) Saturday atop a two stage United Launch Alliance Delta II rocket from Space Launch Complex 2 on Vandenberg Air Force Base, California.

The $916 million satellite successfully separated from the rocket’s second stage some 57 minutes after the flawless liftoff and was injected into an initial 411- by 425-mile (661- by 685-kilometer) orbit. The spacecraft then deployed its solar arrays and telemetry indicated it was in excellent health.

“We’re in contact with SMAP and everything looks good right now,” NASA Launch Manager Tim Dunn said.

“Deployment of the solar arrays is underway. We just couldn’t be happier.”

SMAP separated from the second stage while pointed toward the sun as seen in the video below from a rocket mounted camera:

Video Caption: A camera on the second stage of the Delta II rocket captured this footage as the SMAP spacecraft pushed itself away from the rocket to complete the delivery of the Earth-observing spacecraft to its proper orbit following Jan. 31, 2015 liftoff. Credit: NASA TV/ULA

SMAP is NASA’s 1st Earth observing satellite designed to make high resolution global observations of Earth’s vital surface soil moisture content and freeze/thaw cycle just below your feet. It will aid global forecasting and have broad applications for science and society.

SMAP’s combined radar and radiometer instruments will peer into the top 2 inches (5 centimeters) of soil, through clouds and moderate vegetation cover, day and night, to produce the highest-resolution, most accurate soil moisture maps ever obtained from space, says NASA.

The blastoff of SMAP successfully concluded NASA’s ambitious plans to launch a record breaking total of five Earth science satellites in less than a year’s time.

“The launch of SMAP completes an ambitious 11-month period for NASA that has seen the launch of five new Earth-observing space missions to help us better understand our changing planet,” said NASA Administrator Charles Bolden.

“Scientists and policymakers will use SMAP data to track water movement around our planet and make more informed decisions in critical areas like agriculture and water resources.”

Artist's rendering of the Soil Moisture Active Passive satellite. The width of the region scanned on Earth’s surface during each orbit is about 620 miles (1,000 kilometers).  Image credit: NASA/JPL-Caltech
Artist’s rendering of the Soil Moisture Active Passive satellite. The width of the region scanned on Earth’s surface during each orbit is about 620 miles (1,000 kilometers). Image credit: NASA/JPL-Caltech

SMAP is projected to last for at least a three year primary mission.

The prior NASA Earth science instrument launched was the Cloud Aerosol Transport System (CATS) payload hauled to space by the SpaceX CRS-4 Dragon on Jan. 10, 2015 and recently installed on the exterior of the ISS. Read my CATS installation story – here.

The three earlier NASA Earth science missions launched over the past year included ISS-RapidScat in September 2014, the Global Precipitation Measurement (GPM) Core Observatory, a joint mission with the Japan Aerospace Exploration Agency, in February 2014, and the Orbiting Carbon Observatory-2 (OCO-2) carbon observatory in July 2014.

“Congratulations to the NASA Launch Services Program team, JPL and all of our mission partners on today’s successful launch of the SMAP satellite,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

“It is our honor to launch this important Earth science mission to help scientists observe and predict natural hazards, and improve our understanding of Earth’s water, energy and carbon cycles.”

SMAP will provide high-resolution, space-based measurements of soil moisture and its state — frozen or thawed — a new capability that will allow scientists to better predict natural hazards of extreme weather, climate change, floods and droughts, and help reduce uncertainties in our understanding of Earth’s water, energy and carbon cycles, according to a NASA description.

The mission will map the entire globe every two to three days for at least three years and provide the most accurate and highest-resolution maps of soil moisture ever obtained. The spacecraft’s final circular polar orbit will be 426 miles (685 kilometers), at an inclination of 98.1 degrees. The spacecraft will orbit Earth once every 98.5 minutes and repeat the same ground track every eight days.

“All subsystems are being powered on and checked out as planned,” Kent Kellogg, the SMAP project manager, during a post-launch press conference.

“Communications, guidance and control, computers and power are all operating nominally.”

The observatory is in excellent health. Its instruments will be turned on in 11 days.

Today’s blastoff of SMAP marks ULA’s second successful launch this month as well as the second of 13 planned for 2015. ULA’s first launch of 2015 was MUOS-3 from Cape Canaveral on Jan. 20.

ULA’s next launch involves NASA’s Magnetospheric Multiscale Mission (MMS) to study Earth’s magnetic reconnection. It is scheduled for launch on an Atlas V 421 booster on March 12 from Cape Canaveral. See my up close visit with MMS and NASA Administrator Charles Bolden at NASA Goddard Space Flight Center detailed in my story – here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s RapidScat Ocean Wind Watcher Starts Earth Science Operations at Space Station

ISS-RapidScat data on a North Atlantic extratropical cyclone, as seen by the National Centers for Environmental Prediction Advanced Weather Interactive Processing System used by weather forecasters at the National Oceanic and Atmospheric Administration's Ocean Prediction Center. Image Credit: NASA/JPL-Caltech/NOAA

Barely two months after being launched to the International Space Station (ISS), NASA’s first science payload aimed at conducting Earth science from the station’s exterior has started its ocean wind monitoring operations two months ahead of schedule.

Data from the ISS Rapid Scatterometer, or ISS-RapidScat, payload is now available to the world’s weather and marine forecasting agencies following the successful completion of check out and calibration activities by the mission team.

Indeed it was already producing high quality, usable data following its power-on and activation at the station in late September and has monitored recent tropical cyclones in the Atlantic and Pacific Oceans prior to the end of the current hurricane season.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring for a minimum mission duration of two years.

“RapidScat is a short mission by NASA standards,” said RapidScat Project Scientist Ernesto Rodriguez of JPL.

“Its data will be ready to help support U.S. weather forecasting needs during the tail end of the 2014 hurricane season. The dissemination of these data to the international operational weather and marine forecasting communities ensures that RapidScat’s benefits will be felt throughout the world.”

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module.  It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.
ISS-RapidScat instrument, shown in this artist’s rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014, and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

The 1280 pound (580kilogram) experimental instrument was developed by NASA’s Jet Propulsion Laboratory. It’s a cost-effective replacement to NASA’s former QuikScat satellite.

The $26 million remote sensing instrument uses radar pulses reflected from the ocean’s surface at different angles to calculate the speed and direction of winds over the ocean for the improvement of weather and marine forecasting and hurricane monitoring.

The RapidScat, payload was hauled up to the station as part of the science cargo launched aboard the commercial SpaceX Dragon CRS-4 cargo resupply mission that thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

ISS-RapidScat is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

ISS-RapidScat viewed the winds within post-tropical cyclone Nuri as it moved parallel to Japan on Nov. 6, 2014 05:30 UTC. Image Credit: NASA/JPL-Caltech
ISS-RapidScat viewed the winds within post-tropical cyclone Nuri as it moved parallel to Japan on Nov. 6, 2014, 05:30 UTC. Image Credit: NASA/JPL-Caltech

It was robotically assembled and attached to the exterior of the station’s Columbus module using the station’s robotic arm and DEXTRE manipulator over a two day period on Sept 29 and 30.

Ground controllers at Johnson Space Center intricately maneuvered DEXTRE to pluck RapidScat and its nadir adapter from the unpressurized trunk section of the Dragon cargo ship and attached it to a vacant external mounting platform on the Columbus module holding mechanical and electrical connections.

The nadir adapter orients the instrument to point its antennae at Earth.

The couch sized instrument and adapter together measure about 49 x 46 x 83 inches (124 x 117 x 211 centimeters).

“The initial quality of the RapidScat wind data and the timely availability of products so soon after launch are remarkable,” said Paul Chang, ocean vector winds science team lead at NOAA’s National Environmental Satellite, Data and Information Service (NESDIS)/Center for Satellite Applications and Research (STAR), Silver Spring, Maryland.

“NOAA is looking forward to using RapidScat data to help support marine wind and wave forecasting and warning, and to exploring the unique sampling of the ocean wind fields provided by the space station’s orbit.”

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

This has been a banner year for NASA’s Earth science missions. At least five missions will be launched to space within a 12 month period, the most new Earth-observing mission launches in one year in more than a decade.

ISS-RapidScat is the third of five NASA Earth science missions scheduled to launch over a year.

NASA has already launched the of the Global Precipitation Measurement (GPM) Core Observatory, a joint mission with the Japan Aerospace Exploration Agency, in February and the Orbiting Carbon Observatory-2 (OCO-2) carbon observatory in July 2014.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Philae Ready to Take Flying Leap to Historic Comet Landing (Coverage Information)

After a ten year journey that began with the launch from the jungles of French Guyana, landing Philae is not the end of mission, it is the beginning of a new phase. A successful landing is not guaranteed but the ESA Rosetta team is now ready to release Philae on its one way journey. (Photo Credits: ESA/NASA, Illustration: J.Schmidt)

We are now in the final hours before Rosetta’s Philae lander is released to attempt a first-ever landing on a comet. At 9:03 GMT (1:03 AM PST) on Wednesday, November 12, 2014, Philae will be released and directed towards the surface of comet 67P/Churyumov–Gerasimenko. 7 hours later, the lander will touch down.

Below you’ll find a timeline of events, info on how to watch the landing, and an overview of how the landing will (hopefully) work.

In human affairs, we build contingencies for missteps, failures. With spacecraft, engineers try to eliminate all single point failures and likewise have contingency plans. The landing of a spacecraft, be it on Mars, Earth, or the Moon, always involves unavoidable single point failures and points of no return, and with comet 67P/Churyumov–Gerasimenko, Rosetta’s Philae lander is no exception.

Rosetta’s and Philae’s software and hardware must work near flawlessly to give Philae the best chance possible of landing safely. And even with flawless execution, it all depends on Philae’s intercepting a good landing spot on the surface. Philae’s trajectory is ballistic on this one way trip to a comet’s surface. It’s like a 1 mile per hour bullet. Once fired, it’s on its own, and for Philae, its trajectory could lead to a pristine flat step or it could be crevasse, ledge, or sharp rock.

Live European Space Agency Coverage also Main Page Live Feed

Watch ESA’s live feed:

The accuracy of the landing is critical but it has left a 1 square kilometer of uncertainty. For this reason, engineers and scientists had to survey the whole surface for the most mild features. Comet 67P has few areas that are not extreme in one way or another. Site J, now called Agilkia, is one such site.

When first announced in late September, the time of release was 08:35 GMT (12:35 AM PST). Now the time is 9:03 GMT. The engineers and computer scientists have had six weeks to further refine their trajectory. It’s a complicated calculation that has required running the computer simulation of the descent backwards. Backwards because they can set a landing time then run Philae backwards to the moment of release. The solution is not just one but many, thousands or millions if you want to look in such detail. With each release point, the engineers had to determine how, or if, Rosetta could be navigated to that coordinate point in space and time.

Arrival time of the radio signal with landing status: 16:30 GMT

Rosetta/Philae at 500 million km [320 million miles], 28.5 minutes light time

Arrival of First Images: 06:00 GMT, November 13, 2014

The gravity field of the comet is so weak, it is primarily the initial velocity from Rosetta that delivers Philae to the surface. But the gravity is there and because of the chaotic shape and unknown (as yet) mass distribution inside, the gravity will make Philae move like a major league knuckleball wobbling to the plate and a batter. Furthermore, the comet during the  seven hour trip will make half a rotation. The landing site will not be in site when Philae is released.

And as Philae is on final approach, it will use a small rocket not to slow down but rather thrust it at the comet, landing harpoons will be fired, foot screws will try to burrow into the comet, and everyone on Earth will wait several minutes for a message to be relayed from Philae to Rosetta to the Deep Space Network (DSN) antennas on Earth. Philae will be on its own as soon as it leaves Rosetta and its fate is a few hours away.

Why travel to a comet? Comets represent primordial material leftover from the formation of the solar system. Because cometary bodies were formed and remained at a distance from the heat of the sun, the materials have remained nearly unchanged since formation, ~4.5 billion years ago. By looking at Rosetta’s comet, 67P/Churyumov–Gerasimenko, scientists will gain the best yet measurements of a comet’s chemical makeup, its internal structure created during formation, and the dynamics of the comet as it approaches the warmth of the Sun. Theories propose that comets impacting on Earth delivered most of the water of our oceans. If correct, then we are not just made of star-stuff, as Carl Sagan proclaimed, we are made of comet stuff, too. Comets may also have delivered the raw organic materials needed to start the formation of life on Earth.

Besides the ESA live feeds, one can take a peek at NASA’s Deep Space Network (DSN) at work to see which telescopes are communicating with Rosetta. JPL’s webcast can watched below:



Broadcast live streaming video on Ustream

Past Universe Today Articles on the Rosetta Mission:

A Comet’s Tale – Rosetta’s Philae, Five Days from Touchdown
Stinky! Rosetta’s Comet Smells Like Rotten Eggs And Ammonia
Why Watch ESA Rosetta’s Movie ‘Ambition’? Because We Want to Know What is Possible
Rosetta’s Philae Lander: A Swiss Army Knife of Scientific Instruments
ESA’s Rosetta Mission sets November 12th as the Landing Date for Philae
Creepy Comet Looms In The Background Of Newest Philae Spacecraft Selfie
How Do You Land on a Comet? Very Carefully.
How Rosetta Will Send Philae Lander To Comet’s Surface (Plus, Landing Site Contest!)
Spider-Like Spacecraft Aims To Touch A Comet Next Year After Rosetta Reactivates
Rosetta’s Comet Springs Spectacular Leaks As It Gets Closer To The Sun
How Dust Lightens Up The ‘Dark Side’ Of Rosetta’s Comet
It’s Alive! Rosetta’s Comet Flares As It Approaches The Sun

References:

Why visit a comet, University of Leicester, Planetary Scientist explains

Earth Dodges a Bullet — New Radar Images of Asteroid 2014 SC324

Goldstone delay-Doppler images of 2014 SC324 obtained on October 25. The images span an interval of about 45 minutes and show considerable rotation by this object, which has an irregular and elongated shape. Credit: NASA/JPL

Looks like we dodged a bullet. A bullet-shaped asteroid that is. The 70-meter Goldstone radar dish, part of NASA’s Deep Space Network, grabbed a collage of photos of Earth-approaching asteroid 2014 SC324 during its close flyby last Friday October 24. These are the first-ever photos of the space rock which was discovered September 30 this year by the Mt. Lemmon Survey. The level of detail is amazing considering that the object is only about 197 feet (60-meters) across.  You can also see how incredibly fast it’s rotating – about 30-45 minutes for a one spin.

A cropped version of the photo to more clearly see the asteroid's shape. 2014 SC324 passed just 1.5 lunar distances from Earth last week. Credit: NASA/JPL
A cropped version of the photo to more clearly see the asteroid’s shape. 2014 SC324 passed just 1.5 lunar distances from Earth last week. Credit: NASA/JPL

In the cropped version, the shape is somewhat clearer with the asteroid appearing some four times longer than wide. 2014 SC324 belongs to the Apollo asteroid class, named for 1862 Apollo discovered in 1932 by German astronomer Karl Reinmuth. Apollo asteroids follow orbits that occasionally cross that of Earth’s, making them a potential threat to our planet.  The famed February 15, 2013 Chelyabinsk fireball, with an approximate pre-atmospheric entry size of 59 feet (18-m), belonged to the Apollo class.

Three classes of asteroids that pass near Earth or cross its orbit are named for the first member discovered — Apollo, Aten and Amor. Apollo asteroids like 2014 SC324 routinely cross Earth’s orbit, Atens also cross but have different orbital characteristics and Amors cross Mars’ orbit but miss Earth’s. Credit: ESA
Three classes of asteroids that pass near Earth or cross its orbit are named for the first member discovered — Apollo, Aten and Amor. Apollo asteroids like 2014 SC324 routinely cross Earth’s orbit, Atens also cross but have different orbital characteristics and Amors cross Mars’ orbit but miss Earth’s. Credit: ESA

Lance Benner and colleagues at Goldstone also imaged another Apollo asteroid that passed through our neighborhood on October 19 called 2014 SM143. This larger object, estimated at around 650 feet (200-m) across, was discovered with the Pan-STARRS 1 telescope on Mt. Haleakala in Hawaii on September 17.  Tell me we’re not some shiny ball on a solar system-sized pool table where the players fortunately miss their shot … most of the time.

NASA Inaugurates New Space Station Era as Earth Science Observation Platform with RapidScat Instrument

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

NASA inaugurated a new era of research for the International Space Station (ISS) as an Earth observation platform following the successful installation and activation of the ISS-RapidScat science instrument on the outposts exterior at Europe’s Columbus module.

The ISS Rapid Scatterometer, or ISS-RapidScat, is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring.

The 1280 pound (580 kilogram) experimental instrument is already collecting its first science data following its recent power-on and activation at the station.

“Its antenna began spinning and it started transmitting and receiving its first winds data on Oct.1,” according to a NASA statement.

The first image from RapidScat was released by NASA on Oct. 6, shown below, and depicts preliminary measurements of global ocean near-surface wind speeds and directions.

Launched Sept. 21, 2014, to the International Space Station, NASA's newest Earth-observing mission, the International Space Station-RapidScat scatterometer to measure global ocean near-surface wind speeds and directions, has returned its first preliminary images.  Credit: NASA-JPL/Caltech
Launched Sept. 21, 2014, to the International Space Station, NASA’s newest Earth-observing mission, the International Space Station-RapidScat scatterometer to measure global ocean near-surface wind speeds and directions, has returned its first preliminary images. Credit: NASA-JPL/Caltech

The $26 million remote sensing instrument uses radar pulses to observe the speed and direction of winds over the ocean for the improvement of weather forecasting.

“Most satellite missions require weeks or even months to produce data of the quality that we seem to be getting from the first few days of RapidScat,” said RapidScat Project Scientist Ernesto Rodriguez of NASA’s Jet Propulsion Laboratory, Pasadena, California, which built and manages the mission.

“We have been very lucky that within the first days of operations we have already been able to observe a developing tropical cyclone.

“The quality of these data reflect the level of testing and preparation that the team has put in prior to launch,” Rodriguez said in a NASA statement. “It also reflects the quality of the spare QuikScat hardware from which RapidScat was partially assembled.”

RapidScat, payload was hauled up to the station as part of the science cargo launched aboard the commercial SpaceX Dragon CRS-4 cargo resupply mission that thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

Dragon was successfully berthed at the Earth-facing port on the station’s Harmony module on Sept 23, as detailed here.

It was robotically assembled and attached to the exterior of the station’s Columbus module using the station’s robotic arm and DEXTRE manipulator over a two day period on Sept 29 and 30.

Ground controllers at Johnson Space Center intricately maneuvered DEXTRE to pluck RapidScat and its nadir adapter from the unpressurized trunk section of the Dragon cargo ship and attached it to a vacant external mounting platform on the Columbus module holding mechanical and electrical connections.

Fascinating: #Canadarm & Dextre installed the #RapidScat Experiment on Columbus! @ISS_Research @NASAJPL @csa_asc. Credit: ESA/NASA/Alexander Gerst
Fascinating: #Canadarm & Dextre installed the #RapidScat Experiment on Columbus! @ISS_Research @NASAJPL @csa_asc. Credit: ESA/NASA/Alexander Gerst

The nadir adapter orients the instrument to point at Earth.

The couch sized instrument and adapter together measure about 49 x 46 x 83 inches (124 x 117 x 211 centimeters).

Engineers are in the midst of a two week check out process that is proceeding normally so far. Another two weeks of calibration work will follow.

Thereafter RapidScat will begin a mission expected to last at least two years, said Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington, at a prelaunch media briefing at the Kennedy Space Center.

RapidScat is the forerunner of at least five more Earth science observing instruments that will be added to the station by the end of the decade, Volz explained.

The second Earth science instrument, dubbed CATS, could be added by year’s end.

The Cloud-Aerosol Transport System (CATS) is a laser instrument that will measure clouds and the location and distribution of pollution, dust, smoke, and other particulates in the atmosphere.

CATS is slated to launch on the next SpaceX resupply mission, CRS-5, currently targeted to launch from Cape Canaveral, FL, on Dec. 9.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

This has been a banner year for NASA’s Earth science missions. At least five missions will be launched to space within a 12 month period, the most new Earth-observing mission launches in one year in more than a decade.

ISS-RapidScat is the third of five NASA Earth science missions scheduled to launch over a year.

NASA has already launched the Global Precipitation Measurement (GPM) Core Observatory, a joint mission with the Japan Aerospace Exploration Agency in February, and the Orbiting Carbon Observatory-2 (OCO-2) carbon observatory in July 2014.

NASA managers show installed location of ISS-RapidScat instrument on the Columbus module on an ISS scale model at the Kennedy Space Center press site during launch period for the SpaceX CRS-4 Dragon cargo mission.  Posing are Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington and Howard Eisen, RapidScat Project Manager.  Credit: Ken Kremer - kenkremer.com
NASA managers show installed location of ISS-RapidScat instrument on the ESA Columbus module on an ISS scale model at the Kennedy Space Center press site during launch period for the SpaceX CRS-4 Dragon cargo mission. Posing are Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington, and Howard Eisen, RapidScat Project Manager. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space Taxis, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM

Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

Making the Case for a Mission to the Martian Moon Phobos

Phobos. From where did it arise or arrive? Is it dry or wet? Should we flyby or sample and return? Should it be Boots or Bots? (Photos: NASA, Illus.:T.Reyes)

Ask any space enthusiast, and almost anyone will say humankind’s ultimate destination is Mars. But NASA is currently gearing up to go to an asteroid. While the space agency says its Asteroid Initiative will help in the eventual goal of putting people on Mars, what if instead of going to an asteroid, we went to Mars’ moon Phobos?

Three prominent planetary scientists have joined forces in a new paper in the journal Planetary and Space Science to explain the case for a mission to the moons of Mars, particularly Phobos.

“Phobos occupies a unique position physically, scientifically, and programmatically on the road to exploration of the solar system,” say the scientists. In addition, the moons may possibly be a source of in situ resources that could support future human exploration in circum-Mars space or on the Martian surface. But a sample return mission first could provide details on the moons’ origins and makeup.

The Martian moons are riddles, wrapped in a mystery, inside an enigma. Phobos and its sibling Deimos seem like just two asteroids which were captured by the planet Mars, and they remain the last objects of the inner solar system not yet studied with a dedicated mission. But should the moons be explored with flybys or sample-return? Should we consider “boots or bots”?

The publications and mission concepts for Phobos and Deimos are numerous and go back decades. The authors of “The Value of a Phobos Sample Return,” Murchie, Britt, and Pieters, explore the full breadth of questions of why and how to explore Phobos and Deimos.

Dr. Murchie is the principal investigator of the Mars Reconnaissance Orbiter’s CRISM instrument, a visible/infrared imaging spectrometer. He is a planetary scientist from John Hopkins’ Applied Physics Lab (APL) which has been at the forefront of efforts to develop a Phobos mission. Likewise, authors Dr. Britt, from the University of Central Florida, and Dr. Pieters, from Brown University, have partnered with APL and JPL in Phobos/Deimos mission proposals.

A MRO HiRise image of the Martian moon Phobos. Taken on March 23, 2008. Phobos has dimensions of 27 × 22 × 18 km, while Deimos is 15 × 12.2 × 11 km. Both were discovered in 1877 at the US Naval Observatory in Washington, D.C. (Photo: NASA/MRO/HiRISE)
An MRO HiRise image of the Martian moon Phobos. Taken on March 23, 2008. Phobos has dimensions of 27 × 22 × 18 km, while Deimos is 15 × 12.2 × 11 km. Both were discovered in 1877 at the US Naval Observatory in Washington, D.C. (Photo: NASA/MRO/HiRISE)

APL scientists are not the only ones interested in Phobos or Deimos. The Jet Propulsion Laboratory, Ames Research Center and the SETI Institute have also proposed several missions to the small moons. Every NASA center has been involved at some level.

But the only mission to actually get off the ground is the Russian Space Agency’s Phobos-GRUNT[ref]. The Russian mission was launched November 9, 2011, and two months later took a bath in the Pacific Ocean. The propulsion system failed to execute the burns necessary to escape the Earth’s gravity and instead, its orbit decayed despite weeks of attempts to activate the spacecraft. But that’s a whole other story.

The Russian-led mission Phobos-Grunt did not end well; under Pacific swells to be exact. Undaunted Russian scientists are pressing for Phobos-Grunt 2. (Credit: CNES)
The Russian-led mission Phobos-Grunt did not end well; under Pacific swells to be exact. Undaunted Russian scientists are pressing for Phobos-Grunt 2 (illus.), an improved lander with sample-return. Proposed for 2020s (Credit: CNES)

“The Value of a Phobos Sample Return” first discusses the origins of the moons of Mars. There is no certainty. There is a strong consensus that Earth’s Moon was born from the collision of a Mars-sized object with Earth not long after Earth’s formation. This is just one possibility for the Martian moons. Murchie explains that the impacts that created the large basins and craters on Mars could have spawned Phobos and Deimos: ejecta that achieved orbit, formed a ring and then coalesced into the small bodies. Alternative theories claim that the moons were captured by Mars from either the inner or outer solar system. Or they could have co-accreted with Mars from the Solar Nebula. Murchie and the co-authors describe the difficulties and implications of each scenario. For example, if captured by Mars, then it is difficult to explain how their orbits came to be “near-circular and near-equatorial with synchronous rotational periods.”

To answer the question of origins, the paper turns to the questions of their nature. Murchie explains that the limited compositional knowledge leaves several possibilities for their origins. They seem like D-type asteroids of the outer asteroid belt. However, the moons of Mars are very dry, void of water, at least on their surfaces as the paper discusses in detail. The flybys of Phobos and Deimos by NASA and ESA spacecraft are simply insufficient for drawing any clear picture of their composition or structure, let alone their origins, Murchie and co-authors explain.

If the moons were captured then they have compositions different from Mars; however if they accreted with or from Mars, then they share similar compositions with the early Mars when forming, or from Martian crustal material, respectively.

The paper describes in some detail the problem that billions of years of Martian dust accumulation presents. Every time Mars has been hit by a large asteroid, a cloud of debris is launched into space. Some falls back to the planet but much ends up in orbit. Each time, some of the debris collided with Phobos and Deimos; Murchie uses the term “Witness plate” to describe what the two moons are to Mars. There is an accumulation of Martian material and also material from the impactors covering the surfaces of the moons.  Flyby images of Phobos show a reddish surface similar to Mars, and numerous tracks along the surface as if passing objects struck, plowed or rolled along. However, the reddish hue could be weathering from Solar flux over billions of years.

The paper continues with questions of the composition and how rendezvous missions could go further to understanding the moons makeup and origins, however, it is sample return that would deliver, the pay dirt. Despite how well NASA and ESA engineers have worked to shrink and lighten the instruments that fly, orbit, and land on Mars, returning a sample of Phobos to labs on Earth would permit far more detailed analysis.

SpaceX and Elon Musk claim that they will mount human flight to Mars before 2030. Many others remain less optimistic with hopes to human flights before 2040. (Illustrations: Total Recall, 1990, early artist illustration c.1950s )
SpaceX and Elon Musk claim that they will mount human flight to Mars before 2030. Many others remain less optimistic with hopes of human flights before 2040. (Illustrations: Total Recall, 1990, early artist illustration c.1950s )

Science Fiction writers and mission designers have imagined Phobos, in particular, as a starting point for the human exploration and colonization of Mars. A notable contemporary work is “Red Mars” by Kim Stanley Robinson; however, the story line is dated due to the retirement of the Space Shuttle and the external tanks Robinson clustered to form the colonization vessel. While this paper by Murchie et al. is purely scientific, fiction writers have used the understanding that Phobos is far easier to reach from Earth than is the surface of Mars (see Delta-V chart below).

A diagram showing the stair-step energy needed to travel to places beyond the Earth. Delta-V is the velocity in km/sec to reach a destination. The Delta-Vs a accumulative. (Credit: Wikipedia, Delta-V)
A diagram showing the stair-step energy needed to travel to places beyond the Earth. Delta-V is the speed in km/sec required to reach a destination. As shown, the Delta-Vs are cumulative. Note that it takes an extra 5 km/sec  beyond Phobos to reach the Martian surface; a prime reason for making the journey to the moons of Mars. (Credit: Wikipedia, Delta-V)

Phobos, orbiting at 9,400 kilometers (5,840 miles), and Deimos, at 23,500 km (14,600 miles), above Mars avoids the need for the 7-odd minutes of EDL terror – Entry, Descent, and Landing — and pulling oneself out of the Martian gravity well to return to Earth. Furthermore, there is the interest in using Phobos as a material resource – water, material for rocket fuel or building materials. “The Value of a Phobos Sample Return” discusses the potential of Phobos as a resource for space travelers – “In Situ Resource Utilization” (ISRU), in the context of its composition, how the solar flux may have purged the moons of water or how Martian impact debris covers materials of greater interest and value to explorers.

With so many questions and interests, what missions have been proposed and explored? The Murchie paper describes a half dozen missions but there are several others that have been conceived and proposed to some level over several decades.

At present, there is at least one mission actively pursuing funds. The SETI and Ames proposed “Phobos and Deimos & Mars Environment” (PADME) mission led by Dr. Pascal Lee is competing for Discovery program funding. Such projects must limit cost to $425 million or less and be capable of launching in less than 3 years. They are proposing a launch date of 2018 on a SpaceX Falcon 9. The PADME mission design would reuse Ames LADEE hardware and expertise, however, it does not go so far as what Murchie and co-authors argue – returning a sample from Phobos. PADME would maintain in a synchronized orbit with Phobos and then Deimos foe repeated flybys. The mission is likely to cost in the range of $300 million. Stardust, a relevant mission due to its sample return capsule, launched in 1999 and had costs which likely reached a similar level by end of mission in 2012.

The Russian Space Agency is attempting to gain funding for Phobos-Grunt 2 but possible launch dates continue to be moved back – 2020, 2022, and now possibly 2024.

Return of the Stardust sample inside the Lockheed-Martin developed sample-return capsule. See here upon successful landing in the Utah desert. (Credit: NASA/Stardust)
Return of the Stardust sample inside the Lockheed-Martin developed sample-return capsule. Seen here upon successful landing in the Utah desert. (Credit: NASA/Stardust)

Additionally, each of this papers’ authors has mission proposals described. Dr. Pieters, JPL, and Lockheed-Martin proposed the Aladdin mission; Dr. Britt at APL, also with Lockheed-Martin, proposed the mission Gulliver; both would re-use the Stardust sample-return capsule (photo, above). Dr. Murchie also describes his APL/JPL mission concept called MERLIN (Mars–Moon Exploration, Reconnaissance and Landed Investigation).

Phobos and Deimos are the last two of what one would call major objects of the inner Solar System that have not had dedicated missions of exploration. Several bodies of the Asteroid Belt have been targeted with flybys and Dawn is nearing its second target, the largest of the Asteroids, Ceres.

So sooner rather than later, a spacecraft from some nation (not necessarily the United States) will target the moons of Mars. Targeted Phobos/Deimos missions are also likely to include both flyby missions and one or more sample-return missions. A US-led mission with sample-return in the Discovery program will be strained to meet both criteria – $425 million cost cap and 3 year development period.

Those utilizing the Lockheed-Martin (LM) Stardust design have a proven return capsule and spacecraft buses (structure, mechanisms and avionics) for re-use for cost and time savings. This includes five generations of the LM flight software that holds an incredible legacy of mission successes starting with Mars Odyssey/Genesis/Spitzer to now Maven.

All three proposals by this paper’s authors could be re-vamped and proposed again and compete against each other. All three could use Lockheed-Martin past designs. Cooperation in writing this paper may be an indicator that they will join forces, combine concepts, and share investigator positions on a single NASA-led project. The struggle for federal dollars remains a tough, tight battle and with the human spaceflight program struggling to gain a new footing after Space Shuttle, dollars for inter-planetary missions are likely to remain very competitive. However, it appears a Phobos-Deimos mission is likely within the next ten years.

Further reading:

“The Value of a Phobos Sample Return”, Scott L. Murchie, Daniel T. Britt, Carle M. Pieters, Planetary and Space Science, 1 November 2014

The US Naval Observatory, Great 26″ Refractor Telescope

Past Universe Today story, “Finding Phobos: Discovery of a Martian Moon”

MOM Eyes the Limb of Mars after History Creating Arrival

ISRO's Mars Orbiter Mission captures the limb of Mars with the Mars Color Camera from an altitude of 8449 km soon after achieving orbit on Sept. 23/24, 2014. . Credit: ISRO

India’s maiden interplanetary voyager, the Mars Orbiter Mission (MOM) has transmitted a breathtaking new image eyeing the limb of Mars and its atmosphere against the blackness of space.

The beautiful Martian image is only MOM’s second since successfully braking into orbit during the ‘history creating’ insertion maneuver days ago on Sept. 23/24.

The MOM orbiter was designed and developed by the Indian Space Research Organization (ISRO), India’s space agency, which released the image on Sept 25, about a day after MOM arrived.

The limb image was taken using MOM’s Mars Color Camera (MCC) from an altitude of 8449 kilometers and shows more of an ‘Orange Planet’ rather than a ‘Red Planet.’

“A shot of Martian atmosphere. I’m getting better at it. No pressure,” tweeted ISRO at MOM’s newly established twitter account after entering orbit.

The image has a spatial resolution of 439 meters and is centered around Lat: 20.01N and Lon:31.54E.

MOM’s goal is to study Mars atmosphere , surface environments, morphology, and mineralogy with a 15 kg (33 lb) suite of five indigenously built science instruments. It will also sniff for methane, a potential marker for biological activity.

“The view is nice up here,” ISRO tweeted.

MOM’s first image taken shortly after orbital arrival showed a heavily cratered region of the Red Planet taken by the MCC tri-color camera from a slightly lower altitude of 7300 kilometers with a spatial resolution of 376 meters.

ISRO's Mars Orbiter Mission captures its first image of Mars from a height of 7300 km. Credit: ISRO
ISRO’s Mars Orbiter Mission captures its first image of Mars from a height of 7300 km. Credit: ISRO

Following MOM’s successful Mars Orbital Insertion (MOI) maneuver, India became the newest member of an elite club of only four entities who have launched probes that successfully investigated Mars – following the Soviet Union, the United States and the European Space Agency (ESA).

Read my complete MOM meets Mars arrival story – here.

MOM is now circling Mars in a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km. The inclination of orbit with respect to the equatorial plane of Mars is 150 degree, as intended, ISRO reports.

The $73 million mission is expected to last at least six months.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

History Created as India Dares Unknown and Achieves Near Impossible – MOM Successfully Arrives in Mars Orbit

Artists concept of India’s Mars Orbiter Mission (MOM) successfully achieving Mars orbit on Sept. 23 EDT/Sept. 24 IST . Credit: ISRO

Artists concept of India’s Mars Orbiter Mission (MOM) successfully achieving Mars orbit on Sept. 23 EDT/Sept. 24 IST. Credit: ISRO
Story updated[/caption]

Space history was made today when India’s car sized Mars Orbiter Mission (MOM) successfully fired its braking rockets and arrived in Mars orbit today (Sept. 23 EST/Sept. 24 IST) on the nation’s first attempt to explore the Red Planet. Indeed MOM is India’s maiden interplanetary voyager and “created history.”

India thereby joins an elite club of only three other entities who have launched probes that successfully investigated Mars – following the Soviet Union, the United States and the European Space Agency (ESA).

Wild applause erupted with beaming smiles from ear to ear at India’s Bangalore mission control center after signals confirming a successful full duration firing of the crafts engines for 24 minutes and 13 seconds for the crucial Mars Orbital Insertion (MOI) maneuver that placed MOM into orbit, were received precisely as planned at 10:30 p.m. EDT (Sept 23) or 8:00 IST (Sept. 24).

Traveling at the speed of light it took nearly 12.5 minutes for the good news signals to arrive on Earth from Mars across the vast expanse of some 140 million miles (225 million kilometers) of interplanetary space.

MOM’s Red Planet arrival was webcast live worldwide by the Indian Space Research Organization (ISRO), India’s space agency which designed and developed the orbiter.

ISRO’s website also gave a play by play in real time, announcing the results of critical spacecraft actions along the arrival timeline just moments after they became known.

“India has successfully reached Mars!” declared Indian prime minister Narendra Modi, who watched the events unfold from mission control at ISRO’s Telemetry, Tracking and Command Network (ISTRAC) in Bangalore.

“History has been created today. We have dared to reach out into the unknown and have achieved the near-impossible. I congratulate all ISRO scientists as well as all my fellow Indians on this historic occasion.”

Modi gave a stirring and passionate speech to the team, the nation and a global audience outlining the benefits and importance of India’s space program. He implored the team to strive for even greater space exploration challenges, sounding very much like US President John F. Kennedy over 50 years ago!

“We have gone beyond the boundaries of human enterprise and imagination,” Modi stated. “We have accurately navigated our spacecraft through a route known to very few. And we have done it from a distance so large that it took even a command signal from Earth to reach it more than it takes sunlight to reach us.”

The do-or-die MOI breaking maneuver slowed MOM’s velocity by 1099 m/s (2457 mph) vs. an expected 1098.7 m/s – using the combined thrust of the 440 Newton Liquid Apogee Motor (LAM) main engine and eight smaller 22 newton liquid fueled engines.

The entire MOI maneuver took place fully autonomously under the spacecrafts preprogrammed sole control due to the long communications lag time and also during a partial communications blackout when the probe was traveling behind Mars and the signal was blocked.

MOM’s goal is to study Mars surface features, morphology, mineralogy and the Martian atmosphere with five indigenous scientific instruments. Among other goals it will sniff for methane as a potential marker for biological activity.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21.

Modi noted that more than half of all missions to Mars have failed.

“We have prevailed. We have succeeded on our first attempt. We put together the spacecraft in record time, in a mere three years from first studying its feasibility,” Modi elaborated.

“These are accomplishments that will go down in history. Innovation by its very nature involves risk. It is a leap into the dark .. . and the unknown. Space is indeed the biggest unknown out there.”

“Through your brilliance and hard work [at ISRO] you have made a habit of accomplishing the impossible.”

“The success of our space program is a shining symbol of what we are capable of as a nation. Our space program is an example of achievement which inspires us all .. and future generations … to strive for excellence ourselves.”

“Space technology translates to space applications here on Earth … to improve the life of our citizens.”

“Let us set ourselves even more challenging goals and strive even harder to achieve them. Let us push our boundaries. And then push some more, and push some more!” said Modi jubilantly.

MOM now joins Earth’s newly fortified armada of seven spacecraft currently operating on Mars surface or in orbit – including MAVEN, Mars Odyssey (MO), Mars Reconnaissance Orbiter MRO), Mars Express (MEX), Curiosity and Opportunity.

“MOM and MAVEN will keep each other company in orbit,” said Modi.

Today, MOM concluded her over 10 month interplanetary voyage of some 442 million miles (712 million km) from Earth to the Red Planet.

“Congratulations to the MOM team on behalf of the entire MAVEN team! Here’s to exciting science from the two latest missions to join the Mars fleet!”, wrote Bruce Jakosky, MAVEN Principal Investigator, in a post on the ISRO MOM facebook page.

ISRO's Mars Orbiter Mission - The plan of action for Mars Orbit Insertion on September 24. Credit ISRO
ISRO’s Mars Orbiter Mission – The plan of action for Mars Orbit Insertion on September 24. Credit ISRO

MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nations indigenous four stage Polar Satellite Launch Vehicle (PSLV).

The flight path of the approximately $73 Million probe was being continuously monitored by the Indian Deep Space Network (IDSN) and NASA JPL’s Deep Space Network (DSN) to maintain its course.

“The events related to Mars Orbit Insertion progressed satisfactorily and the spacecraft performance was normal. The Spacecraft is now circling Mars in an orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km. The inclination of orbit with respect to the equatorial plane of Mars is 150 degree, as intended. In this orbit, the spacecraft takes 72 hours 51 minutes 51 seconds to go round the Mars once,” according to an ISRO statement.

MOM is expected to investigate the Red Planet for at least six months.

Although MOM’s main objective is a demonstration of technological capabilities, she will also study the planet’s atmosphere and surface.

The probe is equipped with five indigenous instruments to conduct meaningful science – including a tri color imager (MCC) and a methane gas sniffer (MSM) to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO
Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO