Soyuz Launches and Fast Track Docks to ISS with Russian-American Duo

The Soyuz MS-04 rocket launches from the Baikonur Cosmodrome in Kazakhstan April 20, 2017, carrying Expedition 51 Soyuz Commander Fyodor Yurchikhin of Roscosmos and Flight Engineer Jack Fischer of NASA into orbit to begin their four and a half month mission on the International Space Station. Credits: NASA/Aubrey Gemignani
The Soyuz MS-04 rocket launches from the Baikonur Cosmodrome in Kazakhstan April 20, 2017, carrying Expedition 51 Soyuz Commander Fyodor Yurchikhin of Roscosmos and Flight Engineer Jack Fischer of NASA into orbit to begin their four and a half month mission on the International Space Station. Credits: NASA/Aubrey Gemignani

KENNEDY SPACE CENTER, FL – A new Russian/American duo has arrived at the International Space Station this morning, April 20, after a six-hour flight following their successful launch aboard a Russian Soyuz capsule on a fast track trajectory to the orbiting outpost.

The two person international crew comprising NASA astronaut Jack Fischer and cosmonaut Fyodor Yurchikhin of the Russian space agency Roscosmos launched aboard a Russian Soyuz MS-04 spacecraft from the Baikonur Cosmodrome in Kazakhstan at 3:13 a.m. (1:13 p.m. Baikonur time).

After orbiting the Earth just four times on a planned accelerated trajectory they reached the station six hours later and safely docked at the station at 9:18 a.m. EDT.

“We have contact and capture confirmed at the space station at 9:18 am EDT,” said the NASA Houston mission control commentator.
The station and Soyuz vehicles were flying some 250 mi (400 km) over the northern Atlantic at the time of docking.

The dynamic duo of Yurchikhin and Fischer join three Expedition 51 crew members already onboard – Expedition 51 Commander Peggy Whitson of NASA and Flight Engineers Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).

Thus the overall station crew complement of astronauts and cosmonauts increases to five – from the US, Russia and France – representing their respective space agencies and countries.

Jack Fisher is a rookie space flyer whereas Yurchikhin is an accomplished veteran on this his 5th mission to orbit.

Expedition 51 Soyuz Commander Fyodor Yurchikhin of Roscosmos and Flight Engineer Jack Fischer of NASA wave farewell prior to boarding the Soyuz MS-04 spacecraft for launch April 20, 2017, at the Baikonur Cosmodrome in Kazakhstan. Credits: NASA/Aubrey Gemignani

Prior to docking the crew accomplished an approximately 10 min flyaround inside the Soyuz shortly before sunrise and beautyfully backdropped by earth towards the end at a distance of roughly several hundred meters away.

All Soyuz systems performed as planned for what was an entirely automated rendezvous and docking using the Russian KURS docking system. The crew could have intervened if needed.

The new pair of Expedition 51 crew members will spend about four and a half months aboard the station during their increment.

They will be very busy conducting approximately 250 science investigations in fields such as biology, Earth science, human research, physical sciences and technology development.

And there will be no time to rest! Because this week’s just launched unpiloted ‘SS John Glenn’ Cygnus resupply ship is eagerly awaiting its chance to join the station and deliver nearly 4 tons of science experiment, gear and crew provisions to stock the station and further enhance its research output.

Orbital ATK’s seventh Cygnus cargo delivery flight to the station – dubbed OA-7 or CRS-7 – launched at 11:11 a.m. EDT Tuesday, April 18 atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The SS John Glenn is expected to arrive at the station early Saturday morning on April 22.
Expedition 51 astronauts Thomas Pesquet of ESA and Peggy Whitson of NASA will use the space station’s Canadian-built robotic arm to grapple Cygnus, about 6:05 a.m. Saturday.

They will use the arm to maneuver and berth the unmanned vehicle to the Node-1 Earth-facing nadir port on the Unity module.

“Investigations arriving will include an antibody investigation that could increase the effectiveness of chemotherapy drugs for cancer treatment and an advanced plant habitat for studying plant physiology and growth of fresh food in space,” says NASA.

“Another new investigation bound for the U.S. National Laboratory will look at using magnetized cells and tools to make it easier to handle cells and cultures, and improve the reproducibility of experiments. Cygnus also is carrying 38 CubeSats, including many built by university students from around the world, as part of the QB50 program. The CubeSats are scheduled to deploy from either the spacecraft or space station in the coming months.”

Cygnus will remain at the space station for about 85 days until July before its destructive reentry into Earth’s atmosphere, disposing of several thousand pounds of trash.

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus Soars to Space on Atlas Carrying SS John Glenn on Course to Space Station

Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Orbital ATK’s Cygnus supply ship soared to space from the Florida Space Coast at lunchtime today, Tuesday, April 18, drenched in sunshine and carrying the ‘SS John Glenn’ loaded with over three and a half tons of precious cargo – bound for the multinational crew residing aboard the International Space Station (ISS).

Just like clockwork, Orbital ATK’s seventh cargo delivery flight to the station launched right on time at 11:11 a.m. EDT Tuesday at the opening of the launch window atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The ‘SS John Glenn’ Cygnus resupply spacecraft was manufactured by NASA commercial cargo provider Orbital ATK. The vehicle is also known alternatively as the Cygnus OA-7 or CRS-7 mission.

“This was a great launch,” said Joel Montalbano, NASA’s deputy manager of the International Space Station program, at the post launch media briefing at NASA’s Kennedy Space Center.

‘We have a vehicle on its way to the ISS.”

Orbital ATK’s 7th cargo delivery flight to the International Space Station launched at 11:11 a.m. EDT April 18, 2017 carrying the SS John Glenn atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida, as seen from the VAB roof at KSC. Credit: Ken Kremer/kenkremer.com

Huge crowds gathered at public viewing areas ringing Cape Canaveral and offering spectacular views from Playalinda Beach to the north, the inland waterway and more beautiful space coast beaches to the south.

Near perfect weather conditions and extended views of the rocket roaring to orbit greeted all those lucky enough to be on hand for what amounts to a sentimental third journey to space for American icon John Glenn.

The launch was carried live on NASA TV with extended expert commentary. Indeed this launch coverage was the final one hosted by NASA commentator George Diller- the longtime and familiar ‘Voice of NASA’ – who is retiring from NASA on May 31.

The serene sky blue skies with calm winds and moderate temperatures were punctuated with wispy clouds making for a thrilling spectacle as the rocket accelerated northeast up the US East Coast on a carefully choreographed trajectory to the massive orbiting outpost.

“The status of the spacecraft is great!” said Frank Culbertson, a former shuttle and station astronaut and now Orbital ATK’s Space Systems Group president.

Liftoff of Orbital ATK SS John Glenn OA-7 mission atop ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL on April 18, 2017, as seen from VAB roof at KSC. Credit: Julian Leek

The mission is named the ‘S.S. John Glenn’ in tribute to legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.

Glenn was one of the original Mercury Seven astronauts selected by NASA. At age 77 he later flew a second mission to space aboard Space Shuttle Discovery- further cementing his status as a true American hero.

Glenn passed away in December 2016 at age 95. He also served four terms as a U.S. Senator from Ohio.

A picture of John Glenn in his shuttle flight suit and a few mementos are aboard.

After a four day orbital chase Cygnus will arrive in the vicinity of the station on Saturday, April 22.

“It will be captured at about 6 a.m. EDT Saturday,” Montalbano elaborated.

Expedition 51 astronauts Thomas Pesquet of ESA (European Space Agency) and Peggy Whitson of NASA will use the space station’s Canadian-built robotic arm to grapple Cygnus, about 6:05 a.m. Saturday.

They will use the arm to maneuver and berth the unmanned vehicle to the Node-1 Earth-facing nadir port on the Unity module.

Cygnus will remain at the space station for about 85 days until July before its destructive reentry into Earth’s atmosphere, disposing of several thousand pounds of trash.

The countdown for today’s launch of the 194-foot-tall two stage United Launch Alliance (ULA) rocket began when the rocket was activated around 3 a.m. The rocket was tested during a seven-hour long countdown.

This is the third Cygnus to launch on an Atlas V rocket from the Cape. The last one launched a year ago on March 24, 2016 during the OA-6 mission. The first one launched in December 2015 during the OA-4 mission. Each Cygnus is named after a deceased NASA astronaut.

“We’re building the bridge to history with these missions,” said Vernon Thorp, ULA’s program manager for Commercial Missions. “Every mission is fantastic and every mission is unique. At the end of the day every one of these missions is critical.”

“The Atlas V performed beautifully,” said Thorpe at the post launch briefing.

The other Cygnus spacecraft have launched on the Orbital ATK commercial Antares rocket from NASA Wallops Flight Facility on Virginia’s eastern shore.

Cygnus OA-7 is loaded with 3459 kg (7626 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 51 and 52 crews. The total volumetric capacity of Cygnus exceeds 27 cubic meters.

The official OA-7 payload manifest includes the following:

TOTAL PRESSURIZED CARGO WITH PACKAGING: 7,442.8 lbs. / 3,376 kg

• Science Investigations 2,072.3 lbs. / 940 kg
• Crew Supplies 2,103.2 lbs. / 954 kg
• Vehicle Hardware 2,678.6 lbs. / 1,215 kg
• Spacewalk Equipment 160.9 lbs. / 73 kg
• Computer Resources 4.4 lbs. / 2 kg
• Russian Hardware 39.7 lbs. / 18 kg

UNPRESSURIZED CARGO (CubeSats) 183 lbs. / 83 kg

The Orbital ATK Cygnus CRS-7 (OA-7) mission launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration (XEPF) to accommodate the enhanced, longer Cygnus variant being used.

“ULA is excited to be a part of the team that delivered such an important payload to astronauts aboard the ISS,” said Gary Wentz, ULA vice president of Human and Commercial Systems, in a statement.

“Not only are we delivering needed supplies as the first launch under our new RapidLaunch™ offering, but we are truly honored to launch a payload dedicated to John Glenn on an Atlas V, helping to signify the gap we plan to fill as we start launching astronauts from American soil again in 2018.”

The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. There are no side mounted solids on the first stage. The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C-1 engine.

Overall this is the 71st launch of an Atlas V and the 36th utilizing the 401 configuration.

The 401 is thus the workhorse version of the Atlas V and accounts for half of all launches.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for April 18 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital ATK SS John Glenn CRS-7 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the United Launch Alliance Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com

SS John Glenn Launching Science Stash to Space Station atop Atlas V April 18 – Watch Live and 360 Degree Video

Orbital ATK SS John Glenn CRS-7 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the United Launch Alliance Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com
Orbital ATK SS John Glenn CRS-7 launch vehicle with the Cygnus cargo spacecraft bolted to the top of the United Launch Alliance Atlas V rocket is poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The ‘SS John Glenn’ cargo freighter stands proudly poised for launch at pad 41 from the Florida Space Coast on Tuesday April 18, loaded with a stash of nearly 4 tons of science investigations and essential supplies atop a United Launch Alliance Atlas V rocket destined for the multinational crew aboard the International Space Station (ISS).

The lunchtime liftoff of the ‘SS John Glenn’ Cygnus resupply spacecraft manufactured by NASA commercial cargo provider Orbital ATK is slated for 11:11 a.m. EDT Tuesday, April 18 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.

The US cargo ships provided by NASA suppliers Orbital ATK and SpaceX every few months act as NASA’s essential railroad to space. And they are vital to operating the station with a steady stream of new research experiments as well as essential hardware, spare parts, crew supplies, computer, maintenance and spacewalking equipment as well food, water, clothing, provisions and much more.

The launch window lasts 30 minutes and runs from 11:11-11:41 a.m. EDT April 18.

Excited spectators are gathering from near and far and Tuesday’s weather outlook is spectacular so far.

Orbital ATK OA-7/CRS-7 vehicle rolls out to pad 41 atop ULA Atlas V rocket for launch from Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Julian Leek

Blastoff of the S.S. John Glenn on the OA-7 or CRS-7 flight counts as Orbital ATK’s seventh contracted commercial resupply services mission to the ISS for NASA.

The ‘S.S. John Glenn’ is named in honor of legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.

If you can’t attend in person, there are a few options to watch online.

NASA’s Atlas V/Cygnus CRS-7 launch coverage will be broadcast on NASA TV and the NASA launch blog beginning at 10 AM, Tuesday morning.

You can watch the launch live NASA TV at: http://www.nasa.gov/nasatv

A ULA webcast will be available starting at 10 a.m. at: www.ulalaunch.com

And for the first time ever you can also watch the launch live via a live 360 stream on the NASA Television YouTube channel. The 360 degree broadcast starts about 10 minutes prior to lift off at:

http://youtube.com/nasatelevision

The late morning daytime launch offers the perfect opportunity to debut this technology with the rocket magnificently visible atop a climbing plume of smoke and ash – and with a “pads-eye” view!

NASA/ULA Atlas V launch of Orbital ATK SS John Glenn Cygnus spacecraft on OA-7 resupply ship on April 18, 2017. Credit: ULA/Orbital ATK/NASA

Science plays a big role in this mission in tribute named in tribute to John Glenn. Over one third of the payload loaded aboard Cygnus involves science.

“The new experiments will include an antibody investigation that could increase the effectiveness of chemotherapy drugs for cancer treatment and an advanced plant habitat for studying plant physiology and growth of fresh food in space,” according to NASA.

The astronauts will grow food in space, including Arabidopsis and dwarf wheat, in an experiment that could lead to providing nutrition to astronauts on a deep space journey to Mars.

“Another new investigation bound for the U.S. National Laboratory will look at using magnetized cells and tools to make it easier to handle cells and cultures, and improve the reproducibility of experiments. Cygnus also is carrying 38 CubeSats, including many built by university students from around the world as part of the QB50 program. The CubeSats are scheduled to deploy from either the spacecraft or space station in the coming months.”

Also aboard is the ‘Genes in Space-2’ experiment. A high school student experiment from Julian Rubinfien of Stuyvescent High School, New York City, to examine accelerated aging during space travel. This first experiment will test if telomere-like DNA can be amplified in space with a small box sized experiment that will be activated by station astronauts.

The Saffire III payload experiment will follow up on earlier missions to study the development and spread of fire and flames in the microgravity environment of space. The yard long experiment is located in the back of the Cygnus vehicle. It will be activated after Cygnus departs the station roughly 80 days after berthing. It will take a few hours to collect the data for transmission to Earth.

Furthermore you can learn more about the Orbital ATK CRS-7 mission by going to the mission home page at: http://www.nasa.gov/orbitalatk

Up close view of umbilical’s connecting to Atlas V rocket carrying Orbital ATK CRS-7 launch vehicle to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 17, 2017 prior to planned launch on April 18. Credit: Ken Kremer/kenkremer.com

From a weather standpoint, Tuesday’s launch outlook is outstanding at this time.

According to meteorologists with the U.S. Air Force 45th Weather Squadron we are forecasting a 90 percent chance of “go” conditions at the 11:11 a.m. EDT launch time. The primary concern is for the possibility of cumulus clouds.

The forecast calls for temperatures of 75-76° F with on-shore winds peaking below 10 knots during the countdown.

In the event of a delay for any reason related to weather or technical issues a backup launch opportunity exists for Wednesday, April 19, and also looks promising.

The AF is also predicting the same 90 percent chance of “go” conditions at launch time. With the primary concern again being for the possibility of cumulus clouds.

Orbital ATK SS John Glenn OA-7 vehicle atop ULA Atlas V rocket slated for launch from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL on April 18, 2017. Credit: Julian Leek

The rocket was rolled out to pad 41 at about 9 a.m. EDT this morning Monday April 17, in a process that takes about 25 minutes

The rocket and spacecraft passed the Launch Readiness Review held by United Launch Alliance and Orbital ATK on April 15. Launch managers from ULA, Orbital ATK and NASA determined all is ready for Tuesday’s targeted launch to the ISS.

OA-7 is loaded with 3500 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 51 and 52 crews. The total volumetric capacity of Cygnus exceeds 27 cubic meters.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The Orbital ATK Cygnus CRS-7 (OA-7) mission will launch aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration (XEPF) to accommodate the enhanced, longer Cygnus variant being used.

Orbital ATK SS John Glenn Cygnus CRS-7 cargo ship bolted on top of United Launch Alliance Atlas V rocket is poised for launch to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com

The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. There are no side mounted solids on the first stage. The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C-1 engine.

Overall this is the 71st launch of an Atlas V and the 36th utilizing the 401 configuration.

The 401 is thus the workhorse version of the Atlas V and accounts for half of all launches.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the SS John Glenn/ULA Atlas V launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Apr 18-19: “SS John Glenn/ULA Atlas V launch to ISS, SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Orbital ATK SS John Glenn Cygnus CRS-7 cargo ship bolted on top of United Launch Alliance Atlas V rocket is poised for launch to the ISS at Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18, 2017. Credit: Ken Kremer/kenkremer.com

SS John Glenn to Debut as World’s 1st Live 360 Degree Video of Rocket Launch April 18

Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com
Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Imagine watching a real rocket launch in a 360 degree live video broadcast. Well NASA is about to make it happen for the first time in a big way and on a significant mission.

On Tuesday April 18, NASA will broadcast the launch of the ‘S.S. John Glenn’ space station cargo freighter in a feat marking the world’s first live 360-degree stream of a rocket launch – namely the United Launch Alliance (ULA) Atlas V rocket.

The ‘S.S. John Glenn’ is named in honor of legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.

The late morning daytime launch offers the perfect opportunity to debut this technology with the rocket magnificently visible atop a climbing plume of smoke and ash – and with a “pads-eye” view!

The ‘S.S. John Glenn’ is actually a Cygnus resupply spacecraft built by NASA commercial cargo provider Orbital ATK for a cargo mission heading to the International Space Station (ISS) – jam packed with nearly 4 tons or research experiments and gear for the stations Expedition 51 crew of astronauts and cosmonauts.

“NASA, in coordination with United Launch Alliance (ULA) and Orbital ATK, will broadcast the world’s first live 360-degree stream of a rocket launch,” the agency announced in a statement.

“The live 360 stream enables viewers to get a pads-eye view.”

The Cygnus spaceship will launch on a ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Liftoff of the S.S. John Glenn on Orbital ATK’s seventh commercial resupply services mission to the ISS – dubbed OA-7 or CRS-7 – is slated for 11:11 a.m. EDT Tuesday, April 18.

The launch window lasts 30 minutes and runs from 11;11-11:41 a.m. EDT.

You can watch the live 360 stream of the Atlas V/OA-7 cargo resupply mission liftoff to the ISS on the NASA Television YouTube channel starting 10 minutes prior to lift off at:

http://youtube.com/nasatelevision

The sunshine state’s weather outlook is currently very promising with a forecast of an 80% chance of favorable ‘GO’ conditions at launch time Tuesday morning.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The S.S. John Glenn will carrying more than 7,600 pounds of science research, crew supplies and hardware to the orbiting outpost.

How can you watch the streaming 360 video? Read NASA’s description:

“To view in 360, use a mouse or move a personal device to look up and down, back and forth, for a 360-degree view around Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida. Note: not all browsers support viewing 360 videos. YouTube supports playback of 360-degree videos on computers using Chrome, Firefox, Internet Explorer and Opera browsers. Viewers may use the YouTube app to view the launch on a smart phone. Those who own virtual reality headsets will be able to look around and experience the view as if they were actually standing on the launch pad.”

“While virtual reality and 360 technology have been increasing in popularity, live 360 technology is a brand new capability that has recently emerged. Recognizing the exciting possibilities opened by applying this new technology to spaceflight, NASA, ULA, and Orbital ATK seized this opportunity to virtually place the public at the base of the rocket during launch. Minimum viewing distance is typically miles away from the launch pad, but the live 360 stream enables viewers to get a pads-eye view.”

A ULA Atlas V rocket carrying the EchoStar 19 high speed internet satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

The naming announcement for the ‘S.S. John Glenn’ was made by spacecraft builder Orbital ATK during a ceremony held inside the Kennedy Space Center (KSC) clean room facility when the cargo freighter was in the final stages of flight processing – and attended by media including Universe Today on March 9.

“It is my humble duty and our great honor to name this spacecraft the S.S. John Glenn,” said Frank DeMauro, vice president and general manager of Orbital ATK’s Advanced Programs division, during the clean room ceremony inside the Payload Hazardous Servicing Facility (PHFS) high bay at NASA’s Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the SS John Glenn/ULA Atlas V launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Apr 17-19: “SS John Glenn/ULA Atlas V launch to ISS, SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

In this Oct. 23, 2016 image, the International Space Station’s Canadarm2 robotic arm captures Orbital ATK’s Cygnus cargo spacecraft on its sixth mission to the station. The company’s seventh cargo resupply mission is targeted for launch April 18 from NASA’s Kennedy Space Center. Credits: NASA

Space Station Trio Touches Down on Earth as NASA’s Next Cargo Ship Targets Apr. 18 Blastoff

Expedition 50 Commander Shane Kimbrough of NASA, and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos, touched down southeast of the remote town of Dzhezkazgan in Kazakhstan at 7:20 a.m. EDT April 10, 2017 in their Soyuz MS-02 spacecraft. Photo Credit: (NASA/Bill Ingalls)
Expedition 50 Commander Shane Kimbrough of NASA, and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos, touched down southeast of the remote town of Dzhezkazgan in Kazakhstan at 7:20 a.m. EDT April 10, 2017 in their Soyuz MS-02 spacecraft. Photo Credit: (NASA/Bill Ingalls)

Comings and goings continue apace on the International Space Station! After living and working fruitfully for six months in space aboard the ISS, an international trio of astronauts and cosmonauts including NASA’s Shane Kimbrough departed the orbiting lab complex aboard their Soyuz capsule and plummeted back safely through the Earth’s atmosphere to a soft touchdown in Kazahkstan on Monday- as NASA meanwhile targets liftoff of the next US resupply ship a week from today.

These are busy times indeed with regular flights to low Earth orbit and back to maintain and enhance the scientific research aboard the multinationally built and funded million pound orbiting outpost.

ISS Expedition 50 came to a glorious end for Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos as they returned to Earth Monday, April 10 in Kazakhstan aboard their Soyuz spacecraft after spending 173 days aloft in the weightless environment of space.

With his return to Earth April 10, 2017, from a mission aboard the International Space Station, NASA astronaut Shane Kimbrough now has spent 189 days in space on two flights. Credits: NASA TV

The Russian Soyuz MS-02 capsule touched down safely by making a parachute assisted landing in Kazakhstan at approximately 7:20 a.m. EDT (5:20 p.m. Kazakhstan time).

The three person crew comprising Kimbrough, Ryzhikov and Andrey Borisenko landed southeast of the remote town of Dzhezkazgan in Kazakhstan.

Meanwhile as the trio were landing, NASA is targeting launch of the next commercial cargo ship for blastoff on April 18 with more than three tons of science and supplies to stock the station for the Expedition 51 crew.

Christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962 – the next Orbital ATK Cygnus cargo ship heading to the space station will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Liftoff of the S.S. John Glenn from NASA commercial cargo provider Orbital ATK on their seventh commercial resupply services mission to the ISS is slated for 11 a.m. EDT Tuesday, April 18.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

During their time in orbit, the Expedition 50 crew members contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science aboard the world-class orbiting laboratory.

“For example, the Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity. Results from this investigation could lead to the treatment of diseases and injury in space, and provide a way to improve stem cell production for medical therapies on Earth,” said NASA.

“The Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates, such as rodents and humans, from regenerating lost bone and tissue, and how microgravity conditions impact the process. Results will provide a new understanding of the biological reasons behind a human’s inability to regrow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic, non-healing wounds.”

The Soyuz MS-02 spacecraft is seen as it lands with Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of Roscosmos near the town of Zhezkazgan, Kazakhstan on Monday, April 10, 2017 (Kazakh time). Credit: NASA/Bill Ingalls

Kimbrough, Ryzhikov and Andrey Borisenko served as members of the Expedition 49 and 50 crews onboard the International Space Station during their 173 days in orbit.

During two flights Kimbrough has now amassed 189 days in space. During his two flights Borisenko now totals 337 days in space. Rookie Ryzhikov logged 173 days in space.

They leave behind another trio of crewmates who will continue as Expedition 51; namely NASA astronaut and new station commander Peggy Whitson, Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).

The next manned Soyuz launch will carry just two crewmembers. Due to Russian funding cutbacks only 1 cosmonaut will launch. The crew comprises Jack Fischer of NASA and Fyodor Yurchikhin of Roscosmos. They are scheduled to launch Thursday, April 20 from Baikonur, Kazakhstan.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

1st Reflown SpaceX Falcon 9 Soars to Orbit with SES-10 Revolutionizing Rocketry Forever – Photo/Video Gallery

Worlds 1st ever reflown SpaceX Falcon 9 soars to orbit with SES-10 telecomsat from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com
Worlds 1st ever reflown SpaceX Falcon 9 soars to orbit with SES-10 telecomsat from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX CEO Elon Musk’s Billion dollar bet on rocket recycling paid off beautifully when the world’s first ever reflown rocket booster – a SpaceX Falcon 9 – roared off NASA’s historic pad 39A at the Kennedy Space Center and successfully delivered the next generation SES-10 TV satellite to orbit and simultaneously shot revolutionary shock waves reverberating forever across the rocket industry worldwide.

“This is a huge revolution in spaceflight,” billionaire SpaceX CEO and Chief Designer Elon Musk told reporters at the post launch briefing at the Kennedy Space Center press site, barely an hour after liftoff.

And as if the relaunch of a ‘Flight-Proven’ booster was not enough, SpaceX engineers deftly maneuvered the Falcon 9 first stage to a second successful pinpoint landing on a miniscule droneship at sea.

The stunning events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

SpaceX Falcon 9 with SES-10 telecomsat soars to orbit over Melbourne Airport, FL, on March 30, 2017. Credit: Julian Leek

The milestone SpaceX mission to refly the first ever ‘used rocket’ blasted off right on time at the opening of the dinnertime launch window on Thursday, March 30, at 6:27 p.m. EDT.

The used two stage 229-foot-tall (70-meter) rocket carried the SES-10 telecommunications payload to orbit using a ‘Flight-Proven’ Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center (KSC) in Florida.

Musk said SpaceX invested about a billion dollars of his firm’s own funds and 15 years of hard won effort to accomplish the unprecedented feat that many experts deemed virtually unattainable or outright impossible.

“This represents the culmination of 15 years of work at SpaceX to be able to refly a rocket booster,” Musk elaborated.

“It’s really a great day, not just for SpaceX, but for the space industry as a whole, proving something can be done that many people said was impossible.”

But SES Chief Technology Officer (CTO) Martin Martin Halliwell had faith in SpaceX from the beginning and unabashedly discounted the risk – based on his in depth knowledge.

‘We had a team embedded with SpaceX all along the way,” SES CTO Haliwell said at the post launch briefing.

Furthermore Halliwell was instrumental in signing up telecom giant SES as the paying customer who had complete confidence in placing his firm’s expensive SES-10 communication satellite atop SpaceX’s history making used and now successfully reflown booster.

“There have been naysayers,” Halliwell told reporters at a prelaunch press briefing on March 28. “I can tell you there was a chief engineer of another launch provider — I will not say the name — who told me, categorically to my face, you will never land a first stage booster. It is impossible. If you do it then it will be completely wrecked.”

“We are confident in this booster,” Halliwell told me at the prelaunch briefing.

“There is not a huge risk,” Halliwell stated emphatically. “In this particular case we know that the reusability capability is built into the design of the Falcon 9 vehicle.”

SpaceX CEO and Chief Designer Elon Musk and SES CTO Martin Halliwell exuberantly shake hands of congratulation following the successful delivery of SES-10 TV comsat to orbit using the first reflown and flight proven booster in world history at the March 30, 2017 post launch media briefing at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

“You’ve got to decouple the emotion from the engineering,” Halliwell elaborated on Thursday’s launch. “The engineering team that Elon has working for him is really second to none. He asks very simple profound questions. And he gets very good answers. The proof is in the pudding.”

SpaceX Falcon 9 and SES-10 Satellite clear the tower at Kennedy Space Center Launch Complex 39 on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins

“This will rock the space industry,” said Halliwell at the post launch media briefing. “And SpaceX already has!”

Reflown SpaceX Falcon 9 soars to orbit with SES-10 telecomsat from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

The recycled Falcon delivered the nearly six ton SES-10 satellite to geostationary transfer orbit where it will provide significantly improved TV, voice, data and maratime service to over 37 million customers across Central and South America.

This recycled Falcon 9 first stage booster first launched in April 2016 for NASA on the SpaceX Dragon CRS-8 resupply mission to the International Space Station (ISS) under contract for the space agency.

Furthermore, after the 156 foot tall first stage booster completed its primary mission task, SpaceX engineers successfully guided it to a second landing on the tiny OCISLY drone ship for a soft touchdown some eight and a half minutes after liftoff.

OCISLY had left Port Canaveral several days ahead of the March 30 launch and was prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast, just waiting for the boosters 2nd history making approach and pinpoint propulsive soft landing.

It thus became the first booster in history to launch twice and land twice.

SpaceX Falcon 9 and SES-10 Satellite rising higher, picking up speed at Kennedy Space Center Launch Complex 39 on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. . Credit: Carol Higgins

Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and SES-10 Satellite rising higher, picking up speed at Kennedy Space Center Launch Complex 39 on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins
Liftoff, fire & smoke, with SpaceX Falcon 9 rocket 9 and SES-10 Satellite rising off the launch pad 39A at Kennedy Space Center Launch Complex 39 on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins
1st relaunched SpaceX Falcon 9 arcs over towards Africa after blastoff from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017 carrying SES-10 telecomsat to GTO. Credit: Ken Kremer/Kenkremer.com
Re-launch of SpaceX Falcon 9 with SES-10 comsat soaring to orbit with trailing exhaust trail as seen above the Kennedy Space Center Quality Inn, Titusville, FL. Credit: Melissa Bayles
Re-launch of SpaceX Falcon 9 with SES-10 comsat soaring to orbit with trailing exhaust trail as seen above the Kennedy Space Center Quality Inn, Titusville, FL. Credit: Melissa Bayles
Heading downrange, higher and higher, faster and faster — SpaceX Falcon 9 and SES-10 Satellite liftoff from Kennedy Space Center Launch Complex 39A on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins
Heading downrange, higher and higher, faster and faster — SpaceX Falcon 9 and SES-10 Satellite liftoff from Kennedy Space Center Launch Complex 39A on March 30, 2017 – as seen from KSC Visitor Complex Apollo/Saturn Center. Credit: Carol Higgins

Space Station Drama After Vital Micrometeorite Shielding Floats Away

This week, astronauts aboard the ISS conducted an EVA which involved a close call and a bitch of a "patch up" job. Credit: NASA

This past week (on Thurs. March 30th), two crew members of Expedition 50 conducted an important spacewalk on the exterior of the International Space Station. During the seven hours in which they conducted this extravehicular activity (EVA), the astronauts reconnected cables and electrical connections on a new Pressurized Mating Adapter (PMA-3) and installed four new thermal protection shields on the Tranquility module.

These shields were required to cover the port that was left exposed when (earlier in the week) the PMA-3 was removed and installed robotically on the Harmony module. In the course of the EVA, the two astronauts – Commander Shane Kimbrough and Flight Engineer Peggy Whitson – were forced to perform an impromptu patch up job when one of the shield unexpectedly came loose.

While things flying off into space is not entirely unusual, on this occasion, there were concerns given the size and weight of the object. This shield measures about 1.5 meters by 0.6 meters (5 feet by 2 feet) and is 5 centimeters (2 inches) thick. It also weighs a little over 8 kg (18 lbs), which would make it a serious impact hazard given the relative velocity of orbital debris (28,000 km/h).

Spacewalk support personnel quickly at the Johnson Space Center, looking for a solution to the loss of thermal and micrometeoroid shield. Credit: NASA

After coming loose, the bundled-up shield quickly floated away and became visible in the distance as a white dot. In response, a team from the Mission Control Center at NASA’s Johnson Space Center began monitoring the shield as it drifted. At the same time, they began working on a contingency plan to substitute the shielding, and advised the astronauts to finish covering the port with the PMA-3 cover Whitson removed earlier that day.

The plan worked, and the cover was successfully installed, providing thermal, micrometeoroid and orbital debris protection for the port. Kimbrough and Whitson finished their EVA at 2:33 pm EDT, having successfully installed the remaining shields on the berthing mechanism port. A few hours after it came loose, Mission Control also determined that the shield posed no risk to the ISS and will eventually burn up in Earth’s atmosphere.

Before concluding their spacewalk, Kimbrough and Whitson also installed what has been nicknamed a “cummerbund” around the base of the PMA-3 adapter. This cloth shield – which also provides micrometeorite protection – is so-named because it fits around the adapter in a way that is similar to how a tuxedo’s cummerbund fits around a person’s waist.

Another highlight of this spacewalk was the fact that Peggy Whitson set two new records with this latest EVA. In addition to setting the record for the most spacewalks by a female astronaut (eight), she also set the record for most accumulated time spent spacewalking – just over 53 hours – by a female astronaut. The 57-year old astronaut now ranks fifth on the list of all-time spacewalking by any astronaut.

Astronaut Peggy Whitson signs her autograph near an Expedition 50 mission patch attached to the inside the International Space Station. Credit: NASA

On top of all that, Expedition 50 is Whitson’s third mission to the ISS, and she has spent a total of 500 days in space – also a record for any female astronaut. She arrived aboard the ISS aboard the Soyuz MS-03 – along with ESA flight engineer Thomas Pesquet and Roscosmos flight engineer Oleg Novitskiy – and is scheduled to return to Earth in June (though she may remain there until September).

The top spot for most accumulated time in spacewalking is currently held by Russian cosmonaut Anatoly Solovyev, who has participated in 16 spacewalks for a grand total of 82 hours spent in EVA. And in total, spacewalkers have now spent a total of 1,243 hours and 42 minutes performing 199 spacewalks in support of the assembly and maintenance of the ISS.

When it comes to being an astronaut, one of the most important requirements is flexibility – the ability to adapt to unexpected situations and come up with solutions on the fly. Crew 50 and Mission Control certainly demonstrated that this week, maintaining a tradition that brought the Apollo 13 astronauts safely back to Earth and has kept the ISS running for almost two decades.

Further Reading: ABCnews, NASA

Finite Light — Why We Always Look Back In Time

Credit: Bob King
Beads of rainwater on a poplar leaf act like lenses, focusing light and enlarging the leaf’s network of veins. Moving at 186,000 miles per second, light from the leaf arrives at your eye 0.5 nanosecond later. A blink of an eye takes 600,000 times as much time! Credit: Bob King

My attention was focused on beaded water on a poplar leaf. How gemmy and bursting with the morning’s sunlight. I moved closer, removed my glasses and noticed that each drop magnified a little patch of veins that thread and support the leaf.

Focusing the camera lens, I wondered how long it took the drops’ light to reach my eye. Since I was only about six inches away and light travels at 186,000 miles per second or 11.8 inches every billionth of a second (one nanosecond), the travel time amounted to 0.5 nanoseconds. Darn close to simultaneous by human standards but practically forever for positronium hydride, an exotic molecule made of a positron, electron and hydrogen atom. The average lifetime of a PsH molecule is just 0.5 nanoseconds.

Light takes about 35 microseconds to arrive from a transcontinental jet and its contrail. Credit: Bob King

In our everyday life, the light from familiar faces, roadside signs and the waiter whose attention you’re trying to get reaches our eyes in nanoseconds. But if you happen to look up to see the tiny dark shape of a high-flying airplane trailed by the plume of its contrail, the light takes about 35,000 nanoseconds or 35 microseconds to travel the distance. Still not much to piddle about.

The space station orbits the Earth in outer space some 250 miles overhead. During an overhead pass, light from the orbiting science lab fires up your retinas 1.3 milliseconds later. In comparison, a blink of the eye lasts about 300 milliseconds (1/3 of a second) or 230 times longer!

The Lunar Laser Ranging Experiment placed on the Moon by the Apollo 14 astronauts. Observatories beam a laser to the small array, which reflects a bit of the light back. Measuring the time delay yields the Moon’s distance to within about a millimeter. At the Moon’s surface the laser beam spreads out to 4 miles wide and only one photon is reflected back to the telescope every few seconds. Credit: NASA

Light time finally becomes more tangible when we look at the Moon, a wistful 1.3 light seconds away at its average distance of 240,000 miles. To feel how long this is, stare at the Moon at the next opportunity and count out loud: one one thousand one. Retroreflecting devices placed on the lunar surface by the Apollo astronauts are still used by astronomers to determine the moon’s precise distance. They beam a laser at the mirrors and time the round trip.

Venus as a super-thin crescent only 10 hours before conjunction on March 25. The planet was just 2.3 light minutes from the Earth at the time. Credit: Shahrin Ahmad

Of the eight planets, Venus comes closest to Earth, and it does so during inferior conjunction, which coincidentally occurred on March 25. On that date only 26.1 million miles separated the two planets, a distance amounting to 140 seconds or 2.3 minutes — about the time it takes to boil water for tea. Mars, another close-approaching planet, currently stands on nearly the opposite side of the Sun from Earth.

With a current distance of 205 million miles, a radio or TV signal, which are both forms of light, broadcast to the Red Planet would take 18.4 minutes to arrive. Now we can see why engineers pre-program a landing sequence into a Mars’ probe’s computer to safely land it on the planet’s surface. Any command – or change in commands – we might send from Earth would arrive too late. Once a lander settles on the planet and sends back telemetry to communicate its condition, mission control personnel must bite their fingernails for many minutes waiting for light to limp back and bring word.

Before we speed off to more distant planets, let’s consider what would happen if the Sun had a catastrophic malfunction and suddenly ceased to shine. No worries. At least not for 8.3 minutes, the time it takes for light, or the lack of it, to bring the bad news.

Pluto and Charon lie 3.1 billion miles from Earth, a long way for light to travel. We see them as they were more than 4 hours ago.  NASA/JHUAPL/SwRI

Light from Jupiter takes 37 minutes to reach Earth; Pluto and Charon are so remote that a signal from the “double planet” requires 4.6 hours to get here. That’s more than a half-day of work on the job, and we’ve only made it to the Kuiper Belt.

Let’s press on to the nearest star(s), the Alpha Centauri system. If 4.6 hours of light time seemed a long time to wait, how about 4.3 years? If you think hard, you might remember what you were up to just before New Year’s Eve in 2012. About that time, the light arriving tonight from Alpha Centauri left that star and began its earthward journey. To look at the star then is to peer back in time to late 2012.

The Summer Triangle rises fully in the eastern sky around 3 o’clock in the morning in late March. Created with Stellarium

But we barely scrape the surface. Let’s take the Summer Triangle, a figure that will soon come to dominate the eastern sky along with the beautiful summer Milky Way that appears to flow through it. Altair, the southernmost apex of the triangle is nearby, just 16.7 light years from Earth; Vega, the brightest a bit further at 25 and Deneb an incredible 3,200 light years away.

We can relate to the first two stars because the light we see on a given evening isn’t that “old.” Most of us can conjure up an image of our lives and the state of world affairs 16 and 25 years ago. But Deneb is exceptional. Photons departed this distant supergiant (3,200 light years) around the year 1200 B.C. during the Trojan War at the dawn of the Iron Age. That’s some look-back time!

Rho Cassiopeia, currently at magnitude +4.5, is one of the most distant stars visible with the naked eye. Its light requires about 8,200 years to reach our eyes. This star, a variable, is enormous with a radius about 450 times that of the Sun. Credit: IAU/Sky and Telescope (left); Anynobody, CC BY-SA 3.0 / Wikipedia

One of the most distant naked eye stars is Rho Cassiopeiae, yellow variable some 450 times the size of the Sun located 8,200 light years away in the constellation Cassiopeia. Right now, the star is near maximum and easy to see at nightfall in the northwestern sky. Its light whisks us back to the end of the last great ice age at a time and the first cave drawings, more than 4,000 years before the first Egyptian pyramid would be built.

This is the digital message (annotated here) sent by Frank Drake to M13 in 1974 using the Arecibo radio telescope.

On and on it goes: the nearest large galaxy, Andromeda, lies 2.5 million light years from us and for many is the faintest, most distant object visible with the naked eye. To think that looking at the galaxy takes us back to the time our distant ancestors first used simple tools. Light may be the fastest thing in the universe, but these travel times hint at the true enormity of space.

Let’s go a little further. On November 16, 1974 a digital message was beamed from the Arecibo radio telescope in Puerto Rico to the rich star cluster M13 in Hercules 25,000 light years away. The message was created by Dr. Frank Drake, then professor of astronomy at Cornell, and contained basic information about humanity, including our numbering system, our location in the solar system and the composition of DNA, the molecule of life. It consisted of 1,679 binary bits representing ones and zeroes and was our first deliberate communication sent to extraterrestrials. Today the missive is 42 light years away, just barely out the door.

Galaxy GN-z11, shown in the inset, is seen as it was 13.4 billion years in the past, just 400 million years after the big bang, when the universe was only three percent of its current age. The galaxy is ablaze with bright, young, blue stars, but looks red in this image because its light has been stretched to longer spectral wavelengths by the expansion of the universe. Credit: NASA, ESA, P. Oesch, G. Brammer, P. van Dokkum, and G. Illingworth

Let’s end our time machine travels with the most distant object we’ve seen in the universe, a galaxy named GN-z11 in Ursa Major. We see it as it was just 400 million years after the Big Bang (13.4 billion years ago) which translates to a proper distance from Earth of 32 billion light years. The light astronomers captured on their digital sensors left the object before there was an Earth, a Solar System or even a Milky Way galaxy!

Thanks to light’s finite speed we can’t help but always see things as they were. You might wonder if there’s any way to see something right now without waiting for the light to get here? There’s just one way, and that’s to be light itself.

From the perspective of a photon or light particle, which travels at the speed of light, distance and time completely fall away. Everything happens instantaneously and travel time to anywhere, everywhere is zero seconds. In essence, the whole universe becomes a point. Crazy and paradoxical as this sounds, the theory of relativity allows it because an object traveling at the speed of light experiences infinite time dilation and infinite space contraction.

Just something to think about the next time you meet another’s eyes in conversation. Or look up at the stars.

SpaceX Dragon Splashes Down in Pacific with Treasure Trove of Space Station Science

The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX
The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX

KENNEDY SPACE CENTER, FL – SpaceX’s tenth contracted resupply mission to the International Space Station came to a safe conclusion with a splashdown of the Dragon spacecraft in the Pacific Ocean Sunday and successfully returned a treasure trove of more than two tons of precious science experiments and research samples from the space station.

Researchers on Earth are eagerly awaiting the science data and samples in order to carry out high powered laboratory analysis that will eventually yield the fruits of the hard won labor – years in the making.

The Dragon CRS-10 cargo freighter departed the International Space Station (ISS) Sunday morning after Expedition 50 astronauts Thomas Pesquet of ESA (European Space Agency) and Shane Kimbrough of NASA released the spacecraft from the grip of the station’s 57.7-foot-long(17.6-meter) Canadian-built Canadarm2 robotic arm as planned at 5:11 a.m. EDT, March 19.

After carefully maneuvering away from the orbiting outpost and six person international crew at an altitude of appox. 250 miles (400 km), Dragon eased away to a safe distance.

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

The vessel then fired its braking thrusters a few hours later to initiate the reentry burn that would set the craft on course for a fiery plummet through the Earth’s atmosphere.

Some five and a half hours later the spaceship carried out a parachute assisted splashdown in the Pacific Ocean at 10:46 a.m. EDT, about 200 miles southwest of Long Beach, California.

The highest priority research and technology cargo will be removed from Dragon immediately and returned to NASA.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The rest will travel back to port and be prepared for a return trip to SpaceX’s test facility in McGregor, Texas, where the remaining scientific samples, research experiments and technology gear and hardware will be unloaded for NASA.

Dragon had spent nearly a month berthed at the Earth-facing port on the station’s Harmony module, since arriving on Feb 23.

Dragon begun its space voyage after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory – as I reported here.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

At liftoff, the Dragon CRS-10 space freighter was carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload to the low Earth orbiting station in support of the Expedition 50 and 51 crew members.

After a four day chase, Dragon was captured and attached to the station using the Canadian arm on Feb 23 by the same two astronauts who released it on Sunday.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck. Astronauts plucked them out of the trunk using the robotic arm and attached them to specified locations on the stations exterior to carry out their objectives.

For the return trip to Earth, the astronaut crew loaded Dragon with more than 5,400 pounds of NASA cargo, and science and technology demonstration samples gathered and collected by the stations crewmembers.

“A variety of technological and biological studies are returning in Dragon. The Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity,” said NASA.

“This information will provide insight into how human cancers start and spread, which aids in the development of prevention and treatment plans. Results from this investigation could lead to the treatment of disease and injury in space, as well as provide a way to improve stem cell production for human therapy on Earth.”

“Samples from the Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates such as rodents and humans from re-growing lost bone and tissue, and how microgravity conditions affect the process. Results will provide a new understanding of the biological reasons behind a human’s inability to grow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic non-healing wounds.”

Dragon departed in order to make way for the arrival of the next cargo ship.

The ‘SS John Glenn’ Cygnus cargo freighter built by Orbital Sciences is due to lift off no earlier than March 27 on a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch and mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Next Cygnus Cargo Ship Christened the SS John Glenn to Honor First American in Orbit

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA's original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. It launched on April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com
The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The next Cygnus cargo ship launching to the International Space Station (ISS) has been christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The naming announcement was made by spacecraft builder Orbital ATK during a ceremony with the ‘S.S. John Glenn’, held inside the Kennedy Space Center (KSC) clean room facility where the cargo freighter is in the final stages of flight processing – and attended by media including Universe Today on Thursday, March 9.

“It is my humble duty and our great honor to name this spacecraft the S.S. John Glenn,” said Frank DeMauro, vice president and general manager of Orbital ATK’s Advanced Programs division, during the clean room ceremony in the inside the Payload Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center in Florida.

The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The S.S. John Glenn is scheduled to liftoff as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

The space station resupply mission dubbed Cygnus OA-7 is dedicated to Glenn and his landmark achievement as the first American to orbit the Earth on Feb. 20, 1962 and his life promoting science, human spaceflight and education.

“John Glenn was probably responsible for more students studying math and science and being interested in space than anyone,” said former astronaut Brian Duffy, Orbital ATK’s vice president of Exploration Systems, during the clean room ceremony on March 9.

“When he flew into space in 1962, there was not a child then who didn’t know his name. He’s the one that opened up space for all of us.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

Glenn’s 3 orbit mission played a pivotal role in the space race with the Soviet Union at the height of the Cold War era.

“He has paved the way for so many people to follow in his footsteps,” said DeMauro.

All of Orbital ATK’s Cygnus freighters have been named after deceased American astronauts.

Glenn is probably America’s most famous astronaut in addition to Neil Armstrong, the first man to walk on the moon during Apollo 11 in 1969.

John Glenn went on to become a distinguished U.S. Senator from his home state of Ohio on 1974. He served for 24 years during 4 terms.

He later flew a second mission to space aboard the Space Shuttle Discovery in 1998 as part of the STS-95 crew at age 77. Glenn remains the oldest person ever to fly in space.

“Glenn paved the way for America’s space program, from moon missions, to the space shuttle and the International Space Station. His commitment to America’s human space flight program and his distinguished military and political career make him an ideal honoree for the OA-7 mission,” Orbital ATK said in a statement.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

“The OA-7 mission is using the Enhanced Cygnus Pressurized Cargo Module (PCM) to deliver cargo to the International Space Station,” said DeMauro.

Cygnus will carry 7,700 pounds (3500 kg) of cargo to the station with a total volumetric capacity of 27 cubic meters.

“All these teams have worked extremely hard to get this mission to this point and we are looking forward to a great launch.”

Orbital ATK Cygnus OA-7 supply ship named the SS John Glenn undergoes processing inside the Payload Hazardous Servicing Facility at KSC on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

This is the third Cygnus to launch on an Atlas V rocket from the Cape. The last one launched a year ago on March 24, 2016 during the OA-6 mission. The first one launched in December 2015 during the OA-4 mission.

“We’re building the bridge to history with these missions,” said Vernon Thorp, ULA’s program manager for Commercial Missions.

“Every mission is fantastic and every mission is unique. At the end of the day every one of these missions is critical.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

The other Cygnus spacecraft have launched on the Orbital ATK commercial Antares rocket from NASA Wallops Flight Facility on Virginia’s eastern shore.

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Overall this is Orbital ATK’s seventh commercial resupply services mission (CRS) to the space station under contract to NASA.

OA-7 also counts as NASA’s second supply mission of the year to the station following last month’s launch of the SpaceX Dragon CRS-10 capsule on Feb. 19 and which is currently berthed to the station at a Earth facing port on the Harmony module.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 mission will launch again from NASA Wallops in the summer of 2017, DeMauro told me.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Posing with the newly christened SS John Glenn for the Cygnus OA-7 resupply mission to the ISS are Vern Thorp, United Launch Alliance Program program manager for Commercial Missions, Ken Kremer, Universe Today and Frank DeMauro, Orbital ATK vice president and general manager of Orbital ATK’s Advanced Programs division inside the Payload Hazardous Servicing Facility cleanroom at NASA’s Kennedy Space Center on March 9, 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings