Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Astronomers and astrophysicists could use these alerts and information to understand how neutron stars behave and study nuclear interactions between neutron stars and black holes colliding.

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance. Events where black holes and neutron stars collide can send out waves detectable here on Earth. It is possible that there can be an event in visible light when neutron stars collide so to take advantage of every opportunity an early warning is essential. The teams at LIGO-Virgo-KAGRA observatories are working on an alert system that will alert astronomers within 30 seconds fo a gravity wave event. If warning is early enough it may be possible to identify the source and watch the after glow. 

Continue reading “Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds”

Here’s Why We Should Put a Gravitational Wave Observatory on the Moon

Gravitational Wave science holds great potential that scientists are eager to develop. Is a gravitational wave observatory on the Moon the way forward? NASA/Goddard/LRO.

Scientists detected the first long-predicted gravitational wave in 2015, and since then, researchers have been hungering for better detectors. But the Earth is warm and seismically noisy, and that will always limit the effectiveness of Earth-based detectors.

Continue reading “Here’s Why We Should Put a Gravitational Wave Observatory on the Moon”

Gravitational Waves Could Show us the First Minute of the Universe

Primordial Gravitational Waves
Primordial Gravitational Waves

Astronomers routinely explore the universe using different wavelengths of the electromagnetic spectrum from the familiar visible light to radio waves and infra-red to gamma rays. There is a problem with studying the Universe through the electromagnetic spectrum, we can only see light from a time when the Universe was only 380,000 years old. An alternate approach is to use gravitational waves which are thought to have been present in the early Universe and may allow us to probe back even further. 

Continue reading “Gravitational Waves Could Show us the First Minute of the Universe”

The Echoes From Inflation Could Still Be Shaking the Cosmos Today

In the very early universe, physics was weird. A process known as “inflation,” where best we understand the universe went from a single infinitesimal point to everything we see today, was one such instance of that weird physics. Now, scientists from the Chinese Academy of Science have sifted through 15 years of pulsar timing data in order to put some constraints on what that physics looks like.

Continue reading “The Echoes From Inflation Could Still Be Shaking the Cosmos Today”

Astronomers are Hoping to Detect Gravitational Waves Coming from Supernova 1987A

This Hubble Space Telescope image shows Supernova 1987A within the Large Magellanic Cloud, a neighboring galaxy to our Milky Way.
Hubble Space Telescope image of SN1987A in the Large Magellanic Cloud (Credit : NASA)

A supernova explosion is a cataclysmic explosion that marks the violent end of a massive star’s life. During the event, the star releases immense amounts of energy, often outshining the combined light from all the stars in the host galaxy for a very brief period of time. The explosion produces heavy elements and spreads them out among the stars to contribute to the formation of new stars and planets. The closest supernova in recent years occurred in the Large Magellanic Cloud in 1987 (SN1987A) and now, a team of astronomers have searched through mountains of data to see if they can detect gravitational waves from the remnant. 

Continue reading “Astronomers are Hoping to Detect Gravitational Waves Coming from Supernova 1987A”

Next Generation Gravitational Wave Observatories Could Detect 100-600 Solar Mass Black Hole Mergers

Simulation of merging supermassive black holes. Credit: NASA's Goddard Space Flight Center/Scott Noble

Humans are born wonderers. We’re always wondering about the next valley over, the next horizon, what we’ll understand next about this vast Universe that we’re all wrapped up in.

In 2015, we finally detected our first long-awaited and long-theorized gravitational wave from the distant merger of two stellar mass black holes. But now we want to know more, and only better detectors can feed our appetite.

Continue reading “Next Generation Gravitational Wave Observatories Could Detect 100-600 Solar Mass Black Hole Mergers”

A Kilonova Simulated in 3D

An artists impression of a kilonova, the moment where two neutron stars merge. Credit: Dana Berry, Skyworks Digital, Inc.

In 2017, astronomers detected gravitational waves from colliding neutron stars for the first time: a kilonova. Enormous amounts of heavy metals were detected in the light from the explosion, and astronomers continued to watch the expanding debris cloud.

Researchers have continued to study this event. Now, using a three-dimensional computer simulation, they have created a new recreation of this merger — second by second, as it happened — giving insights into all the high-energy mayhem and heavy elements formation in this catastrophic event.

Continue reading “A Kilonova Simulated in 3D”

If You Could See Gravitational Waves, the Universe Would Look Like This

A simulation of the sky seen in gravitational waves. Credit: NASA’s Goddard Space Flight Center

Imagine if you could see gravitational waves.

Of course, humans are too small to sense all but the strongest gravitational waves, so imagine you were a great creature of deep space, with tendrils that could extend a million kilometers. As gravitational waves rippled across your vast body, you would sense them squeezing and tugging ever so slightly upon you. And your brilliant mind could use these sensations to create an image in your mind. The ripples of distant supernovae, merging black holes, the undercurrent of the gravitational background. Creation, and destruction, all seen in your mind’s eye.

Continue reading “If You Could See Gravitational Waves, the Universe Would Look Like This”

It's Time for a Gravitational Wave Observatory in the Southern Hemisphere

Map of current and planned gravitational wave observatories. Credit: Caltech/MIT/LIGO Lab

What’s true for optical astronomy is also true for gravitational wave astronomy: the more observatories you have, the better your view of the sky. This is why the list of active gravitational wave observatories is growing. But so far they are all in the Northern Hemisphere. As a recent article on the arXiv points out, that means we are missing out on a good number of gravitational events.

Continue reading “It's Time for a Gravitational Wave Observatory in the Southern Hemisphere”

Pulsars Detected the Background Gravitational Hum of the Universe. Now Can They Detect Single Mergers?

How can array of pulsars can pinpoint binary black holes. Credit: Carl Knox/OzGrav

Current gravitational wave observatories have two significant limitations. The first is that they can only observe powerful gravitational bursts such as the mergers of black holes and neutron stars. The second is that they can only observe these mergers for wavelengths on the order of hundreds to thousands of kilometers. This means we can only observe stellar mass mergers. Of course, there’s a lot of interesting gravitational astronomy going on at other wavelengths and noise levels, which has motivated astronomers to get clever. One of these clever ideas is to use pulsars as a telescope.

Continue reading “Pulsars Detected the Background Gravitational Hum of the Universe. Now Can They Detect Single Mergers?”