Another Way to Search for Biosignatures of Alien Life. The Material Blasted out of Asteroid Impacts

In recent years, the number of confirmed extra-solar planets has risen exponentially. As of the penning of the article, a total of 3,777 exoplanets have been confirmed in 2,817 star systems, with an additional 2,737 candidates awaiting confirmation. What’s more, the number of terrestrial (i.e. rocky) planets has increased steadily, increasing the likelihood that astronomers will find evidence of life beyond our Solar System.

Unfortunately, the technology does not yet exist to explore these planets directly. As a result, scientists are forced to look for what are known as “biosignatures”, a chemical or element that is associated with the existence of past or present life. According to a new study by an international team of researchers, one way to look for these signatures would be to examine material ejected from the surface of exoplanets during an impact event.

The study – titled “Searching for biosignatures in exoplanetary impact ejecta“, was published in the scientific journal Astrobiology and recently appeared online. It was led by Gianni Cataldi, a researcher from Stockholm University’s Astrobiology Center. He was joined by scientists from the LESIA-Observatoire de Paris, the Southwest Research Institute (SwRI), the Royal Institute of Technology (KTH), and the European Space Research and Technology Center (ESA/ESTEC).

Artist’s impression of what an asteroid hitting the Earth might look like. Credit: NASA/Don Davis.

As they indicate in their study, most efforts to characterize exoplanet biospheres have focused on the planets’ atmospheres. This consists of looking for evidence of gases that are associated with life here on Earth – e.g. carbon dioxide, nitrogen, etc. – as well as water. As Cataldi told Universe Today via email:

“We know from Earth that life can have a strong impact on the composition of the atmosphere. For example, all the oxygen in our atmosphere is of biological origin. Also, oxygen and methane are strongly out of chemical equilibrium because of the presence of life. Currently, it is not yet possible to study the atmospheric composition of Earth-like exoplanets, however, such a measurement is expected to become possible in the foreseeable future. Thus, atmospheric biosignatures are the most promising way to search for extraterrestrial life.”

However, Cataldi and his colleagues considered the possibility of characterizing a planet’s habitability by looking for signs of impacts and examining the ejecta. One of the benefits of this approach is that ejecta escapes lower gravity bodies, such as rocky planets and moons, with the greatest ease. The atmospheres of these types of bodies are also very difficult to characterize, so this method would allow for characterizations that would not otherwise be possible.

And as Cataldi indicated, it would also be complimentary to the atmospheric approach in a number of ways:

“First, the smaller the exoplanet, the more difficult it is to study its atmosphere. On the contrary, smaller exoplanets produce larger amounts of escaping ejecta because their surface gravity is lower, making ejecta from smaller exoplanet easier to detect. Second, when thinking about biosignatures in impact ejecta, we think primarily of certain minerals. This is because life can influence the mineralogy of a planet either indirectly (e.g. by changing the composition of the atmosphere and thus allowing new minerals to form) or directly (by producing minerals, e.g. skeletons). Impact ejecta would thus allow us to study a different sort of biosignature, complementary to atmospheric signatures.”

Another benefit to this method is the fact that it takes advantage of existing studies that have examined the impacts of collisions between astronomical objects. For instance, multiple studies have been conducted that have attempted to place constraints on the giant impact that is believed to have formed the Earth-Moon system 4.5 billion years ago (aka. the Giant Impact Hypothesis).

While such giant collisions are thought to have been common during the final stage of terrestrial planet formation (lasting for approximately 100 million years), the team focused on impacts of asteroidal or cometary bodies, which are believed to occur over the entire lifetime of an exoplanetary system. Relying on these studies, Cataldi and his colleagues were able to create models for exoplanet ejecta.

As Cataldi explained, they used the results from the impact cratering literature to estimate the amount of ejecta created. To estimate the signal strength of circumstellar dust disks created by the ejecta, they used the results from debris disk (i.e. extrasolar analogues of the Solar System’s Main Asteroid Belt) literature. In the end, the results proved rather interesting:

“We found that an impact of a 20 km diameter body produces enough dust to be detectable with current telescopes (for comparison, the size of the impactor that killed the dinosaurs 65 million years ago is though to be around 10 km). However, studying the composition of the ejected dust (e.g. search for biosignatures) is not in the reach of current telescopes. In other words, with current telescopes, we could confirm the presence of ejected dust, but not study its composition.”

Perspective view looking from an unnamed crater (bottom right) towards the Worcester Crater. The region sits at the mouth of Kasei Valles, where fierce floodwaters emptied into Chryse Planitia. Credit: ESA/DLR/FU Berlin

In short, studying material ejected from exoplanets is within our reach and the ability to study its composition someday will allow astronomers to be able to characterize the geology of an exoplanet – and thus place more accurate constraints on its potential habitability. At present, astronomers are forced to make educated guesses about a planet’s composition based on its apparent size and mass.

Unfortunately, a more detailed study that could determine the presence of biosignatures in ejecta is not currently possible, and will be very difficult for even next-generation telescopes like the James Webb Space Telescope (JWSB) or Darwin. In the meantime, the study of ejecta from exoplanets presents some very interesting possibilities when it comes to exoplanet studies and characterization. As Cataldi indicated:

“By studying the ejecta from an impact event, we could learn something about the geology and habitability of the exoplanet and potentially detect a biosphere. The method is the only way I know to access the subsurface of an exoplanet. In this sense, the impact can be seen as a drilling experiment provided by nature. Our study shows that dust produced in an impact event is in principle detectable, and future telescopes might be able to constrain the composition of the dust, and therefore the composition of the planet.”

In the coming decades, astronomers will be studying extra-solar planets with instruments of increasing sensitivity and power in the hopes of finding indications of life. Given time, searching for biosignatures in the debris around exoplanets created by asteroid impacts could be done in tandem with searchers for atmospheric biosignatures.

With these two methods combined, scientists will be able to say with greater certainty that distant planets are not only capable of supporting life, but are actively doing so!

Further Reading: Astrobiology, arXiv

Life on Europa Would be Protected by Just a Few Centimeters of Ice

Ever since the Galileo probe provided compelling evidence for the existence of a global ocean beneath the surface of Europa in the 1990s, scientists have wondered when we might be able to send another mission to this icy moon and search for possible signs of life. Most of these mission concepts call for an orbiter or lander than will study Europa’s surface, searching the icy sheet for signs of biosignatures turned up from the interior.

Unfortunately, Europa’s surface is constantly bombarded by radiation, which could alter or destroy material transported to the surface. Using data from the Galileo and Voyager 1 spacecraft, a team of scientists recently produced a map that shows how radiation varies across Europa’s surface. By following this map, future missions like NASA’s Europa Clipper will be able to find the spots where biosignatures are most likely to still exist.

As many missions have revealed by studying Europa’s surface, the moon experiences periodic exchanges between the interior and the surface. If there is life in its interior ocean, then biological material could theoretically be brought to the surface where it could be studied. Since radiation from Jupiter’s magnetic field would destroy this material, knowing where it is most intense, how deep it goes, and how it could affect the interior are all important questions.

Artist’s impression of water bubbling up from Europa’s interior ocean and breaching the surface ice. Credit: NASA/JPL-Caltech

As Tom Nordheim, a research scientist at NASA’s Jet Propulsion Laboratory, explained in a recent NASA press release:

“If we want to understand what’s going on at the surface of Europa and how that links to the ocean underneath, we need to understand the radiation. When we examine materials that have come up from the subsurface, what are we looking at? Does this tell us what is in the ocean, or is this what happened to the materials after they have been radiated?”

To address these question, Nordheim and his colleagues examined data from Galileo‘s flybys of Europa and electron measurements from NASA’s Voyager 1 spacecraft. After looking closely at the electrons blasting the moon’s surface, Nordheim and his team found that the radiation doses vary by location. The harshest radiation is concentrated in zones around the equator, and the radiation lessens closer to the poles.

The study which describes their findings recently appeared in the scientific journal Nature under the title “Preservation of potential biosignatures in the shallow subsurface of Europa“. The study was led by Nordheim and was co-authored by Kevin Hand (also with the JPL) and Chris Paranicas from the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.

Artist’s concept of a Europa Clipper mission. Credit: NASA/JPL

“This is the first prediction of radiation levels at each point on Europa’s surface and is important information for future Europa missions,” said Paranicas. Now that scientists know where to find regions least altered by radiation, they will be able to designate areas of study for the Europa Clipper, a JPL-led mission that is expected to launch as early as 2022.

For the sake of their study, Nordheim and his team went beyond a conventional two-dimensional map to build 3D models that examined how far below the surface the radiation penetrates. To test how deep organic material would have to be buried in order to survive, Nordheim and his team tested the effect of radiation on amino acids (the basic building blocks for proteins) to figure out how Europa’s exposure to radiation would affect potential biosignatures.

The results indicate how deep scientists will need to dig or drill during a potential future Europa lander mission in order to find any biosignatures that might be preserved. In the highest-radiation zones around the equator, the depth at which biosignatures could be found ranged from 10 to 20 cm (4 to 8 inches). At the middle- and high-latitudes, closer to the poles, the depths decrease to about 1 cm (0.4 inches). As Hand indicated:

“The radiation that bombards Europa’s surface leaves a fingerprint. If we know what that fingerprint looks like, we can better understand the nature of any organics and possible biosignatures that might be detected with future missions, be they spacecraft that fly by or land on Europa.”

Artist’s impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SwRI

When the Europa Clipper mission reaches the Jovian system, the spacecraft will orbit Jupiter and conducting about 45 close flybys of Europa. It’s advanced suite of scientific instruments will include cameras, spectrometers, plasma and radar instruments which will investigate the composition of the moon’s surface, its ocean, and material that has been ejected from the surface.

“Europa Clipper’s mission team is examining possible orbit paths, and proposed routes pass over many regions of Europa that experience lower levels of radiation,” Hand said. “That’s good news for looking at potentially fresh ocean material that has not been heavily modified by the fingerprint of radiation.”

With this new radiation map, the mission team will be able to narrow the range of possible research sites. This, in turn, will increase the likelihood that the orbiter mission will be able to settle the decades-old mystery of whether or not there is life in the Jovian system.

Further Reading: NASA, Nature

New Research Raises Hopes for Finding Life on Mars, Pluto and Icy Moons

Since the 1970s, when the Voyager probes captured images of Europa’s icy surface, scientists have suspected that life could exist in interior oceans of moons in the outer Solar System. Since then, other evidence has emerged that has bolstered this theory, ranging from icy plumes on Europa and Enceladus, interior models of hydrothermal activity, and even the groundbreaking discovery of complex organic molecules in Enceladus’ plumes.

However, in some locations in the outer Solar System, conditions are very cold and water is only able to exist in liquid form because of the presence of toxic antifreeze chemicals. However, according to a new study by an international team of researchers, it is possible that bacteria could survive in these briny environments. This is good news for those hoping to find evidence of life in extreme environments of the Solar System.

The study which details their findings, titled “Enhanced Microbial Survivability in Subzero Brines“, recently appeared in the scientific journal Astrobiology. The study was conducted by Jacob Heinz from the Center of Astronomy and Astrophysics at the Technical University of Berlin (TUB), and included members from Tufts University, Imperial College London, and Washington State University.

Based on new evidence from Jupiter’s moon Europa, astronomers hypothesize that chloride salts bubble up from the icy moon’s global liquid ocean and reach the frozen surface. Credit: NASA/JPL-Caltech

Basically, on bodies like Ceres, Callisto, Triton, and Pluto – which are either far from the Sun or do not have interior heating mechanisms – interior oceans are believed to exist because of the presence of certain chemicals and salts (such as ammonia). These “antifreeze” compounds ensure that their oceans have lower freezing points, but create an environment that would be too cold and toxic to life as we know it.

For the sake of their study, the team sought to determine if microbes could indeed survive in these environments by conducting tests with Planococcus halocryophilus, a bacteria found in the Arctic permafrost. They then subjected this bacteria to solutions of sodium, magnesium and calcium chloride as well as perchlorate, a chemical compound that was found by the Phoenix lander on Mars.

They then subjected the solutions to temperatures ranging from +25°C to -30°C through multiple freeze and thaw cycles. What they found was that the bacteria’s survival rates depended on the solution and temperatures involved. For instance, bacteria suspended in chloride-containing (saline) samples had better chances of survival compared to those in perchlorate-containing samples – though survival rates increased the more the temperatures were lowered.

For instance, the team found that bacteria in a sodium chloride (NaCl) solution died within two weeks at room temperature. But when temperatures were lowered to 4 °C (39 °F), survivability began to increase and almost all the bacteria survived by the time temperatures reached -15 °C (5 °F). Meanwhile, bacteria in the magnesium and calcium-chloride solutions had high survival rates at –30 °C (-22 °F).

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

The results also varied for the three saline solvents depending on the temperature. Bacteria in calcium chloride (CaCl2) had significantly lower survival rates than those in sodium chloride (NaCl) and magnesium chloride (MgCl2)between 4 and 25 °C (39 and 77 °F), but lower temperatures boosted survival in all three.  The survival rates in perchlorate solution were far lower than in other solutions.

However, this was generally in solutions where perchlorate constituted 50% of the mass of the total solution (which was necessary for the water to remain liquid at lower temperatures), which would be significantly toxic. At concentrations of 10%, bacteria was still able to grow. This is semi-good news for Mars, where the soil contains less than one weight percent of perchlorate.

However, Heinz also pointed out that salt concentrations in soil are different than those in a solution. Still, this could be still be good news where Mars is concerned, since temperatures and precipitation levels there are very similar to parts of Earth – the Atacama Desert and parts of Antarctica. The fact that bacteria have can survive such environments on Earth indicates they could survive on Mars too.

In general, the research indicated that colder temperatures boost microbial survivability, but this depends on the type of microbe and the composition of the chemical solution. As Heinz told Astrobiology Magazine:

“[A]ll reactions, including those that kill cells, are slower at lower temperatures, but bacterial survivability didn’t increase much at lower temperatures in the perchlorate solution, whereas lower temperatures in calcium chloride solutions yielded a marked increase in survivability.”

This full-circle view from the panoramic camera (Pancam) on NASA’s Mars Exploration Rover Spirit shows the terrain surrounding the location called “Troy,” where Spirit became embedded in soft soil during the spring of 2009. Credit: NASA/JPL

The team also found that bacteria did better in saltier solutions when it came to freezing and thawing cycles. In the end, the results indicate that survivability all comes down to a careful balance. Whereas lower concentrations of chemical salts meant that bacteria could survive and even grow, the temperatures at which water would remain in a liquid state would be reduced. It also indicated that salty solutions improve bacteria survival rates when it comes to freezing and thawing cycles.

Of course, the team emphasized that just because bacteria can subsist in certain conditions doesn’t mean they will thrive there. As Theresa Fisher, a PhD student at Arizona State University’s School of Earth and Space Exploration and a co-author on the study, explained:

“Survival versus growth is a really important distinction, but life still manages to surprise us. Some bacteria can not only survive in low temperatures, but require them to metabolize and thrive. We should try to be unbiased in assuming what’s necessary for an organism to thrive, not just survive.”  

As such, Heinz and his colleagues are currently working on another study to determine how different concentrations of salts across different temperatures affect bacterial propagation. In the meantime, this study and other like it are able to provide some unique insight into the possibilities for extraterrestrial life by placing constraints on the kinds of conditions that they can survive and grow in.

These studies also allow help when it comes to the search for extraterrestrial life, since knowing where life can exist allows us to focus our search efforts. In the coming years, missions to Europa, Enceladus, Titan and other locations in the Solar System will be looking for biosignatures that indicate the presence of life on or within these bodies. Knowing that life can survive in cold, briny environments opens up additional possibilities.

Further Reading: Astrobiology Magazine, Astrobiology

Complex Organics Molecules are Bubbling up From Inside Enceladus

The Cassini orbiter revealed many fascinating things about the Saturn system before its mission ended in September of 2017. In addition to revealing much about Saturn’s rings and the surface and atmosphere of Titan (Saturn’s largest moon), it was also responsible for the discovery of water plumes coming from Enceladus‘ southern polar region. The discovery of these plumes triggered a widespread debate about the possible existence of life in the moon’s interior.

This was based in part on evidence that the plumes extended all the way to the moon’s core/mantle boundary and contained elements essential to life. Thanks to a new study led by researchers from of the University of Heidelberg, Germany, it has now been confirmed that the plumes contain complex organic molecules. This is the first time that complex organics have been detected on a body other than Earth, and bolsters the case for the moon supporting life.

The study, titled “Macromolecular organic compounds from the depths of Enceladus“, recently appeared in the journal Nature. The study was led by Frank Postberg and Nozair Khawaja of the Institute for Earth Sciences at the University of Heidelberg, and included members from the Leibniz Institute of Surface Modification (IOM), the Southwest Research Institute (SwRI), NASA’s Jet Propulsion Laboratory, and multiple universities.

The “tiger stripes” of Enceladus, as pictured by the Cassini space probe. Credit: NASA/JPL/ESA

The existence of a liquid water ocean in Enceladus’ interior has been the subject of scientific debate since 2005, when Cassini first observed plumes containing water vapor spewing from the moon’s south polar surface through cracks in the surface (nicknamed “Tiger Stripes”). According to measurements made by the Cassini-Huygens probe, these emissions are composed mostly of water vapor and contain molecular nitrogen, carbon dioxide, methane and other hydrocarbons.

The combined analysis of imaging, mass spectrometry, and magnetospheric data also indicated that the observed southern polar plumes emanate from pressurized subsurface chambers. This was confirmed by the Cassini mission in 2014 when the probe conducted gravity measurements that indicated the existence of a south polar subsurface ocean of liquid water with a thickness of around 10 km.

Shortly before the probe plunged into Saturn’s atmosphere, the probe also obtained data that indicated that the interior ocean has existed for some time. Thanks to previous readings that indicated the presence of hydrothermal activity in the interior and simulations that modeled the interior, scientists concluded that if the core were porous enough, this activity could have provided enough heat to maintain an interior ocean for billions of years.

However, all the previous studies of Cassini data were only able to identify simple organic compounds in the plume material, with molecular masses mostly below 50 atomic mass units. For the sake of their study, the team observed evidence of complex macromolecular organic material in the plumes’ icy grains that had masses above 200 atomic mass units.

Hydrothermal activity in Enceladus’ core and the rise of organic-rich bubbles. Credit and Copyright: ESA; F. Postberg et al (2018)

This constitutes the first-ever detection of complex organics on an extraterrestrial body. As Dr. Khawaja explained in a recent ESA press release:

“We found large molecular fragments that show structures typical for very complex organic molecules. These huge molecules contain a complex network often built from hundreds of atoms of carbon, hydrogen, oxygen and likely nitrogen that form ring-shaped and chain-like substructures.”

The molecules that were detected were the result of the ejected ice grains hitting the dust-analyzing instrument aboard Cassini at speeds of about 30,000 km/hour. However, the team believes that these were mere fragments of larger molecules contained beneath Enceladus’ icy surface. As they state in their study, the data suggests that there is a thin organic-rich film on top of the ocean.

These large molecules would be the result of by complex chemical processes, which could be those related to life. Alternately, they may be derived from primordial material similar to what has been found in some meteorites or (as the team suspects) that is generated by hydrothermal activity. As Dr. Postberg explained:

“In my opinion the fragments we found are of hydrothermal origin, having been processed inside the hydrothermally active core of Enceladus: in the high pressures and warm temperatures we expect there, it is possible that complex organic molecules can arise.”

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

As noted, recent simulations have shown the moon could be generating enough heat through hydrothermal activity for its interior ocean to have existed for billions of years. This study follows up on that scenario by showing how organic material could be injected into the ocean by hydrothermal vents. This is similar to what happens on Earth, a process that scientists believe may have played a vital role in the origins of life on our planet.

On Earth, organic substances are able to accumulate on the walls of rising air bubbles created by hydrothermal vents, which then rise to the surface and are dispersed by sea spray and the bubbles bursting. Scientists believe a similar process is happening on Enceladus, where bubbles of gas rising through the ocean could be bringing organic materiel up from the core-mantle boundary to the icy surface.

When these bubbles burst at the surface, it helps disperse some of the organics which then become part of the salty spray coming through the tiger cracks. This spray then freezes into icy particles as it reaches space, sending organic material and ice throughout the Saturn System, where it has now been detected. If this study is correct, then another fundamental ingredient for life is present in Enceladus’ interior, making the case for life there that much stronger.

This is just the latest in a long-line of discoveries made by Cassini, many of which point to the potential existence of life on or in some of Saturn’s moons. In addition to confirming the first organic molecules in an “ocean world” of our Solar System, Cassini also found compelling evidence of a rich probiotic environment and organic chemistry on Titan.

In the future, multiple missions are expected to return to these moons to gather more evidence of potential life, picking up where the venerable Cassini left off. So long Cassini, and thanks for blazing a trail!

Further Reading: ESA, Nature

The Tools Humanity Will Need for Living in the Year 1 Trillion

Since the 1990s, astrophysicists have known that for the past few billion years, the Universe has been experiencing an accelerated rate of expansion. This gave rise to the theory that the Universe is permeated by a mysterious invisible energy known as “dark energy”, which acts against gravity and is pushing the cosmos apart. In time, this energy will become the dominant force in the Universe, causing all stars and galaxies to spread beyond the cosmic horizon.

At this point, all stars and galaxies in the Universe will no longer be visible or accessible from any other. The question remains, what will intelligent civilizations (such as our own) do for resources and energy at this point? This question was addressed in a recent paper by Dr. Abraham Loeb – the  Frank B. Baird, Jr., Professor of Science at Harvard University and the Chair of the Harvard Astronomy Department.

The paper, “Securing Fuel for our Frigid Cosmic Future“, recently appeared online. As he indicates in his study, when the Universe is ten times its current age (roughly 138 billion years old), all stars outside the Local Group of galaxies will no be accessible to us since they will be receding away faster than the speed of light. For this reason, he recommends that humanity follow the lesson from Aesop’s fable, “The Ants and the Grasshopper”.

This classic tale tells the story of ants who spent the summer collecting food for the winter while the grasshopper chose to enjoy himself. While different versions of the story exist that offer different takes on the importance of hard work, charity, and compassion, the lesson is simple: always be prepared. In this respect, Loeb recommends that advanced species migrate to rich clusters of galaxies.

These clusters represent the largest reservoirs of matter bound by gravity and would therefore be better able to resist the accelerated expansion of the Universe. As Dr. Loeb told Universe Today via email:

“In my essay I point out that mother Nature was kind to us as it spontaneously gave birth to the same massive reservoir of fuel that we would have aspired to collect by artificial means. Primordial density perturbations from the early universe led to the gravitational collapse of regions as large as tens of millions of light years, assembling all the matter in them into clusters of galaxies – each containing the equivalent of a thousand Milky Way galaxies.”

Dr. Loeb also indicated where humanity (or other advanced civilizations) should consider relocating to when the expansion of the Universe causes the stars of the Local Group to expand beyond the cosmic horizon. Within 50 million light years, he indicates, likes the Virgo Cluster, which contains about a thousands times more matter than the Milky Way Galaxy. The second closest is the Coma Cluster, a collection of over 1000 galaxies located about 336 million light years away.

Diagram showing the Virgo Supercluster. Credit: Wikipedia Commons/Andrew Z. Colvin

In addition to offering a solution to the accelerating expansion of the Universe, Dr. Loeb’s study also presents some interesting possibilities when it comes to the search for extra-terrestrial intelligence (SETI). If, in fact, there are already advanced civilizations migrating to prepare for the inevitable expansion of the Universe, they may be detectable by various means. As Dr. Loeb explained:

“If traveling civilizations transmit powerful signals then we might be able to see evidence for their migration towards clusters of galaxies. Moreover, we would expected a larger concentration of advanced civilization in clusters than would be expected simply by counting the number of galaxies there. Those that settle there could establish more prosperous communities, in analogy to civilizations near rivers or lakes on Earth.”

This paper is similar to a study Dr. Loeb conducted back in 2011, which appeared in the Journal of Cosmology and Astroparticle Physics under the title “Cosmology with Hypervelocity Stars“. At the time, Dr. Loeb was addressing what would happen in the distant future when all extragalactic light sources will cease to be visible or accessible due to the accelerating expansion of the Universe.

This study was a follow-up to a 2001 paper in which Dr. Loeb addressed what would become of the Universe in billions of years – which appeared in the journal Physical Review Letters under the title “The Long–Term Future of Extragalactic Astronomy“. Shortly thereafter, Dr. Loeb and Freeman Dyson himself began to correspond about what could be done to address this problem.

An artist’s conception of a hypervelocity star that has escaped the Milky Way. Credit: NASA

Their correspondence was the subject of an article by Nathan Sanders (a writer for Astrobites) who recounted what Dr. Loeb and Dr. Dyson had to say on the matter. As Dr. Loeb recalls:

“A decade ago I wrote a few papers on the long-term future of the Universe, trillions of years from now. Since the cosmic expansion is accelerating, I showed that once the universe will age by a factor of ten (about a hundred billion years from now), all matter outside our Local Group of galaxies (which includes the Milky Way and the Andromeda galaxy, along with their satellites) will be receding away from us faster than light. After one of my papers was posted in 2011, Freeman Dyson wrote to me and suggested to a vast “cosmic engineering project” in which we will concentrate matter from a large-scale region around us to a small enough volume such that it will stay bound by its own gravity and not expand with the rest of the Universe.”

At the time, Dr. Loeb indicated that data gathered by the Sloan Digital Sky Survey (SDSS) indicated that attempts at “super-engineering” did not appear to be taking place. This was based on the fact that the galaxy clusters observed by the SDSS were not overdense, nor did they exhibit particularly high velocities (as would be expected). To this, Dr. Dyson wrote: “That is disappointing. On the other hand, if our colleagues have been too lazy to do the job, we have plenty of time to start doing it ourselves.”

A similar idea was presented in a recent paper by Dr. Dan Hooper, an astrophysicist from the Fermi National Accelerator Laboratory (FNAL) and the University of Chicago. In his study, Dr. Hooper suggested that advanced species could survive all stars in the Local Group expanding beyond the cosmic horizon (100 billion years from now), by harvesting stars across tens of millions of light years.

Artist impression of the 14 galaxies detected by ALMA as they appear in the very early, very distant universe. These galaxies are in the process of merging and will eventually form the core of a massive galaxy cluster. Credit: NRAO/AUI/NSF; S. Dagnello

This harvesting would consist of building unconventional Dyson Spheres that would use the energy they collected from stars to propel them towards the center of the species’ civilization. However, only stars that range in mass of 0.2 to 1 Solar Masses would be usable, as high-mass stars would evolve beyond their main sequence before reaching the destination and low-mass stars would not generate enough energy for acceleration to make it in time.

But as Dr. Loeb indicates, there are additional limitations to this approach, which makes migrating more attractive than harvesting.

“First, we do not know of any technology that enables moving stars around, and moreover Sun-like stars only shine for about ten billion years (of order the current age of the Universe) and cannot serve as nuclear furnaces that would keep us warm into the very distant future. Therefore, an advanced civilization does not need to embark on a giant construction project as suggested by Dyson and Hooper, but only needs to propel itself towards the nearest galaxy cluster and take advantage of the cluster resources as fuel for its future prosperity.”

While this may seem like a truly far-off concern, it does raise some interesting questions about the long-term evolution of the Universe and how intelligent civilizations may be forced to adapt. In the meantime, if it offers some additional possibilities for searching for extra-terrestrial intelligences (ETIs), then so much the better.

And as Dr. Dyson said, if there are currently no ETIs preparing for the coming “cosmic winter” with cosmic engineering projects, perhaps it is something humanity can plan to tackle someday!

Further Reading: arXiv, Journal of Cosmology and Astroparticle Physics, astrobites, astrobites (2)

New Model Predicts That We’re Probably the Only Advanced Civilization in the Observable Universe

The Fermi Paradox remains a stumbling block when it comes to the search for extra-terrestrial intelligence (SETI). Named in honor of the famed physicist Enrico Fermi who first proposed it, this paradox addresses the apparent disparity between the expected probability that intelligent life is plentiful in the Universe, and the apparent lack of evidence of extra-terrestrial intelligence (ETI).

In the decades since Enrico Fermi first posed the question that encapsulates this paradox (“Where is everybody?”), scientists have attempted to explain this disparity one way or another. But in a new study conducted by three famed scholars from the Future of Humanity Institute (FHI) at Oxford University, the paradox is reevaluated in such a way that it makes it seem likely that humanity is alone in the observable Universe.

The study, titled “Dissolving the Fermi Paradox“, recently appeared online. The study was jointly-conducted by Anders Sandberg, a Research Fellow at the Future of Humanity Institute and a Martin Senior Fellow at Oxford University; Eric Drexler, the famed engineer who popularized the concept of nanotechnology; and Tod Ord, the famous Australian moral philosopher at Oxford University.

The Drake Equation, a mathematical formula for the probability of finding life or advanced civilizations in the universe. Credit: University of Rochester

For the sake of their study, the team took a fresh look at the Drake Equation, the famous equation proposed by astronomer Dr. Frank Drake in the 1960s. Based on hypothetical values for a number of factors, this equation has traditionally been used to demonstrate that – even if the amount of life developing at any given site is small – the sheer multitude of possible sites should yield a large number of potentially observable civilizations.

This equation states that the number of civilizations (N) in our galaxy that we might able to communicate can be determined by multiplying the average rate of star formation in our galaxy (R*), the fraction of those stars which have planets (fp), the number of planets that can actually support life (ne), the number of planets that will develop life (fl), the number of planets that will develop intelligent life (fi),  the number civilizations that would develop transmission technologies (fc), and the length of time that these civilizations would have to transmit their signals into space (L). Mathematically, this is expressed as:

N = R* x fp x ne x fl x fi x fc x L

Dr. Sandberg is no stranger to the Fermi Paradox, nor is he shy about attempting to resolve it. In a previous study, titled “That is not dead which can eternal lie: the aestivation hypothesis for resolving Fermi’s paradox“, Sandberg and his associates proposed that the Fermi Paradox arises from the fact that ETIs are not dead, but currently in a state of hibernation – what they called “aestivation” – and awaiting better conditions in the Universe.

In a study conducted back in 2013, Sandberg and Stuart Armstrong (also a research associate with the FHI and one of the co-authors on this study) extended the Fermi Paradox to look beyond our own galaxy, addressing how more advanced civilizations would feasibly be able to launch colonization projects with relative ease (and even travel between galaxies without difficulty).

As Dr. Sandberg told Universe Today via email:

“One can answer [the Fermi Paradox] by saying intelligence is very rare, but then it needs to be tremendously rare. Another possibility is that intelligence doesn’t last very long, but it is enough that one civilization survives for it to become visible. Attempts at explaining it by having all intelligences acting in the same way (staying quiet, avoiding contact with us, transcending) fail since they require every individual belonging to every society in every civilization to behave in the same way, the strongest sociological claim ever. Claiming long-range settlement or communication are impossible requires assuming a surprisingly low technology ceiling. Whatever the answer is, it more or less has to be strange.”

In this latest study, Sandberg, Drexler and Ord reconsider the parameters of the Drake Equation by incorporating models of chemical and genetic transitions on paths to the origin of life. From this, they show that there is a considerable amount of scientific uncertainties that span multiple orders of magnitude. Or as Dr. Sandberg explained it:

“Many parameters are very uncertain given current knowledge. While we have learned a lot more about the astrophysical ones since Drake and Sagan in the 1960s, we are still very uncertain about the probability of life and intelligence. When people discuss the equation it is not uncommon to hear them say something like: “this parameter is uncertain, but let’s make a guess and remember that it is a guess”, finally reaching a result that they admit is based on guesses. But this result will be stated as single number, and that anchors us to an *apparently* exact estimate – when it should have a proper uncertainty range.  This often leads to overconfidence, and worse, the Drake equation is very sensitive to bias: if you are hopeful a small nudge upwards in several uncertain estimates will give a hopeful result, and if you are a pessimist you can easily get a low result.”

Frank Drake writing his famous equation on a white board. Credit: SETI.org

As such, Sandberg, Drexler and Ord looked at the equation’s parameters as uncertainty ranges. Instead of focusing on what value they might have, they looked at what the largest and smallest values they could have based on current knowledge. Whereas some values have become well constrained – such as the number of planets in our galaxy based on exoplanet studies and the number that exist within a star’s habitable zone – others remain far more uncertain.

When they combined these uncertainties, rather than the guesswork that often go into the Fermi Paradox, the team got a distribution as a result. Naturally, this resulted in a broad spread due to the number of uncertainties involved. But as Dr. Sandberg explained, it did provide them with an estimate of the likelihood that humanity (given what we know) is alone in the galaxy:

“We found that even using the guesstimates in the literature (we took them and randomly combined the parameter estimates) one can have a situation where the mean number of civilizations in the galaxy might be fairly high – say a hundred – and yet the probability that we are alone in the galaxy is 30%! The reason is that there is a very skew distribution of likelihood.

“If we instead try to review the scientific knowledge, things get even more extreme. This is because the probability of getting life and intelligence on a planet has an *extreme* uncertainty given what we know – we cannot rule out that it happens nearly everywhere there is the right conditions, but we cannot rule out that it is astronomically rare. This leads to an even stronger uncertainty about the number of civilizations, drawing us to conclude that there is a fairly high likelihood that we are alone. However, we *also* conclude that we shouldn’t be too surprised if we find intelligence!”

Is anybody out there? Anybody at all? Credit: UCLA SETI Group/Yuri Beletsky, Carnegie Las Campanas Observatory

In the end, the team’s conclusions do not mean that humanity is alone in the Universe, or that the odds of finding evidence of extra-terrestrial civilizations (both past and present) is unlikely. Instead, it simply means that we can say with greater confidence – based on what we know – that humanity is most likely the only intelligent species in the Milky Way Galaxy at present.

And of course, this all comes down to the uncertainties we currently have to contend with when it comes to SETI and the Drake Equation. In that respect, the study conducted by Sandberg, Drexler and Ord is an indication that much more needs to be learned before we can attempt to determine just how likely ETI is out there.

“What we are not showing is that SETI is pointless – quite the opposite!” said Dr. Sandberg. “There is a tremendous level of uncertainty to reduce. The paper shows that astrobiology and SETI can play a big role in reducing the uncertainty about some of the parameters. Even terrestrial biology may give us important information about the probability of life emerging and the conditions leading to intelligence. Finally, one important conclusion we find is that lack of observed intelligence does not strongly make us conclude that intelligence doesn’t last long: the stars are not foretelling our doom!”

So take heart, SETI enthusiasts! While the Drake Equation may not be something we can produce accurate values for anytime soon, the more we learn, the more refined the values will be. And remember, we only need to find intelligent life once in order for the Fermi Paradox to be resolved!

Further Reading: arXiv

How an Advanced Civilization Could Stop Dark Energy From Preventing Their Future Exploration

During the 1930s, astronomers came to realize that the Universe is in a state of expansion. By the 1990s, they realized that the rate at which it is expansion is accelerating, giving rise to the theory of “Dark Energy”. Because of this, it is estimated that in the next 100 billion years, all stars within the Local Group – the part of the Universe that includes a total of 54 galaxies, including the Milky Way – will expand beyond the cosmic horizon.

At this point, these stars will no longer be observable, but inaccessible – meaning that no advanced civilization will be able to harness their energy. Addressing this, Dr. Dan Hooper  – an astrophysicist from the Fermi National Accelerator Laboratory (FNAL) and the University of Chicago – recently conducted a study that indicated how a sufficiently advanced civilization might be able to harvest these stars and prevent them from expanding outward.

For the sake of his study, which recently appeared online under the title “Life Versus Dark Energy: How An Advanced Civilization Could Resist the Accelerating Expansion of the Universe“, Dr. Dan Hooper considered how civilizations might be able to reverse the process of cosmic expansion. In addition, he suggests ways in which humanity might looks for signs of such a civilization.

To put it simply, the theory of Dark Energy is that space is filled with a mysterious invisible force that counteracts gravity and causes the Universe to expand at an accelerating rate. The theory originated with Einstein’s Cosmological Constant, a term he added to his theory of General Relativity to explain how the Universe could remain static, rather than be in a state of expansion or contraction.

While Einstein was proven wrong, thanks to observations that showed that the Universe was expanding, scientists revisited the concept in order to explain how cosmic expansion has sped up in the past few billion years. The only problem with this theory, according to Dr. Hooper’s study, is that the dark energy will eventually become dominant, and the rate of cosmic expansion Universe will increase exponentially.

As a result, the Universe will expand to the point where all stars are so far apart that intelligent species won’t even be able to see them, let alone explore them or harness their energy. As Dr. Hooper told Universe Today via email:

“Cosmologists have learned over the last 20 years that our universe is expanding at an accelerating rate. This means that over the next 100 billion years or so, most of the stars and galaxies that we can now see in the sky will disappear forever, falling beyond any regions of space that we could reach, even in principle. This will limit the ability of a far-future advanced civilization to collect energy, and thus limit any number of things they might want to accomplish.”

Illustration showing the Lamba Cold Dark Matter (LCDM) model, which indicates how the influence of dark energy has led to an accelerated rate of cosmic expansion. Credit: Wikipedia Commons/Alex Mittelmann

In addition to being the Head of the Theoretical Astrophysics Group at the FNAL, Dr. Hooper is also an Associate Professor in the Department of Astronomy and Astrophysics at the University of Chicago. As such, he is well versed when it comes to the big questions of extra-terrestrial intelligence (ETI) and how cosmic evolution will affect intelligent species.

To tackle how advanced civilizations would go about living in such a Universe, Dr. Hooper begins by assuming that the civilizations in question would be a Type III on the Kardashev scale. Named in honor of Russian astrophysicist Nikolai Kardashev, a Type III civilization would have reached galactic proportions and could control energy on a galactic scale. As Hooper indicated:

“In my paper, I suggest that the rational reaction to this problem would be for the civilization to expand outward rapidly, capturing stars and transporting them to the central civilization, where they could be put to use. These stars could be transported using the energy they produce themselves.”

As Dr. Hooper admits, this conclusion relies on two assumptions – first, that a highly advanced civilization will attempt to maximize its access to usable energy; and second, that our current understanding of dark energy and the future expansion of our Universe is approximately correct. With this in mind, Dr. Hooper attempted to calculate which stars could be harvested using Dyson Spheres and other megastructures.

This harvesting, according to Dr. Hooper, would consist of building unconventional Dyson Spheres that would use the energy they collected from stars to propel them towards the center of the species’ civilization. High-mass stars are likely to evolve beyond the main sequence before reaching the destination of the central civilization and low-mass stars would not generate enough energy (and therefore acceleration) to avoid falling beyond the horizon.

For these reasons, Dr. Hooper concludes that stars with masses of between 0.2 and 1 Solar Masses will be the most attractive targets for harvesting. In other words, stars that are like our Sun (G-type, or yellow dwarf), orange dwarfs (K-type), and some M-type (red dwarf) stars would all be suitable for a Type III civilization’s purposes. As Dr. Hooper indicates, there would be limiting factors that have to be considered:

“Very small stars often do not produce enough energy to get them back to the central civilization. On the other hand, very large stars are short lived and will run out of nuclear fuel before they reach their destination. Thus the best targets of this kind of program would be stars similar in size (or a little smaller) than the Sun.”

Based on the assumption that such a civilization could travel at 1 – 10% the speed of light, Dr. Hooper estimates that they would be able to harvest stars out to a co-moving radius of approximately 20 to 50 Megaparsecs (about 65.2 million to 163 million light-years). Depending on their age, 1 to 5 billion years, they would be able to harvest stars within a range of 1 to 4 Megaparsecs (3,260 to 13,046 light-years) or up to several tens of Megaparsecs.

In addition to providing a framework for how a sufficiently-advanced civilization could survive cosmic acceleration, Dr. Hooper’s paper also provides new possibilities in the search for extra-terrestrial intelligence (SETI). While his study primarily addresses the possibility that such a mega-civilization will emerge in the future (perhaps it will even be our own), he also acknowledges the possibility that one could already exist.

In the past, scientists have suggested looking for Dyson Spheres and other megastructures in the Universe by looking for signatures in the infrared or sub-millimeter bands. However, megastructures that have been built to completely harvest the energy of a star, and use it to transport them across space at relativistic speeds, would emit entirely different signatures.

In addition, the presence of such a mega-civilization could be discerned by looking at other galaxies and regions of space to see if a harvesting and transport process has already begun (or is in an advanced stage). Whereas past searchers for Dyson Spheres have focused on detecting the presence of structures around individual stars within the Milky Way, this kind of search would focus on galaxies or groups of galaxies in which most of the stars would be surrounded by Dyson Spheres and removed.

“This provides us with a very different signal to look for,” said Dr. Hooper. “An advanced civilization that is in the process of this program would alter the distribution of stars over regions of space tens of millions of light years in extent, and would likely produce other signals as a result of stellar propulsion.”

In the end, this theory not only provides a possible solution for how advanced species might survive cosmic expansion, it also offers new possibilities in the hunt for extra-terrestrial intelligence. With next-generation instruments looking farther into the Universe and with greater resolution, perhaps we should be on the lookout for hypervelocity stars that are all being transported to the same region of space.

Could be a Type III civilization preparing for the day when dark energy takes over!

Further Reading: arXiv

One Way to Find Aliens Would be to Search for Artificial Rings of Satellites: Clarke Belts

When it comes to the search for extra-terrestrial intelligence (SETI) in the Universe, there is the complicated matter of what to be on the lookout for. Beyond the age-old question of whether or not intelligent life exists elsewhere in the Universe (statistically speaking, it is very likely that it does), there’s also the question of whether or not we would be able to recognize it if and when we saw it.

Given that humanity is only familiar with one form of civilization (our own), we tend to look for indications of technologies we know or which seem feasible. In a recent study, a researcher from the Instituto de Astrofísica de Canarias (IAC) proposed looking for large bands of satellites in distant star systems – a concept that was proposed by the late and great Arthur C. Clarke (known as a Clarke Belt).

The study – titled “Possible Photometric Signatures of Moderately Advanced Civilizations: The Clarke Exobelt” – was conducted by Hector Socas-Navarro, an astrophysicist with the IAC and the Universidad de La Laguna. In it, he advocates using next-generation telescopes to look for signs of massive belts of geostationary communication satellites in distant star systems.

This proposal is based in part on a paper written by Arthur C. Clarke in 1945 (titled “Peacetime Uses for V2“), in which he proposed sending “artificial satellites” into geostationary orbit around Earth to create a global communications network. At present, there are about 400 such satellites in the “Clarke Belt” – a region named in honor of him that is located 36,000 km above the Earth.

This network forms the backbone of modern telecommunications and in the future, many more satellites are expected to be deployed – which will form the backbone of the global internet. Given the practicality of satellites and the fact that humanity has come to rely on them so much, Socas-Navarro considers that a belt of artificial satellites could naturally be considered “technomarkers” (the analogues of “biomarkers”, which indicate the presence of life).

As Socas-Navarro explained to Universe Today via email:

“Essentially, a technomarker is anything that we could potentially observe which would reveal the presence of technology elsewhere in the Universe. It’s the ultimate clue to find intelligent life out there. Unfortunately, interstellar distances are so great that, with our current technology, we can only hope to detect very large objects or structures, something comparable to the size of a planet.”

In this respect, a Clarke Exobelt is not dissimilar from a Dyson Sphere or other forms of megastructures that have been proposed by scientists in the past. But unlike these theoretical structures, a Clarke Exobelt is entirely feasible using present-day technology.

Graphic showing the cloud of space debris that currently surrounds the Earth. Credit: NASA’s Goddard Space Flight Center/JSC

“Other existing technomarkers are based on science fiction technology of which we know very little,” said Socas-Navarro. “We don’t know if such technologies are possible or if other alien species might be using them. The Clarke Exobelt, on the other hand, is a technomarker based on real, currently existing technology. We know we can make satellites and, if we make them, it’s reasonable to assume that other civilizations will make them too.”

According to Socas-Navarro, there is some “science fiction” when it comes to Clarke Exobelts that would actually be detectable using these instruments. As noted, humanity has about 400 operational satellites occupying Earth’s “Clarke Belt”. This is about one-third of the Earth’s existing satellites, whereas the rest are at an altitude of 2000 km (1200 mi) or less from the surface – the region known as Low Earth Orbit (LEO).

This essentially means that aliens would need to have billions more satellites within their Clarke Belt – accounting for roughly 0.01% of the belt area – in order for it to be detectable. As for humanity, we are not yet to the point where our own Belt would be detectable by an extra-terrestrial intelligence (ETI). However, this should not take long given that the number of satellites in orbit has been growing exponentially over the past 15 years.

Based on simulations conducted by Socas-Navarro, humanity will reach the threshold where its satellite band will be detectable by ETIs by 2200. Knowing that humanity will reach this threshold in the not-too-distant future makes the Clarke Belt a viable option for SETI. As Socas-Navarro explained:

“In this sense, the Clarke Exobelt is interesting because it’s the first technomarker that looks for currently existing technology. And it goes both ways too. Humanity’s Clarke Belt is probably too sparsely populated to be detectable from other stars right now (at least with technology like ours). But in the last decades we have been populating it at an exponential rate. If this trend were to continue, our Clarke Belt would be detectable from other stars by the year 2200. Do we want to be detectable? This is an interesting debate that humanity will have to resolve soon.

An exoplanet transiting across the face of its star, demonstrating one of the methods used to find planets beyond our solar system. Credit: ESA/C. Carreau

As for when we might be able to start looking for Exobelts, Socas-Navarro indicates that this will be possible within the next decade. Using instruments like the James Webb Space Telescope (JWST), the Giant Magellan Telescope (GMT), the European Extremely Large Telescope (E-ELT), and the Thirty Meter Telescope (TMT), scientists will have ground-based and space-based telescopes with the necessary resolution to spot these bands around exoplanets.

As for how these belts would be detected, that would come down to the most popular and effective means for finding exoplanets to date – the Transit Method (aka. Transit Photometry). For this method, astronomers monitor distant stars for periodic dips in brightness, which are indications of an exoplanet passing in front of the star. Using next-generation telescopes, astronomers may also be able to detect reflected light from a dense band of satellites in orbit.

“However, before we point our supertelescopes to a planet we need to identify good candidates,” said Socas-Navarro. “There are too many stars to check and we can’t go one by one. We need to rely on exoplanet search projects, such as the recently launched satellite TESS, to spot interesting candidates. Then we can do follow-up observations with supertelescopes to confirm or refute those candidates.”

In this respect, telescopes like the Kepler Space Telescope and the Transiting Exoplanet Survey Telescope (TESS) will still serve an important function in searching for technomarkers. Whereas the former telescope is due to retire soon, the latter is scheduled to launch in 2018.

Artist’s impression of an extra-solar planet transiting its star. Credit: QUB Astrophysics Research Center

While these space-telescopes would search for rocky planets that are located within the habitable zones of thousands of stars, next-generation telescopes could search for signs of Clarke Exobelts and other technomarkers that would be otherwise hard to spot. However, as Socas-Navarro indicated, astronomers could also find evidence of Exobands by sifting through existing data as well.

“In doing SETI, we have no idea what we are looking for because we don’t know what the aliens are doing,” he said. “So we have to investigate all the possibilities that we can think of. Looking for Clarke Exobelts is a new way of searching, it seems at least reasonably plausible and, most importantly, it’s free. We can look for signatures of Clarke Exobelts in currently existing missions that search for exoplanets, exorings or exomoons. We don’t need to build costly new telescopes or satellites. We simply need to keep our eyes open to see if we can spot the signatures presented in the simulation in the flow of data from all of those projects.”

Humanity has been actively searching for signs of extra-terrestrial intelligence for decades. To know that our technology and methods are becoming more refined, and that more sophisticated searches could begin within a decade, is certainly encouraging. Knowing that we won’t be visible to any ETIs that are out there for another two centuries, that’s also encouraging!

And be sure to check out this cool video by our friend, Jean Michael Godier, where he explains the concept of a Clarke Exobelt:

Further Reading: IAC, The Astrophysical Journal

Does Climate Change Explain Why We Don’t See Any Aliens Out There?

In the 1950s, famed physicist Enrico Fermi posed the question that encapsulated one of the toughest questions in the Search for Extra-Terrestrial Intelligence (SETI): “Where the heck is everybody?” What he meant was, given the age of the Universe (13.8 billion years), the sheer number of galaxies (between 1 and 2 trillion), and the overall number of planets, why has humanity still not found evidence of extra-terrestrial intelligence?

This question, which has come to be known as the “Fermi Paradox”, is something scientists continue to ponder. In a new study, a team from the University of Rochester considered that perhaps Climate Change is the reason. Using a mathematical model based on the Anthropocene, they considered how civilizations and planet systems co-evolve and whether or not intelligent species are capable of living sustainability with their environment.

The study, titled “The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback“, recently appeared in the scientific journal Astrobiology. The study was led by Adam Frank, a professor of physics and astronomy at the University of Rochester, with the assistance of Jonathan Carroll-Nellenback (a senior computational scientist at Rochester) Marina Alberti of the University of Washington, and Axel Kleidon of the Max Planck Institute for Biogeochemistry.

Today, Climate Change is one of the most pressing issues facing humanity. Thanks to changes that have taken place in the past few centuries – i.e. the industrial revolution, population growth, the growth of urban centers and reliance on fossil fuels – humans have had a significant impact on the planet. In fact, many geologists refer to the current era as the “Anthropocene” because humanity has become the single greatest factor affecting planetary evolution.

In the future, populations are expected to grow even further, reaching about 10 billion by mid-century and over 11 billion by 2100. In that time, the number of people who live within urban centers will also increase dramatically, increasing from 54% to 66% by mid-century. As such, the quesiton of how billions of people can live sustainably has become an increasingly important one.

Prof. Frank, who is also the author of the new book Light of the Stars: Alien Worlds and the Fate of the Earth (which draws on this study), conducted this study with his colleagues in order to address the issue Climate Change in an astrobiological context. As he explained in a University of Rochester press release:

“Astrobiology is the study of life and its possibilities in a planetary context. That includes ‘exo-civilizations’ or what we usually call aliens. If we’re not the universe’s first civilization, that means there are likely to be rules for how the fate of a young civilization like our own progresses.”

Using the Anthropocene as an example, one can see how civilization-planet systems co-evolve, and how a civilization can endanger itself through growth and expansion – in what is known as a “progress trap“. Basically, as civilizations grow, they consume more of the planet’s resources, which causes changes in the planet’s conditions. In this sense, the fate of a civilization comes down to how they use their planet’s resources.

In order to illustrate this process Frank and his collaborators developed a mathematical model that considers civilizations and planets as a whole. As Prof. Frank explained:

“The point is to recognize that driving climate change may be something generic. The laws of physics demand that any young population, building an energy-intensive civilization like ours, is going to have feedback on its planet. Seeing climate change in this cosmic context may give us better insight into what’s happening to us now and how to deal with it.”

The model was also based on case studies of extinct civilizations, which included the famous example of what became of the inhabitants of Rapa Nui (aka. Easter Island). According to archaeological studies, the people of the South Pacific began colonizing this island between 400 and 700 CE and its population peaked at 10,000 sometime between 1200 and 1500 CE.

Professor Adam Frank, who led the study in how civilization-planet systems evolve. Credit: University of Rochester photo / J. Adam Fenster

By the 18th century, however, the inhabitants had depleted their resources and the population declined to just 2000. This example raises the important concept known as “carrying capacity”, which is the maximum number of species an environment can support. As Frank explained, Climate Change is essentially how the Earth responds to the expansion of our civilization:

“If you go through really strong climate change, then your carrying capacity may drop, because, for example, large-scale agriculture might be strongly disrupted. Imagine if climate change caused rain to stop falling in the Midwest. We wouldn’t be able to grow food, and our population would diminish.”

Using their mathematical model, the team identified four potential scenarios that might occur on a planet. These include the Die-Off scenario, the Sustainability scenario, the Collapse Without Resource Change scenario, and the Collapse With Resource Change scenario. In the Die-Off scenario, the population and the planet’s state (for example, average temperatures) rise very quickly.

This would eventually lead to a population peak and then a rapid decline as changing planetary conditions make it harder for the majority of the population to survive. Eventually, a steady population level would be achieved, but it would only be a fraction of what the peak population was. This scenario occurs when civilizations are unwilling or unable to change from high-impact resources (i.e. oil, coal, clear-cutting) to sustainable ones (renewable energy).

Four scenarios for the fate of civilizations and their planets, based on mathematical models developed by Adam Frank and his collaborators. Credit: University of Rochester illustration / Michael Osadciw

In the Sustainability scenario, the population and planetary conditions both rise, but eventually come to together with steady values, thus avoiding any catastrophic effects. This scenario occurs when civilizations recognize that environmental changes threaten their existence and successfully make the transition from high-impact resources to sustainable ones.

The final two scenarios  – Collapse Without Resource Change and Collapse With Resource Change – differ in one key respect. In the former, the population and temperature both rise rapidly until the population reaches a peak and begins to drop rapidly – though it is not clear if the species itself survives. In the latter, the population and temperature rise rapidly, but the populations recognizes the danger and makes the transition. Unfortunately, the change comes too late and the population collapses anyway.

At present, scientists cannot say with any confidence which of these fates will be the one humanity faces. Perhaps we will make the transition before it is too late, perhaps not. But in the meantime, Frank and his colleagues hope to use more detailed models to predict how planets will respond to civilizations and the different ways they consume energy and resources in order to grow.

From this, scientists may be able to refine their predictions of what awaits us in this century and the next. It is during this time that crucial changes will be taking place, which include the aforementioned population growth, and the steady rise in temperatures. For instance, based on two scenarios that measured CO2 increases by the year 2100, NASA indicated that global temperatures could rise by either 2.5 °C (4.5 °F) or  4.4 °C (8 °F).

In the former scenario, where CO2 levels reached 550 ppm by 2100, the changes would be sustainable. But in the latter scenario, where CO2 levels reached 800 ppm, the changes would cause widespread disruption to systems that billions of humans depends upon for their livelihood and survival. Worse than that, life would become untenable in certain areas of the world, leading to massive displacement and humanitarian crises.

In addition to offering a possible resolution for the Fermi Paradox, this study offers some helpful advice for human beings. By thinking of civilizations and planets as a whole – be they Earth or exoplanets – researchers will be able to better predict what changes will be necessary for human civilization to survive. As Frank warned, it is absolutely essential that humanity mobilize now to ensure that the worst-case scenario does not occur here on Earth:

“If you change the earth’s climate enough, you might not be able to change it back. Even if you backed off and started to use solar or other less impactful resources, it could be too late, because the planet has already been changing. These models show we can’t just think about a population evolving on its own. We have to think about our planets and civilizations co-evolving.”

And be sure to enjoy this video that addresses Prof. Frank and his team’s research, courtesy of the University of Rochester:

Further Reading: University of Rochester, Astrobiology

Breakthrough Starshot is Now Looking for the Companies to Build its Laser-Powered Solar Sails to Other Stars

In 2015, Russian billionaire Yuri Milner established Breakthrough Initiatives, a non-profit organization dedicated to enhancing the search for extraterrestrial intelligence (SETI). In April of the following year, he and the organization be founded announced the creation of Breakthrough Starshot, a program to create a lightsail-driven “wafercraft” that would make the journey to the nearest star system – Proxima Centauri – within our lifetime.

In the latest development, on Wednesday May 23rd, Breakthrough Starshot held an “industry day” to outline their plans for developing the Starshot laser sail. During this event, the Starshot committee submitted a Request For Proposals (RFP) to potential bidders, outlining their specifications for the sail that will carry the wafercraft as it makes the journey to Proxima Centauri within our lifetimes.

As we have noted in several previous articles, Breakthrough Starshot calls for the creation of a gram-scale nanocraft being towed by a laser sail. This sail will be accelerated by an Earth-based laser array to a velocity of about 60,000 km/s (37,282 mps) – or 20% the speed of light (o.2 c). This concept builds upon the idea of a solar sail, a spacecraft that relies on solar wind to push itself through space.

An artist’s illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. Credit: M. Weiss/CfA

At this speed, the nanocraft would be able to reach the closest star system to our own – Proxima Centauri, located 4.246 light-years away – in just 20 years time. Since its inception, the team behind Breakthrough Starshot has invested considerable time and energy addressing the conceptual and engineering challenges such a mission would entail. And with this latest briefing, they are now looking to move the project from concept to reality.

In addition to being the Frank B. Baird, Jr. Professor of Science at Harvard University, Abraham Loeb is also the Chair of the Breakthrough Starshot Advisory Committee. As he explained to Universe Today via email:

“Starshot is an initiative to send a probe to the nearest star system at a fifth of the speed of light so that it will get there within a human lifetime of a couple of decades. The goal is to obtain photos of exo-planets like Proxima b, which is in the habitable zone of the nearest star Proxima Centauri, four light years away. The technology adopted for fulfilling this challenge uses a powerful (100 Giga-watt) laser beam pushing on a lightweight (1 gram) sail to which a lightweight electronics chip is attached (with a camera, navigation and communication devices). The related technology development is currently funded at $100M by Yuri Milner through the Breakthrough Foundation.”

In addition to outlining BI’s many efforts to find ETI – which include Breakthrough Listen, Breakthrough Message and Breakthrough Watch – the RFP focused on Starshot’s Objectives. As was stated in the RFP:

“The scope of this RFP addresses the Technology Development phase – to explore LightSail concepts, materials, fabrication and measurement methods, with accompanying analysis and simulation that creates advances toward a viable path to a scalable and ultimately deployable LightSail.”

A phased laser array, perhaps in the high desert of Chile, propels sails on their journey. Credit: Breakthrough Initiatives

As Loeb indicated, this RFP comes not long after another “industry day” that was related to the development of the technology of the laser – termed the “Photon Engine”. In contrast, this particular RFP was dedicated to the design of the laser sail itself, which will carry the nanocraft to Proxima Centauri.

“The Industry Day was intended to inform potential partners about the project and request for proposals (RFP) associated with research on the sail materials and design,” added Loeb. “Within the next few years we hope to demonstrate the feasibility of the required sail and laser technologies. The project will allocate funds to experimental teams who will conduct the related research and development work. ”

The RFP also addressed Starshot’s long-term goals and its schedule for research and development in the coming years. These include the investment in $100 million over the next five years to determine the feasibility of the laser and sail, to invest the value of the European Extremely Large Telescope (EELT) from year 6 to year 11 and build a low-power prototype for space testing, and invest the value of the Large Hardon Collider (LHC) over a 20 year period to develop the final spacecraft.

“The European Extremely Large Telescope (EELT) will cost on order of a billion [dollars] and the Large Hadron Collider cost was ten times higher,’ said Loeb. “These projects were mentioned to calibrate the scale of the cost for the future phases in the Starshot project, where the second phase will involve producing a demo system and the final step will involve the complete launch system.”

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

The research and development schedule for the sail was also outlined, with three major phases identified over the next 5 years. Phase 1 (which was the subject of the RFP) would entail the development of concepts, models and subscale testing. Phase 2 would involve hardware validation in a laboratory setting, while Phase 3 would consist of field demonstrations.

With this latest “industry day” complete, Starshot is now open for submissions from industry partners looking to help them realize their vision. Step A proposals, which are to consist of a five-page summary, are due on June 22nd and will be assessed by Harry Atwater (the Chair of the Sail Subcommittee) as well as Kevin Parkin (head of Parkin Research), Jim Benford (muWave Sciences) and Pete Klupar (the Project Manager).

Step B proposals, which are to consist of a more detailed, fifteen-page summary, will be due on July 10th. From these, the finalists will be selected by Pete Worden, the Executive Director of Breakthrough Starshot. If all goes according to plan, the initiative hopes to launch the first lasersail-driven nanocraft in to Proxima Centauri in 30 years and see it arrive there in 50 years.

So if you’re an aerospace engineer, or someone who happens to run a private aerospace firm, be sure to get your proposals ready! To learn more about Starshot, the engineering challenges they are addressing, and their research, follow the links provided to the BI page. To see the slides and charts from the RFP, check out Starshot’s Solicitations page.

Further Reading: Centauri Dreams, Breakthrough Starshot