Fried Egg? Flying Saucer? Nope. Just Cool New Closeups of Saturn’s Moon Pan

Saturn's "UFO moon" Pan up close. Credit: NASA/JPL/Space Science Institute
This new view of Saturn’s moon Pan is the closest yet, snapped by Cassini from a distance of 15,268 miles (24,572 km) on March 7, 2017. Pan measures 22 miles wide by 14 miles across and displays a number of small craters along with parallel ridges and grooves. Its broad, thinner equatorial ridge displays fine, parallel striations. Credit: NASA/JPL/Space Science Institute

Besides Earth, Saturn may be the only other planet where you can order rings with a side of ravioli. Closeup photos taken by the Cassini probe of the the planet’s second-innermost moon, Pan, on March 7 reveal remarkable new details that have us grasping at food analogies in a feeble attempt to describe its unique appearance.

A side view of Pan better shows its thin and wavy ridge likely built up through the accumulation of particles grabbed from Saturn’s rings. The ridge is between 0.9 and 2.5 miles (1-4 km) thick. Credit: NASA/JPL/Space Science Institute

 

As Pan moves along the Encke Gap its gravity creates ripples in Saturn’s A-ring. Credit:
NASA/JPL/Space Science Institute

The two-part structure of the moon is immediately obvious: a core body with a thin, wavy ridge encircling its equator. How does such a bizarre object form in the first place? There’s good reason to believe that Pan was once part of a larger satellite that broke up near Saturn long ago. Much of the material flattened out to form Saturn’s rings while large shards like Pan and another ravioli lookalike, Atlas, orbited within or near the rings, sweeping up ring particles about their middles. Tellingly, the ridges are about as thick as the vertical distances each satellite travels in its orbit about the planet.

Pan casts its shadow on Saturn’s A-ring from within the 200-mile-wide (325 km) Encke Gap, which is maintained by the presence of the moon. Pan shares the gap with several diffuse ringlets from which it may still be gathering additional material around its equatorial ridge. Credit: NASA/JPL/Space Science Institute

Today, Pan orbits within and clears the narrow Encke Gap in Saturn’s outer A-ring of debris. It also helps create and shape the narrow ringlets that appear in the gap It’s lookalike cousin Atlas orbits just outside the A-ring.

Pan and Altas (25×22 miles) orbit within Saturn’s ring plane and may both be fragments from a larger moon breakup that created Saturn’s rings. Both have swept up material from the rings to form equatorial ridges. Credit: NASA/JPL/Space Science Institute

Moons embedded in rings can have profound effects on that material from clearing gaps to creating new temporary ringlets and raising vertical waves of material that rise above and below the ring plane. All these effects are produced by gravity, which gives even small objects like Pan dominion over surprisingly vast regions.

Enjoy this animated gif created from photos of the close flyby of Pan. Credit:
NASA/JPL/Space Science Institute

 

Cassini Images Of Enceladus Highlight Possible Cradle For Life

Saturn's moon Enceladus, in all its glory. Captured by the Cassini probe. Image: NASA/JPL-Caltech/Space Science Institute

During its long mission to Saturn, the Cassini spacecraft has given us image after spectacular image of Saturn, its rings, and Saturn’s moons. The images of Saturn’s moon Enceladus are of particular interest when it comes to the search for life.

At first glance, Enceladus appears similar to other icy moons in our Solar System. But Cassini has shown us that Enceladus could be a cradle for extra-terrestrial life.

Our search for life in the Solar System is centred on the presence of liquid water. Maybe we don’t know for sure if liquid H2O is required for life. But the Solar System is huge, and the effort required to explore it is immense. So starting our search for life with the search for liquid water is wise. And in the search for liquid water, Enceladus is a tantalizing target.

Cassini captured this image of Enceladus with Saturn’s rings. The vapor plumes are slightly visible at the south polar region (bottom of image). Image: NASA/JPL/Space Science Institute

Though Enceladus looks every bit like a frozen, lifeless world on its surface, it’s what lies beneath its frigid crust that is exciting. Enceladus appears to have a subsurface ocean, at least in it’s south polar region. And that ocean may be up to 10 km. deep.

Before we dive into that, (sorry), here are a few basic facts about Enceladus:

  • Enceladus is Saturn’s sixth largest moon
  • Enceladus is about 500 km in diameter (Earth’s Moon is 3,474 km in diameter)
  • Enceladus was discovered in 1789 by William Herschel
  • Enceladus is one of the most reflective objects in our Solar System, due to its icy surface

In 2005, Cassini first spied plumes of frozen water vapor erupting from the southern polar region. Called cryovolcanoes, subsequent study of them determined that they are the likely source of Saturn’s E Ring. The existence of these plumes led scientists to suspect that their source was a sub-surface ocean under Enceladus’ ice crust.

This close up image of Enceladus clearly shows multiple plumes erupting into space. Image: NASA/JPL/Space Science Institute

Finding plumes of water erupting from a moon is one thing, but it’s not just water. It’s salt water. Further study showed that the plumes also contained simple organic compounds. This advanced the idea that Enceladus could harbor life.

This image of Enceladus shows the features known as “Tiger stripes”. They are the source of the vapor plumes that erupt from the surface. Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA

The geysers aren’t the only evidence for a sub-surface ocean on Enceladus. The southern polar region has a smooth surface, unlike the rest of the moon which is marked with craters. Something must have smoothed that surface, since it is next to impossible that the south polar region would be free from impact craters.

In 2005, Cassini detected a warm region in the south, much warmer than could be caused by solar radiation. The only conclusion is that Enceladus has a source of internal heating. That internal heat would create enough geologic activity to erase impact craters.

So now, two conditions for the existence of life have been met: liquid water, and heat.

In 2005, data from Cassini showed that the so-called “Tiger Stripe” features on Enceladus’ south pole region are warm spots. Image:NASA/JPL/GSFC/SwRI/SSI

The source of the heat on Enceladus was the next question facing scientists. That question is far from settled, and there could be several sources of heat operating together. Among all the possible sources for the heat, two are most intriguing when it comes to the search for life: tidal heating, and radioactive heating.

Tidal heating is a result of rotational and orbital forces. In Enceladus’ case, these forces cause friction which is dissipated as heat. This heat keeps the sub-surface ocean in liquid form, but doesn’t prevent the surface from freezing solid.

Radioactive heating is caused by the decay of radioactive isotopes. If Enceladus started out as a rocky body, and if it contained enough short-lived isotopes, then an enormous amount of heat would be produced for several million years. That action would create a rocky core surrounded by ice.

Then, if enough long-lived radioactive isotopes were present, they would continue producing heat for a much longer period of time. However, radioactive heating isn’t enough on its own. There would have to be tidal heating also.

Gravity measurements by NASA’s Cassini spacecraft and Deep Space Network suggest that Saturn’s moon Enceladus, which has jets of water vapor and ice gushing from its south pole, also harbors a large interior ocean beneath an ice shell, as this illustration depicts.
Image Credit:
NASA/JPL-Caltech

More evidence for a large, sub-surface ocean came in 2014. Cassini and the Deep Space Network provided gravitometric measurements showing that the ocean is there. Those measurements showed that there is likely a regional, if not global, ocean some 10 km thick. Measurements also showed that the ocean is under an ice layer 30 to 40 km thick.

This close up image of Enceladus show the variability of its icy features. The dark spots were originally called “Dalmatian” terrain when first imaged in 2005. There exact nature remained a mystery until ten years later, when Cassini flybys showed that they are actually blocks of bedrock ice scattered along a ridge. The blocks range in size from tens to hundreds of meters. Image: NASA/JPL/Cal-Tech.

The discovery of a warm, salty ocean containing organic molecules is very intriguing, and has expanded our idea of what the habitable zone might be in our Solar System, and in others. Enceladus is much too distant from the Sun to rely on solar energy to sustain life. If moons can provide their own heat through tidal heating or radioactive heating, then the habitable zone in any solar system wouldn’t be determined by proximity to the star or stars at the centre.

Cassini’s mission is nearing its end, and it won’t fly by Enceladus again. It’s told us all it can about Enceladus. It’s up to future missions to expand our understanding of Enceladus.

Numerous missions have been talked about, including two that suggest flying through the plumes and sampling them. One proposal has a sample of the plumes being returned to Earth for study. Landing on Enceladus and somehow drilling through the ice remains a far-off idea better left to science fiction, at least for now.

Whether or not Enceladus can or does harbor life is a question that won’t be answered for a long time. In fact, not all scientists agree that there is a liquid ocean there at all. But whether it does or doesn’t harbor life, Cassini has allowed us to enjoy the tantalizing beauty of that distant object.

Enceladus. Cassini Imaging Team, SSI, JPL, ESA, NASA

Unprecedented Views of Saturn’s Rings as Cassini Dances Death Spiral

This image shows a region in Saturn's outer B ring. NASA's Cassini spacecraft viewed this area at a level of detail twice as high as it had ever been observed before. And from this view, it is clear that there are still finer details to uncover. Credit: NASA/JPL-Caltech/Space Science Institute

As the Cassini spacecraft moves ever closer to Saturn, new images provide some of the most-detailed views yet of the planet’s spectacular rings. From its “Ring-Grazing” orbit phase, Cassini’s cameras are resolving details in the rings as small as 0.3 miles (550 meters), which is on the scale of Earth’s tallest buildings.

On Twitter, Cassini Imaging Team Lead Carolyn Porco called the images “outrageous, eye-popping” and the “finest Cassini images of Saturn’s rings.”

Project Scientist Linda Spilker said the ridges and furrows in the rings remind her of the grooves in a phonograph record.

These images are giving scientists the chance to see more details about ring features they saw earlier in the mission, such as waves, wakes, and things they call ‘propellers’ and ‘straw.’

This Cassini image features a density wave in Saturn’s A ring (at left) that lies around 134,500 km from Saturn. Density waves are accumulations of particles at certain distances from the planet. This feature is filled with clumpy perturbations, which researchers informally refer to as “straw.” Credit: NASA/JPL-Caltech/Space Science Institute

As of this writing, Cassini just started the 10th orbit of the 20-orbit ring-grazing phase, which has the spacecraft diving past the outer edge of the main ring system. The ring-grazing orbits began last November, and will continue until late April, when Cassini begins its grand finale. During the 22 finale orbits, Cassini will repeatedly plunge through the gap between the rings and Saturn. The first of these plunges is scheduled for April 26.

The spacecraft is actually close enough to the ‘F’ ring that occasionally tenuous particle strike Cassini, said project scientist Linda Spilker, during a Facebook Live event today.

“These are very small and tenuous, only a few microns in size,” Spilker said, “like dust particles you’d see in the sunlight. We can actually ‘hear’ them hitting the spacecraft in our data, but these particles are so small, they won’t hurt Cassini.”

I talked with Spilker about ring particles for my book “Incredible Stories From Space:”

Spilker has envisioned holding a ring particle in her hand. What would it look like?

“We have evidence of the particles that have an icy core covered with fluffy regolith material that is very porous,” she said, “and that means the particle can heat up and cool down very quickly compared to a solid ice cube.”

The straw features are caused by clumping ring particles and the propellers are caused by small, embedded moonlets that creates propeller shaped wakes in the rings.

The wavemaker moon, Daphnis, is featured in this view, taken as NASA’s Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn’s rings on Jan. 16, 2017. This is the closest view of the small moon obtained yet. Daphnis is 5 miles or 8 kilometers across. Credit: NASA/JPL-Caltech/Space Science Institute

This stunning view of the moon Daphnis shows the moon interacting with the ring particles, creating waves in the rings around it.

A close-up of Saturn and its rings. Assembled using raw uncalibrated RGB filtered images taken by the Cassini spacecraft on January 18 2017. Credit:
NASA/JPL-Caltech/SSI/image editing by Kevin M. Gill

“These close views represent the opening of an entirely new window onto Saturn’s rings, and over the next few months we look forward to even more exciting data as we train our cameras on other parts of the rings closer to the planet,” said Matthew Tiscareno, a Cassini scientist who studies Saturn’s rings at the SETI Institute, Mountain View, California. Tiscareno planned the new images for the camera team.

Further reading: JPL, CICLOPS

The Incredible Story of How the Huygens Mission to Titan Succeeded When It Could Have Failed

Artist depiction of Huygens landing on Titan. Credit: ESA

Twelve years ago today, the Huygens probe landed on Titan, marking the farthest point from Earth any spacecraft has ever landed. While a twelfth anniversary may be an odd number to mark with a special article, as we said in our previous article (with footage from the landing), this is the last opportunity to celebrate the success of Huygens before its partner spacecraft Cassini ends its mission on September 15, 2017 with a fateful plunge into Saturn’s atmosphere.

But Huygens is also worth celebrating because, amazingly, the mission almost failed, but yet was a marvelous success. If not for the insistence of one ESA engineer to complete an in-flight test of Huygens’ radio system, none of the spacecraft’s incredible data from Saturn’s largest and mysterious moon would have ever been received, and likely, no one would have ever known why.

The first-ever images of the surface of a new moon or planet are always exciting. The Huygens probe was launched from Cassini to the surface of Titan, but was not able investigate the lakes and seas on the surface. Image Credit: ESA/NASA/JPL/University of Arizona
The first-ever images of the surface Titan, taken by the Huygens probe. Image Credit: ESA/NASA/JPL/University of Arizona

As I detail in my new book “Incredible Stories From Space: A Behind-the-Scenes-Look at the Missions Changing Our View of the Cosmos,” in 1999, the Cassini orbiter and the piggybacking Huygens lander were on their way to the Saturn system. The duo launched in 1997, but instead of making a beeline for the 6th planet from the Sun, they took a looping path called the VVEJGA trajectory (Venus-Venus-Earth-Jupiter Gravity Assist), swinging around Venus twice and flying past Earth 2 years later.

While all the flybys gave the spacecraft added boosts to help get it to Saturn, the Earth flyby also provided a chance for the teams to test out various systems and instruments and get immediate feedback.

“The European group wanted to test the Huygens receiver by transmitting the data from Earth,” said Earl Maize, Project Manager for the Cassini mission at JPL, who I interviewed for the book. “That’s a great in-flight test, because there’s the old adage of flight engineers, ‘test as you fly, fly as you test.’”

The way the Huygens mission would work at the Saturn system was that Cassini would release Huygens when the duo approached Titan. Huygens would drop through Titan’s thick and obscuring atmosphere like a skydiver on a parachute, transmitting data all the while. The Huygens probe didn’t have enough power or a large enough dish to transmit all its data directly to Earth, so Cassini would gather and store Huygens’ data on board and later transmit it to Earth.

Boris Smeds was head of ESOC’s Systems and Requirements Section, Darmstadt, Germany. Credit: ESA.

ESA engineer Boris Smeds wanted to ensure this data handoff was going to work, otherwise a crucial part of the mission would be lost. So he proposed a test during the 1999 Earth flyby.

Maize said that for some reason, there was quite a bit of opposition to the test from some of the ESA officials, but Smeds and Claudio Sollazzo, Huygens’s ground operations manager at ESA’s European Space Operation Centre (ESOC) in Darmstadt, Germany were insistent the test was necessary.

NASA's Deep Space Network is responsible for communicating with Juno as it explores Jupiter. Pictured is the Goldstone facility in California, one of three facilities that make up the Network. Image: NASA/JPL
NASA’s Deep Space Network is responsible for communicating with spacecraft. Pictured is the Goldstone facility in California, one of three facilities that make up the Network. Image: NASA/JPL

“They were not to be denied,” Maize said, “so they eventually got permission for the test. The Cassini team organized it, going to the Goldstone tracking station [in California] of the Deep Space Network (DSN) and did what’s called a ‘suitcase test,’ broke into the signal, and during the Earth flyby, Huygens, Cassini and Goldstone were all programmed to simulate the probe descending to Titan. It all worked great.”

Except for one thing: Cassini received almost no simulated data, and what it did receive was garbled. No one could figure out why.

Six months of painstaking investigation finally identified the problem. The variation in speed between the two spacecraft hadn’t been properly compensated for, causing a communication problem. It was as if the spacecraft were each communicating on a different frequency.

Artist concept of the Huygens probe descending to Titan. Credit: ESA.

“The European team came to us and said we didn’t have a mission,” Maize said. “But we put together ‘Tiger Teams’ to try and figure it out.”

The short answer was that the idiosyncrasies in the communications system were hardwired in. With the spacecraft now millions of miles away, nothing could be fixed. But engineers came up with an ingenious solution using a basic principal known as the Doppler Effect.

The metaphor Maize likes to use is this: if you are sitting on the shore and a speed boat goes by close to the coast, it zooms past you quickly. But that same boat going the same speed out on the horizon looks like it is barely moving.
“Since we couldn’t change Huygens’ signal, the only thing we could change was the way Cassini flew,” Maize said. “If we could move Cassini farther away and make it appear as if Huygens was moving slower, it would receive lander’s radio waves at a lower frequency, solving the problem.”

Maize said it took two years of “fancy coding modifications and some pretty amazing trajectory computations.” Huygens’ landing was also delayed two months for the new trajectory that was needed overcome the radio system design flaw.

Additionally, with Cassini needing to be farther away from Huygens than originally planned, it would eventually fly out of range to capture all of Huygens’ data. Astronomers instigated a plan where radio telescopes around the world would listen for Huygens’ faint signals and capture anything Cassini missed.

Huygens was released from the Cassini spacecraft on Christmas Day 2004, and arrived at Titan on January 14, 2005. The probe began transmitting data to Cassini four minutes into its descent through Titan’s murky atmosphere, snapping photos and taking data all the while. Then it touched down, the first time a probe had landed on an extraterrestrial world in the outer Solar System.

Because of the communication problem, Huygens was not able to gather as much information as originally planned, as it could only transmit on one channel instead of two. But amazingly, Cassini captured absolutely all the data sent by Huygens until it flew out of range.

“It was beautiful,” Maize said, “I’ll never forget it. We got it all, and it was a wonderful example of international cooperation. The fact that 19 countries could get everything coordinated and launched in the first place was pretty amazing, but there’s nothing that compares to the worldwide effort we put into recovering the Huygens mission. From an engineering standpoint, that might trump everything else we’ve done on this mission.”

The view of Titan from the descending Huygens spacecraft on January 14, 2005. Credit: ESA/NASA/JPL/University of Arizona.

With its ground-breaking mission, Huygens provided the first real view of the surface of Titan. The data has been invaluable for understanding this unique and mysterious moon, showing geological and meteorological processes that are more similar to those on the surface of the Earth than anywhere else in the Solar System. ESA has details on the top discoveries by Huygens here.

Noted space journalist Jim Oberg has written several detailed and very interesting articles about the Huygens’ recovery, including one at IEEE Spectrum and another at The Space Review. These articles provide much more insight into the test, Smeds’ remarkable insistence for the test, the recovery work that was done and the subsequent success of the mission.

As Oberg says in IEEE Spectrum, “Smeds continued a glorious engineering tradition of rescuing deep-space missions from doom with sheer persistence, insight, and lots of improvisation.”

A modest Smeds was quoted by ESA: “This has happened before. Almost any mission has some design problem,” says Smeds, who says he’s worked on recovering from pre- and post-launch telecom issues that have arisen with several past missions. “To me, it’s just part of my normal work.”

For more stories about Huygens, Cassini and several other current robotic space missions, “Incredible Stories From Space” tells many behind-the-scenes stories from the amazing people who work on these missions.

Land On Titan With Huygens in Beautiful New Video

The view of Titan from the descending Huygens spacecraft on January 14, 2005. Credit: ESA/NASA/JPL/University of Arizona.

On December 25, 2004, the piggybacking Huygens probe was released from the ‘mothership’ Cassini spacecraft and it arrived at Titan on January 14, 2005. The probe began transmitting data to Cassini four minutes into its descent through Titan’s murky atmosphere, snapping photos and taking data all the while. Then it touched down, the first time a probe had landed on an extraterrestrial world in the outer Solar System.

JPL has released a re-mix of the data and images gathered by Huygens 12 years ago in a beautiful new video. This is the last opportunity to celebrate the success of Huygens before Cassini ends its mission in September of 2017.

Watch as the incredible view of Titan’s surface comes into view, with mountains, a system of river channels and a possible lakebed.

After a two-and-a-half-hour descent, the metallic, saucer-shaped spacecraft came to rest with a thud on a dark floodplain covered in cobbles of water ice, in temperatures hundreds of degrees below freezing.

Huygens had to quickly collect and transmit all the images and data it could because shortly after landing, Cassini would drop below the local horizon, “cutting off its link to the home world and silencing its voice forever.”

How much of this video is actual images and data vs computer graphics?

Of course, the clips at the beginning and end of the video are obviously animations of the probe and orbiter. However, the slow descending 1st-person point-of-view video is made using actual images from Huygens. But Huygens did not take a continuous movie sequence, so a lot of work was done by the team that operated Huygens’ optical imager, the Descent Imager/Spectral Radiometer (DISR), to enhance, colorize, and re-project the images into a variety of formats.

The view of the cobblestones and the parachute shadow near the end of the video is also created from real landing data, but was made in a different way from the rest of the descent video, because Huygens’ cameras did not actually image the parachute shadow. However, the upward looking infrared spectrometer took a measurement of the sky every couple of seconds, recording a darkening and then brightening to the unobstructed sky. The DISR team calculated from this the accurate speed and direction of the parachute, and of its shadow to create a very realistic video based on the data.

If you’re a data geek, there are some great videos of Huygens’ data by the University of Arizona Lunar and Planetary Laboratory team, such as this one:

The movie shows the operation of the DISR camera during the descent onto Titan. The almost 4-hour long operation
of DISR is shown in less than five minutes in 40 times actual sped up to landing and 100 times actual speed thereafter.

Erich Karkoschka from the UA team explained what all the sounds in the video are. “All parts of DISR worked together as programmed, creating a harmony,” he said. Here’s the full explanation:

Sound was added to mark various events. The left speaker follows the motion of Huygens. The pitch of the tone indicates the rotational speed. Vibrato indicates vibration of the parachute. Little clicks indicate the clocking of the rotation counter. Noise corresponds to heating of the heat shield, to parachute deployments, to the heat shield release, to the jettison of the DISR cover, and to touch down.

The sound in the right speaker follows DISR data. The pitch of the continuous tone goes with the signal strength. The 13 different chime tones indicate activity of the 13 components of DISR. The counters at the top and bottom of the list get the high and low notes, respectively.

You can see more info and videos created from Huygens’ data here.

Read some reminiscences about Huygens from some of the Cassini team here.

“Incredible Stories” From the Cassini Mission

An artist's illustration of Cassini entering orbit around Saturn. Credit: NASA/JPL.

When Cassini Project Scientist Linda Spilker thinks about her spacecraft, as it is out there gliding amidst the moons and rings of Saturn, there are times when she envisions it as a dancer or ice skater, spinning and turning to look at all the different targets.

“I picture Cassini as a she,” Spilker said, admitting to moments of anthropomorphizing, “because all good sailing ships are a she. She has these beautiful gold thermal blankets, and I see them as her golden flowing hair. I think she’s very joyful and curious and is definitely an explorer. That’s my view of what Cassini looks like.”

Does your spacecraft seem to have a personality?

That’s a question I asked every scientist and engineer who I interviewed for my book “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos,” which comes out on Dec. 20, 2016. The answers varied, sometimes even among people who worked on the same mission. But, it seems, we humans can’t help but sometimes think of our robots as being just like us.

“There is a personality there,” Spilker said of the Cassini spacecraft, “and I think it is a reflection of the Cassini team. We take good care of her and watch over her, making sure everything goes right. And if she curls up in the middle of the night and says ‘Help!’ we all come in and want to fix her and get her running again.”

But during its 13-year mission, the Cassini spacecraft has had few anomalies and difficulties. As the Cassini team gears up towards the end of the mission in September 2017, they look back with amazement, gratitude and a sense of accomplishment.

“Everything about the spacecraft is rock solid,” said Cassini Project Manager Earl Maize. “There were really no compromises in the hardware whatsoever. All the design lessons learned from Galileo, Voyager and Magellan went into Cassini.”

Plus, the spacecraft engineering and science teams have been absolutely meticulous in managing the mission, Maize said.

“If we find an idiosyncrasy that looks like it might trend into an issue, we work around it. We have cranky reaction wheels, and we have nursed them. Plus the spacecraft has been very good at diagnosing itself and the team is very good at working through the issues. We’ve had very few difficulties in flight,” Maize said, grinning, looking towards the wooden table in front of us, and giving it a few knocks. “It looks good for us to finish up the mission strong.”

The 37 NASA scientists and engineers I interviewed for over a dozen different missions all had stories to tell and they all had their favorites. Maize said the main story of the Cassini is its durability and endurance. Launched in 1997, the spacecraft arrived at Saturn in 2004. Over the years, Cassini’s findings have revolutionized our understanding of the entire Saturn system, providing intriguing insights on Saturn itself as well as revealing secrets held by moons such as Enceladus and Titan.

“The main story is the longevity,” Maize said. “Voyager will always have us beat, because Cassini is an orbiter and it has certain sets of consumables – for example, the propellant — that will run out. But the longevity of the mission is a tribute to the developers. We had some amazing system engineers whose history of working on previous missions will likely never be repeated.”

Like many of those engineers, early in her career as a planetary scientist, Spilker worked on the Voyager mission.

Saturn captured by Voyager. Image credit: NASA/JPL
Saturn captured by Voyager. Image credit: NASA/JPL

“After the Voyager flybys of Saturn in 1980 and 1981, we realized we couldn’t see through the atmosphere of Titan because we didn’t have the right filters,” Spilker said, as we chatted in her office at JPL. “So people started planning in the early 1980’s for a mission that would go back to Saturn, and to look at Titan.”

Wes Huntress, longtime JPL scientist and Director of NASA’s Solar System Exploration Division, was in charge of developing this new mission, and in 1988 he asked Spilker to be his deputy.

“This project ultimately became Cassini,” Spilker said. “It didn’t have a name yet and wasn’t funded at that time, but I’ve been with it ever since. Talk about longevity!”

Spilker added that the entire mission has been a “wonderful experience,” and that she has been fascinated by Saturn ever since she got a telescope when she was in 3rd grade.

Maize said one of the most memorable moments for him came early in the mission: orbit insertion at Saturn.

This view looks toward the sunlit side of the rings from about 17 degrees above the ringplane and was taken with the Cassini spacecraft wide-angle camera on Aug. 12, 2014. Credit:  NASA/JPL-Caltech/Space Science Institute.
This view looks toward the sunlit side of the rings from about 17 degrees above the ringplane and was taken with the Cassini spacecraft wide-angle camera on Aug. 12, 2014. Credit: NASA/JPL-Caltech/Space Science Institute.

“That was the must-do event,” he said. “We had a 45-minute burn and we were either a flyby mission or we were in business. I was feeling pretty good about the burn, but what was amazing about it was that if the burn was completed properly, we were going to be able to get some amazing images as the spacecraft came up over the ring plane of the planet. I was sitting with Ed Weiler the next morning at about 4:30 a.m., looking at those images and it was just amazing. I’ll never forget it. It was probably the hallmark moment for me.”

At that time, no spacecraft had ever been that close to Saturn’s rings before. Now, as the mission enters the beginning of the final phase of the mission –as it prepares to plunge into the gas giant in 2017 to protect any potential life on any of Saturn’s moons from contamination from the spacecraft — it will come even closer to the rings, diving close and through Saturn’s rings a total of 20 times.

“It’s taken years of planning, but now that we’re finally here, the whole Cassini team is excited to begin studying the data that come from these ring-grazing orbits,” said Spilker. “This is a remarkable time in what’s already been a thrilling journey.”

Cassini image of ice geysers on Enceladus (NASA/JPL/SSI)
Cassini image of ice geysers on Enceladus (NASA/JPL/SSI)

What will Cassini’s legacy be? Spilker offered a unique perspective.

“The biggest legacy will be how it has helped us realize all the different possibilities of where life might be found, even within our own solar system,” she said. “We’ve found that you don’t necessarily need to have a planet in the sweet spot from a star, where you could have liquid water on the surface. That might change the way we look at exoplanets. Yes, let’s find those earths or super-earths in that sweet spot, but when our instruments improve, let’s look for those giant planets that might have moons that might have life. That has broadened our places to look. From Cassini, I think we’ve learned that maybe there’s a lot more possibility for life than we had ever imagined.”

“Incredible Stories From Space” takes readers behind the scenes of the unmanned missions that are transforming our understanding of the solar system and beyond. Weaving together one-on-one interviews along with the extraordinary sagas of the spacecraft themselves, this book chronicles the struggles and triumphs of nine current space missions and captures the true spirit of exploration and discovery. Look for more “stories” and an excerpt from the book as the release date of Dec. 20 approaches.

Cassini’s First Ring-Grazing Orbit A Success

This graphic shows the closest approaches of Cassini's final two orbital phases. Ring-grazing orbits are shown in gray (at left); Grand Finale orbits are shown in blue. The orange line shows the spacecraft's Sept. 2017 final plunge into Saturn. Credit: NASA/JPL-Caltech

The Cassini-Huygens mission is coming to an end.

Cassini was launched in 1997 and reached Saturn in 2004. It will end its mission by plunging into the gas giant. But before then, it will dive through Saturn’s rings a total of 20 times.

An artist's illustration of Cassini entering orbit around Saturn. Public Domain, https://commons.wikimedia.org/w/index.php?curid=626636
An artist’s illustration of Cassini entering orbit around Saturn. Public Domain, https://commons.wikimedia.org/w/index.php?curid=626636

The first dive through the rings was just completed, and represents the beginning of Cassini’s final mission phase. On December 4th at 5:09 PST the 2,150 kg, plutonium-powered probe, crossed through a faint and dusty ring created by the moons Janus and Epimetheus. This brought it to within 11,000 km of Saturn’s F-ring.

Though the end of a mission might seem sad, people behind the mission are excited about this final phase, a series of close encounters with the most iconic structures in our Solar System: Saturn’s glorious rings.

“This is a remarkable time in what’s already been a thrilling journey.” – Linda Spilker, NASA/JPL

“It’s taken years of planning, but now that we’re finally here, the whole Cassini team is excited to begin studying the data that come from these ring-grazing orbits,” said Linda Spilker, Cassini project scientist at JPL. “This is a remarkable time in what’s already been a thrilling journey.”

Even casual followers of space news have enjoyed the steady stream of eye candy from Cassini. But this first orbit through Saturn’s rings is more about science than pictures. The probe’s cameras captured images 2 days before crossing through the plane of the rings, but not during the closest approach. In future ring-grazing orbits, Cassini will give us some of the best views yet of Saturn’s outer rings and some of the small moons that reside there.

Cassini is about more than just beautiful images though. It’s a vital link in a series of missions that have opened up our understanding of the Solar System we inhabit. Here are some of Cassini’s important discoveries:

New Moons

The Cassini mission discovered 7 new moons orbiting Saturn. Methone, Pallene and Polydeuces were all discovered in 2004. Daphnis, Anthe, and Aegaeon were discovered between 2005 and 2009. The final moon is currently named S/2009 S 1.

This image shows the moon Daphnis in the Keeler gap in Saturn's A ring. The moon's gravity causes the wave shapes in the rings. By NASA/JPL/Space Science Institute - http://www.esa.int/SPECIALS/Cassini-Huygens/SEM1XQ5TI8E_1.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=17953334
This image shows the moon Daphnis in the Keeler gap in Saturn’s A ring. The moon’s gravity causes the wave shapes in the rings. By NASA/JPL/Space Science Institute – http://www.esa.int/SPECIALS/Cassini-Huygens/SEM1XQ5TI8E_1.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=17953334

In 2014, NASA reported that yet another new moon may be forming in Saturn’s A ring.

This Cassini image shows what might be a new moon forming in Saturn's rings. The new moon, if it is one, is only about 1 km in diameter. By NASA/JPL-Caltech/Space Science Institute - http://photojournal.jpl.nasa.gov/jpeg/PIA18078.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=32184174
This Cassini image shows what might be a new moon forming in Saturn’s rings. The new moon, if it is one, is only about 1 km in diameter. By NASA/JPL-Caltech/Space Science Institute – http://photojournal.jpl.nasa.gov/jpeg/PIA18078.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=32184174

Huygens lands on Titan

The Huygens lander detached from the Cassini orbiter on Christmas Day 2004. It landed on the frigid surface of Saturn’s moon Titan after a 2 1/2 hour descent. The lander transmitted 350 pictures of Titan’s descent to the surface. An unfortunate software error caused the loss of another 350 pictures.

The first-ever images of the surface of a new moon or planet are always exciting. This image was taken by the Huygens probe at its landing site on Titan. Image Credit: ESA/NASA/JPL/University of Arizona
The first-ever images of the surface of a new moon or planet are always exciting. This image was taken by the Huygens probe at its landing site on Titan. Image Credit: ESA/NASA/JPL/University of Arizona

Enceladus Flyby

Cassini performed several flybys of the moon Enceladus. The first was in 2005, and the last one was in 2015. The discovery of ice-plumes and a salty liquid ocean were huge for the mission. The presence of liquid water on Enceladus makes it one of the most likely places for microbial life to exist in our Solar System.

In 2005 Cassini discovered jets of water vapor and ice erupting form the surface of Enceladus. The water could be from an subsurface sea. Image Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA
In 2005 Cassini discovered jets of water vapor and ice erupting form the surface of Enceladus. The water could be from an subsurface sea. Image Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA

Each of Cassini’s final ring-grazing orbits will last one week. Cassini’s final orbit will bring it close to Saturn’s moon Titan. That encounter will change Cassini’s path. Cassini will leap over the rings and make the first of 22 plunges through the gap between Saturn and its rings.

In September 2017, the Cassini probe will finally reach the end of its epic mission. In order to prevent any possible contamination of Saturn’s moons, the probe will make one last glorious plunge into Saturn’s atmosphere, transmitting data until it is destroyed.

The Cassini mission is a joint mission between the European Space Agency, NASA, and the Italian Space Agency.

Cassini Is About To Graze Saturn’s Rings In Mission Endgame

A lovely view of Saturn and its rings as seen by the Cassini spacecraft on Aug. 12, 2009. Credit: NASA/JPL-Caltech/Space Science Institute.

There is a Twitter-bot that randomly tweets out “NOOOOOOOO Cassini can’t be ending!” (with varying amounts of “O’s”). @CassiniNooo represents the collective sigh of sadness and consternation felt by those of us who can’t believe the the historic and extensive Cassini mission will be over in just a matter of months.

And next week is the beginning of the end for Cassini.

On November 30, Cassini will begin a phase of the mission that the science team calls “Cassini’s Ring-Grazing Orbits,” as the spacecraft will start skimming past the outer edge of the rings, coming within – at times — 4,850 miles (7,800 kilometers) of the rings.

“The scientific return will be incredible,” Linda Spilker, Cassini project scientist, told me earlier this year. “We’ll be studying things we just couldn’t do any other place.”

Between November 30, 2016 and April 22, 2017 Cassini will circle high over and under the poles of Saturn, diving every seven days for a total of 20 times through the unexplored region at the outer edge of the main rings.

During the close passes, Cassini’s instruments will attempt to directly sample the icy ring particles and molecules of faint gases that are found close to the rings. Cassini will also capture some of the best high-resolution images of the rings, and garner the best views ever of the small moons Atlas, Pan, Daphnis and Pandora, which orbit near the rings’ outer edges.

During the first two ring-grazing orbits, the spacecraft will pass directly through an extremely faint ring produced by tiny meteors striking the two small moons Janus and Epimetheus. Later ring crossings in March and April will send the spacecraft through the dusty outer reaches of the F ring.

“Even though we’re flying closer to the F ring than we ever have, … there’s very little concern over dust hazard at that range,” said Earl Maize, Cassini project manager at JPL.

Of course, the ultimate ‘endgame’ is that Cassini will plunge into Saturn with its “Grand Finale,” ending the mission on September 15, 2017. Since Cassini is running out of fuel, destroying the spacecraft is necessary to ensure “planetary protection,” making sure any potential microbes from Earth that may still be attached to the spacecraft don’t contaminate any of Saturn’s potentially habitable moons.

This graphic illustrates the Cassini spacecraft's trajectory, or flight path, during the final two phases of its mission. The view is toward Saturn as seen from Earth. The 20 ring-grazing orbits are shown in gray; the 22 grand finale orbits are shown in blue. The final partial orbit is colored orange. Image credit: NASA/JPL-Caltech/Space Science Institute
This graphic illustrates the Cassini spacecraft’s trajectory, or flight path, during the final two phases of its mission. The view is toward Saturn as seen from Earth. The 20 ring-grazing orbits are shown in gray; the 22 grand finale orbits are shown in blue. The final partial orbit is colored orange. Image credit: NASA/JPL-Caltech/Space Science Institute

To prepare for the Grand Finale, Cassini engineers have been slowly adjusting the spacecraft’s orbit since January of this year, doing maneuvers and burns of the engine to bring Cassini into the right orbit so that it can ultimately dive repeatedly through the narrow gap between Saturn and its rings, before making its mission-ending plunge. During some of those final orbits, Cassini will pass as close as 1,012 miles (1,628 kilometers) above the cloudtops of Saturn.

One question for Cassini’s engineering team is how much fuel is actually left in the tank for Cassini’s main engines, which do the majority of the work for orbit adjustments. Each time they’ve used the main engines this past year, the team has held their breath, hoping there is enough fuel.

One final burn of the main engine remains, on December 4. This maneuver is important for fine-tuning the orbit and setting the correct course to enable the remainder of the mission, said Maize.

“This will be the 183rd and last currently planned firing of our main engine,” he said. “Although we could still decide to use the engine again, the plan is to complete the remaining maneuvers using thrusters,” said Maize.

A montage of images from Cassini of various moons and the rings around Saturn. Credit: NASA/JPL-Caltech/Space Science Institute
A montage of images from Cassini of various moons and the rings around Saturn. Credit: NASA/JPL-Caltech/Space Science Institute

When I visited with Maize and Spilker earlier this year, Spilker wistfully said that they had begun to experience some of the “lasts” of the mission — the final flyby of Enceladus and other moons. And there’s one big “last” coming up: on Nov. 29, 2016, Cassini will come within 6,800 miles (11,000 km) of Titan, the final flyby of this eerily Earthlike but yet totally alien moon.

This final flyby, named Flyby T-125 has two primary goals: Mapmaking of Titan’s surface, and enabling the change in Cassini’s orbit to begin the end of the mission. But it also might be the most daring and thrilling part of Cassini’s nearly 20-year mission.

But still ….. NOOOOOO!

Keep track of Cassini’s latest endeavours at the Cassini website

Even Though it’s an Alien World, Titan’s Canyons Would Look Very Familiar

In this near-infrared mosaic, the sun shines off of the seas on Saturn's moon, Titan. Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

Titan is tough moon to study, thanks to its incredibly thick and hazy atmosphere. But when astronomers have ben able to sneak a peak beneath its methane clouds, they have spotted some very intriguing features. And some of these, interestingly enough, are reminiscent of geographical features here on Earth. For instance, Titan is the only other body in the Solar System that is known to have a cycle where liquid is exchanged between the surface and the atmosphere.

For example, previous images provided by NASA’s Cassini mission showed indications of steep-sided canyons in the northern polar region that appeared to be filled with liquid hydrocarbons, similar to river valleys here on Earth. And thanks to new data obtained through radar altimetry, these canyons have been shown to be hundreds of meters deep, and have confirmed rivers of liquid methane flowing through them.

This evidence was presented in a new study titled “Liquid-filled canyons on Titan” – which was published in August of 2016 in the journal Geophysical Research Letters. Using data obtained by the Cassini radar altimeter in May 2013, they observed channels in the feature known as Vid Flumina, a drainage network connected to Titan’s second largest hydrocarbon sea in the north, Ligeia Mare.

Saturn's largest moon, Titan, has features that resemble Earth's geology, with deep, steep-sided canyons. Credit: NASA/JPL/Cassini
Saturn’s largest moon, Titan, has features that resemble Earth’s geology, with deep, steep-sided canyons. Credit: NASA/JPL/Cassini

Analysis of this information showed that the channels in this region are steep-sided and measure about 800 m (half a mile) wide and between 244 and 579 meters deep (800 – 1900 feet). The radar echoes also showed strong surface reflections that indicated that these channels are currently filled with liquid. The elevation of this liquid was also consistent with that of Ligeia Mare (within a maring of 0.7 m), which averages about 50 m (164 ft) deep.

This is consistent with the belief that these river channels in area drain into the Ligeia Mare, which is especially interesting since it parallels how deep-canyon river systems empty into lakes here on Earth. And it is yet another example of how the methane-based hydrological cycle on Titan drives the formation and evolution of the moon’s features, and in ways that are strikingly similar to the water cycle here on Earth.

Alex Hayes – an assistant professor of astronomy at Cornell, the Director of the Spacecraft Planetary Imaging Facility (SPIF) and one of the authors on the paper – has conducted seversal studies of Titan’s surface and atmosphere based on radar data provided by Cassini. As he was quoted as saying in a recent article by the Cornell Chronicler:

“Earth is warm and rocky, with rivers of water, while Titan is cold and icy, with rivers of methane. And yet it’s remarkable that we find such similar features on both worlds. The canyons found in Titan’s north are even more surprising, as we have no idea how they formed. Their narrow width and depth imply rapid erosion, as sea levels rise and fall in the nearby sea. This brings up a host of questions, such as where did all the eroded material go?”

The northern polar area of Titan and Vid Flumina drainage basin. (left) On top of the image, the Ligeia Mare; in the lower right the North Kraken Mare; the two seas are connected each other by a labyrinth of channels. On the left, near the North pole, the Punga Mare. Red arrows indicate the position of the two flumina significant for this work. At the end of its mission (15 September 2017) the Cassini RADAR in its imaging mode (SAR+ HiSAR) will have covered a total area of 67% of the surface of Titan [Hayes, 2016]. Map credits: R. L. Kirk. (right) Highlighted in yellow are the half-power altimetric footprints within the Vid Flumina drainage basin and the Xanthus Flumen course for which specular reflections occurred. At 1400?km of spacecraft altitude, the Cassini antenna 0.35° central beam produces footprints of about 8.5?km in diameter (diameter of yellow circles). Credit: NASA/JPL
Cassini image of the northern polar area of Titan and Vid Flumina drainage basin, showing Ligeia Mare (left) and the Vid Flumina drainage basin (right). Credit: R.L. Kirk/NASA/JPL
A good question indeed, since it raises some interesting possibilities. Essentially, the features observed by Cassini are just part of Titan’s northern polar region, which is covered by large standing bodies of liquid methane – the largest of these being Kraken Mare, Ligeia Mare and Punga Mare. In this respect, the region is similar to glacially eroded fjords on Earth.

However, conditions on Titan do not allow for the presence of glaciers, which rules out the likelihood that retreating sheets of ice could have carved these canyons. So this naturally begs the question, what geological forces created this region? The team concluded that there were only two likely possibilities – which included changes in the elevation of the rivers, or tectonic activity in the area.

Ultimately, they favored a model where the variation in surface elevation of liquid drove the formation of the canyons – though they acknowledge that both tectonic forces and sea level variations played a role. As Valerio Poggiali, an associate member of the Cassini RADAR Science Team at the Sapienza University of Rome and the lead author of the paper, told Universe Today via email:

“What the canyons on Titan really mean is that in the past sea level was lower and so erosion and canyon formation could take place. Subsequently sea level has risen and backfilled the canyons. This presumably takes place over multiple cycles, eroding when sea level is lower, depositing some when it is higher until we get the canyons we see today. So, what it means is that sea level has likely changed in the geological past and the canyons are recording that change for us.”

Titan's Ligeia Mare. Credit: NASA/JPL/USGS
Titan’s second largest methane lake, Ligeia Mare. Credit: NASA/JPL/USGS

In this respect, there are many more Earth examples to choose from, all of which are mentioned in the study:

“Examples include Lake Powell, a reservoir on the Colorado River that was created by the Glen Canyon Dam; the Georges River in New South Wales, Australia; and the Nile River gorge, which formed as the Mediterranean Sea dried up during the late Miocene. Rising liquid levels in the geologically recent past led to the flooding of these valleys, with morphologies similar to those observed at Vid Flumina.”

Understanding the processes that led to these formations is crucial to understanding the current state of Titan’s geomorphology. And this study is significant in that it is the first to conclude that the rivers in the Vid Flumina region were deep canyons. In the future, the research team hopes to examine other channels on Titan that were observed by Cassini to test their theories.

Once again, our exploration of the Solar System has shown us just how weird and wonderful it truly is. In addition to all its celestial bodies having their own particular quirks, they still have a lot in common with Earth. By the time the Cassini mission is complete (Sept. 15th, 2017), it will have surveyed 67% the surface of Titan with its RADAR imaging instrument. Who knows what other “Earth-like” features it will notice before then?

Further Reading: Geophysical Research Letters

If it Wasn’t Already Strange Enough, now Saturn’s Hexagon Storm is Changing Color

Saturn makes a beautifully striped ornament in this natural-color image, showing its north polar hexagon and central vortex (Credit: NASA/JPL-Caltech/Space Science Institute)

Ever since the Voyager 2 made its historic flyby of Saturn, astronomers have been aware of the persistent hexagonal storm around the gas giant’s north pole. This a six-sided jetstream has been a constant source of fascination, due to its sheer size and immense power. Measuring some 13,800 km (8,600 mi) across, this weather system is greater in size than planet Earth.

And thanks to the latest data to be provided by the Cassini space probe, which entered orbit around Saturn in 2009, it seems that this storm is even stranger than previously thought. Based on images snapped between 2012 and 2016, the storm appears to have undergone a change in color, from a bluish haze to a golden-brown hue.

The reasons for this change remain something of a mystery, but scientists theorize that it may be the result of seasonal changes due to the approaching summer solstice (which will take place in May of 2017). Specifically, they believe that the change is being driven by an increase in the production of photochemical hazes in the atmosphere, which is due to increased exposure to sunlight.

 Natural color images taken by NASA's Cassini wide-angle camera, showing the changing appearance of Saturn's north polar region between 2012 and 2016.. Credit: NASA/JPL-Caltech/Space Science Institute/Hampton University
Natural color images taken by NASA’s Cassini wide-angle camera, showing the changing appearance of Saturn’s north polar region between 2012 and 2016.. Credit: NASA/JPL-Caltech/Space Science Institute/Hampton University

This reasoning is based in part on past observations of seasonal change on Saturn. Like Earth, Saturn experiences seasons because its axis is tilted relative to its orbital plane (26.73°). But since its orbital period is almost 30 years, these seasons last for seven years.

Between November 1995 and August 2009, the hexagonal storm also underwent some serious changes, which coincided with Saturn going from its Autumnal to its Spring Equinox. During this period, the north polar atmosphere became clear of aerosols produced by photochemical reactions, which was also attributed to the fact that the northern polar region was receiving less in the way of sunlight.

However, since that time, the polar atmosphere has been exposed to continuous sunlight, and this has coincided with aerosols being produced inside the hexagon, making the polar atmosphere appear hazy. As Linda J. Spilker, the Cassini mission’s project scientist, told Universe Today via email:

“We have seen dramatic changes in the color inside Saturn’s north polar hexagon in the last 4 years.  That color change is probably the result of changing seasons at Saturn, as Saturn moves toward northern summer solstice in May 2017. As more sunlight shines on the hexagon, more haze particles are produced and this haze gives the hexagon a more golden color.”
This diagram shows the main events of Saturn's year, and where in the Saturnian year the Voyager 1 and Cassini missions occurred. Credit: Ralph Lorenz
Diagram showing he main events of Saturn’s year, and where in the Saturnian year the Voyager 1 and Cassini missions occurred. Credit: Ralph Lorenz

All of this has helped scientists to test theoretical models of Saturn’s atmosphere. In the past, it has been speculated that this six-sided storm acts as a barrier that prevents outside haze particles from entering. The previous differences in color – the planet’s atmosphere being golden while the polar storm was darker and bluish – certainly seemed to bear this out.

The fact that it is now changing color and starting to look more like the rest of the atmosphere could mean that the chemical composition of the polar region is now changing and becoming more like the rest of the planet. Other effects, which include changes in atmospheric circulation (which are in turn the result of seasonally shifting solar heating patterns) might also be influencing the winds in the polar regions.

Needless to say, the giant planets of the Solar System have always been a source of fascination for scientists and astronomers. And if these latest images are any indication, it is that we still have much to learn about the dynamics of their atmospheres.

“It is very exciting to see this transformation in Saturn’s hexagon color with changing seasons,” said Spilker. “With Saturn seasons over 7 years long, these new results show us that it is certainly worth the wait.”

 R. G. French (Wellesley College) et al., NASA, ESA, and The Hubble Heritage Team (STScI/AURA)
The seasons on Saturn, visualized with images taken by the Hubble Heritage Team. Credit: R. G. French (Wellesley College) et al./NASA/ESA/Hubble Heritage Team (STScI/AURA)

It also shows that Cassini, which has been in operation since 1997, is still able to provide new insights into Saturn and its system of moons. In recent weeks, this included information about seasonal variations on Titan, Saturn’s largest moon. By April 22nd, 2017, the probe will commence its final 22 orbits of Saturn. Barring any mission extensions, it is scheduled enter into Saturn’s atmosphere (thus ending its mission) on Sept. 15th, 2017.

Further Reading: NASA/JPL/Caltech