An Exotic Source for Cosmic Rays: ‘Baby’ Black Holes

Cosmic rays – particles that have been accelerated to near the speed of light – stream out from our Sun all of the time, though they are positively sluggish compared to what are called Ultra-High-Energy Cosmic Rays (UHECRs). These types of cosmic rays originate from sources outside of the Solar System, and are much more energetic than those from our Sun, though also much rarer. The merger between a white dwarf and neutron star or black hole may be one source of these rays, and such mergers may occur often enough to be the most significant source of these energetic particles.

The Sloan White dwArf Radial velocity data Mining Survey (SWARMS) – which is part of the Sloan Digital Sky Survey – recently uncovered a binary system of exotic objects only 50 parsecs away from the Solar System. This system, named SDSS 1257+5428, appears to be a white dwarf star that is orbiting a neutron star or low-mass black hole. Details about the system and its initial discovery can be found in a paper by Carles Badenes, et al. here.

Co-author Todd Thompson, assistant professor in the Department of Astronomy at Ohio State University, argues in a recent letter to The Astrophysical Journal Letters that this type of system, and subsequent merger of these exotic remnants of stars, may be commonplace, and could account for the amount of UHECRs that are currently observed. The merger between the white dwarf and neutron star or black hole may also create a black hole of low mass, a so-called “baby” black hole.

Thompson wrote in an email interview:

“White dwarf/neutron star or black hole binaries are thought to be quite rare, although there is a huge range in the number per Milky Way-like galaxy in the literature.  SWARMS was the first to detect such a system using the “radial velocity” technique, and the first to find such an object so nearby, only 50 parsecs away (about 170 light years). For this reason, it was very surprising, and its relative proximity is what allowed us to make the argument that these systems must be quite common compared to most previous expectations.  SWARMS would have had to be very lucky to see something so rare so near by.”

Thompson, et al. argue that this type of merger may be the most significant source of UHECRs in the Milky Way galaxy, and that one should merge in the galaxy about every 2,000 years. These types of mergers may be slightly less common than Type Ia supernovae, which originate in binary systems of white dwarfs.

A white dwarf merging with a neutron star would also create a low-mass black hole of about 3 times the mass of the Sun. Thompson said, “In fact, this scenario is likely since we think that neutron stars cannot exist above 2-3 times the mass of the Sun. The idea is that the WD would be disrupted and accrete onto the neutron star and then the neutron star would collapse to a black hole.  In this case, we might see the signal of BH formation in gravity waves.”

The gravity waves produced in such a merger would be above the detectable range by the Laser Interferometer Gravitational-Wave Observatory (LIGO), an instrument that uses lasers to detect gravity waves (of which none have been detected…yet), and even possibly a spaced base gravitational wave observatory, NASA’s Laser Interferometer Space Antenna, LISA.

Common cosmic rays that come from our Sun have an energy on the scale of 10^7 to 10^10 electron-volts. Ultra-high-energy cosmic rays are a rare phenomenon, but they exceed 10^20 electron-volts. How do systems like SDSS 1257+5428 produce cosmic rays of such high energy? Thompson explained that there are two equally fascinating possibilities.

In the first, the formation of a black hole and subsequent accretion disk from the merger would generate a jet somewhat like those seen at the center of galaxies, the telltale sign of a quasar. Though these jets would be much, much smaller, the shockwaves at the front of the jet would accelerate particles to the necessary energies to create UHECRs, Thompson said.

In the second scenario, the neutron star steals matter off of the white dwarf companion, and this accretion starts it rotating rapidly. The magnetic stresses that build at the surface of the neutron star, or “magnetar”, would be able to accelerate any particles that interact with the intense magnetic field to ultra-high energies.

The creation of these ultra-high-energy cosmic rays by such systems is highly theoretical, and just how common they may be in our galaxy is only an estimate. It remains unclear so soon after the discovery of SDSS 1257+5428 whether the companion object of the white dwarf is a black hole or neutron star. But the fact that SWARMS made such a discovery so early in the survey is encouraging for the discovery of further exotic binary systems.

“It is not likely that SWARMS will see 10 or 100 more such systems. If it did, the rate of such mergers would be very (implausibly) high.  That said, we’ve been surprised many times before. However, given the total area of the sky surveyed, if our estimate of the rate of such mergers is correct, SWARMS should see only about 1 more such system, and they may see none. A similar survey in the southern sky (there is nothing at present comparable to the Sloan Digital Sky Survey, on which SWARMS is based) should turn up approximately 1 such system,” Thompson said.

Observations of SDSS 1257+5428 have already been made using the Swift X-ray observatory, and some measurements have been taken in the radio spectrum. No source of gamma-rays was to be found in the location of the system using the Fermi telescope.

Thompson said, “Probably the most important forthcoming observation of the system is to get a true distance via parallax. Right now, the distance is based on the properties of the observed white dwarf.  In principle,
it should be relatively easy to watch the system over the next year and get a parallax distance, which will alleviate many of the uncertainties surrounding the physical properties of the white dwarf.”

Source: Arxiv, email interview with Todd Thompson

Fermi Spies Energetic Blazar Flare

A comparison of the Fermi images from November 2nd and December 3rd of this year, showing the brightening of 3C 454.3. Image Credit: NASA

[/caption]

The blazar 3C 454.3, a bright source of gamma rays from a galaxy 7 billion light-years away just got a whole lot brighter. Observations from the Fermi gamma-ray telescope confirm that since September 15th the blazar has flared up considerably, increasing in gamma-ray brightness by about ten times in the from earlier this past summer, making it currently the brightest gamma-ray source in the sky.

3C 454.3 is a blazar, a jet of energetic particles that is caused by the supermassive black hole at the center of a galaxy. Most galaxies are thought to house a supermassive black hole at their center, and as it chomps down matter from the accretion disk that surrounds it, the supermassive black hole can form large jets that stream out light and energy in fantastic proportions. In the case of 3C 454.3, one of these jets is aimed at the Earth, which allows for us to see and study it.

This blazar has started to outshine the Vela pulsar, which because it is only 1,000 light-years away from the Earth is generally the brightest gamma-ray source in the sky. 3C 454.3 is almost twice as bright as Vela in the gamma-ray part of the spectrum, even though it lies 7 million times further away from the Earth. 3c 454.3 has also brightened significantly in the infrared, X-ray, radio and visible light.

This is not the first time the blazar has shown an increase in brightness. Over the course of observations of the blazar, it flared-up in brightness in May 2005, and again in July and August of 2007.

Dr. Erin Wells Bonning, Postdoctoral Associate at the Yale Center for Astronomy and Astrophysics, said of the recent flare in comparison with previous brightening events:

“In 2005, it reached a R-band magnitude of 12. Our peak observed R-band magnitude was 13.83, so we’re still not at the brightness of the 2005 outburst (about a factor of 5 below). On July 19, 2007, it reached a R-band magnitude of 13, not as bright as the 2005 event, but still brighter than we see it now. In 2005, there were no gamma-ray instruments to observe 3C 454.3, but the 2007 flare was observed by AGILE with a flux above 100 MeV of 3 +- 1 * 10^-6 cts/s/cm^s. The Fermi and AGILE count rates for Dec 2-3, 2009  are 6-9 times as high. So, interestingly, although it is not currently as bright optically as it was in 2007, it is a good deal brighter in gamma-rays.”

The Fermi gamma-ray space telescope (formerly GLAST) keeps tabs on the gamma-ray emissions from many sources in the sky. 3C 454.3 is just one of the top ten brightest sources of gamma-rays visible to the satellite, a list of which can be found in an article Nancy wrote in March, The Top Ten Gamma-Ray Sources from the Fermi Telescope.

Of course, the blazar 3C 454.3 is not as intrinsically bright as many of the Gamma-Ray Bursts observed by telescopes like Swift and Fermi, but it is the consistently brightest source of gamma-rays in the sky right now. Bonning said that, “While both GRBs and blazars are highly beamed toward us, the Lorentz factors (speed of particles in the jet) associated with GRBs are much higher than in blazars, causing them to appear brighter due to special relativistic effects.”

Observations 3C 454.3 are continuing in all wavelengths to capture the light curve of the event, and better understand these periodic flares. Bonning said, “The source has been relatively quiescent since it emerged from behind the Sun, and began to increase in brightness around the end of July. It then entered a bright period of fairly rapid variability, peaking every 20 days or so. The most recent, very intense, flare began around the end of November. Per our [Astronomer’s Telegram], since Nov 21, 3C 454 has increased about a factor of 3 in brightness in both optical and infrared. (B, V, and R filters are in optical wavelengths, and J and K are near-infrared).  Similarly, the gamma-ray flux has increased also by a factor of 3 in the 0.1-300 GeV band over the same period.”

The cause of the intermittent flare-ups in 3C 454.3 and other blazars is still a mystery, but this current brightening will give astronomers better data as to what the possible cause could be. There seem to be no periodic events associated with the flares in blazars (with the exception of the possible “supermassive black hole binary” OJ 287).

Bonning said of a potential cause, “This is actually a very active field of research – there are numerous existing models, but no one hypothesis is clearly preferred. Perhaps particles have been shocked at some location in the blazar jet, or the jet may be precessing so that is closer to our line of sight, or there may be some other explanation.”

There will be numerous telescopes around the world zooming in on the current flare-up. According to Bonning:

“Blazars are multi-wavelength objects — their spectral energy distribution covers radio through gamma-rays, so a diverse collection of facilities will be observing 3C 454.3 during this outburst. Besides Fermi, the Italian AGILE satellite has been observing in gamma rays. The Swift X-ray telescope began monitoring in early December.  The blazar monitoring group at Boston University headed by Alan Marscher is observing it with VLBA (radio; 13GHz). There is also a radio astronomy group at Michigan also observing with VLBA, as well one headed by Yuri Kovalev at Max Planck institute in Germany.  There is an optical program with the ATOM telescope associated with the HESS TeV instrument in Namibia. (3C 454.3 is not bright at TeV energies, by the way.)  This is not an exhaustive list by any means, but at any rate numerous facilities across the globe and operating at a wide range of energies will be taking a very close look at 3C 454.3 as it goes through this flare.”

Source: NASA press release, email interview with Erin Wells Bonning

The Shrinking Doughnut Around a Black Hole

GX 339-4, illustrated here, is a binary system of a black hole and a star. Astronomers were able to measure how the disk around the black hole shrinks for the first time. Image Credit: Credit: ESO/L. Calcada

[/caption]

Homer Simpson would be sad: recent observations of the binary system of a black hole and its companion star have shown the retreat of the doughnut-shaped accretion disk around the black hole. This shrinking ‘doughnut’ was seen in observations of the binary system GX 339-4, a system composed of a star similar in mass to the Sun, and a black hole of ten solar masses.

As the black hole feeds on gas flowing out from the orbiting star, the change in flow of the gas produces a varying size in the disk of matter that piles up around the black hole in a torus shape. For the first time, the changes in the size of this disk have been measured, showing just how much smaller the doughnut becomes.

GX-339-4 lies 26,000 light-years away in the constellation Ara. Every 1.7 days in the system, a star orbits around the more massive black hole. This system, and others like it, show periodic flares of X-ray activity when gas that is being stolen from the star by the black hole gets heated up in the accretion disk that piles up around the black hole. Over the last seven years, the system has had four energetic outbursts in the last seven years, making it a quite active black hole/stellar binary system.

The material falling into the hole forms jets of highly energized photons and gas, one of which is pointed in the direction of the Earth. It is these jets that a team of international astronomers observed using the Suzaku X-ray observatory, operated jointly by the Japan Aerospace Exploration Agency and NASA, and NASA’s X-ray Timing Explorer satellite. The results of their observations were published in the Dec. 10 issue of The Astrophysical Journal Letters.

Though the system was faint when they took their measurements with the telescopes, it was producing steady jets of X-rays. The team was looking for the signature of X-ray spectral lines produced by the fluorescence of iron atoms in the disk. The strong gravity of the black hole shifts the energy of the X-rays produced by the iron, leaving a characteristic spectral line. By measuring these spectral lines, they were able to determine with rather high confidence the size of the shrinking disk.

Here’s how the shrinking occurs: the part of the disk that is closer to the black hole is denser when there is more gas flowing out from the star that accompanies it. But when this flow is reduced, the inner part of the disk heats up and evaporates. During the brightest periods of the black hole’s output, the disk was calculated to be within about 30 km (20 miles) of the black hole’s event horizon, while during lower periods of luminosity the disk retreats to greater than 27 times further, or to 1,000 km (600 miles) from the edge of the black hole.

This has an important implication in the study of how black holes form their jets; even though the accretion disk evaporates close to the black hole, these jets remain at a steady output.

John Tomsick of the Space Sciences Laboratory at the University of California, Berkeley said in a NASA press-release, “This doesn’t tell us how jets form, but it does tell us that jets can be launched even when the high-density accretion flow is far from the black hole. This means that the low-density accretion flow is the most essential ingredient for the formation of a steady jet in a black hole system.”

Read the pre-print version of the teams’ letter. If you want more information on how the X-rays from the disks around black holes can help determine their shape and spin, check out an article from Universe Today from 2003, Iron Can Help Determine if a Black Hole is Spinning.

Source: NASA/Suzaku press release

Quasar Caught Building Future Home Galaxy

An artist's impression of how quasars may be able to construct their own galaxies. Image Credit: ESO/L. Calcada

The birth of galaxies is quite a complicated affair, and little is known about whether the supermassive black holes at the center of most galaxies formed first, or if the matter in the galaxy accreted first, and formed the black hole later. Observations of the quasar HE0450-2958, which is situated outside of a galaxy, show the quasar aiding a nearby galaxy in the formation of stars. This provides evidence for the idea that supermassive black holes can ‘build’ their own galaxies.

The quasar HE0450-2958 is an odd entity: normally, supermassive black holes – also known as quasars – form at the center of galaxies. But HE0450-2958 doesn’t appear to have any host galaxy out of which it formed. This was a novel discovery in its own right when it was made back in 2005. Here’s our original story on the quasar, Rogue Supermassive Black Hole Has No Galaxy.

The formation of the quasar still remains a mystery, but current theories suggest that it formed out of cold interstellar gas filaments that accreted over time, or was somehow ejected from its host galaxy by a strong gravitational interaction with another galaxy.

The other oddity about the object is its proximity to a companion galaxy, which it may be aiding to form stars. The companion galaxy lies directly in the sights of one of the quasar’s jets, and is forming stars at a frantic rate. A team of astronomers from France, Germany and Belgium studied the quasar and companion galaxy using the Very Large Telescope at the European Southern Observatory. The astronomers were initially looking to find an elusive host galaxy for the quasar.

The phenomenon of ‘naked quasars’ has been reported before, but each time further observations are made, a host galaxy is found for the object. Energy streaming from the quasars can obscure a faint galaxy that is hidden behind dust, so the astronomers used the VLT spectrometer and imager for the mid-infrared (VISIR). Mid-infrared observations readily detect dust clouds. They combined these observations with new images obtained from the Hubble Space Telescope in the near-infrared.A color composite image of the quasar in HE0450-2958 obtained using the VISIR instrument on the Very Large Telescope and the Hubble Space Telescope. Image Credit: ESO

Observations of HE0450-2958, which lies 5 billion light years from Earth, confirmed that the quasar is indeed without a host galaxy, and that the energy and matter streaming out of the jets is pointed right at the companion galaxy. This scenario is ramping up star formation in that galaxy: 340 solar masses of stars a year are formed in the galaxy, one-hundred times more than for a typical galaxy in the Universe. The quasar and the galaxy are close enough that they will eventually merge, finally giving the quasar a home.

David Elbaz of the Service d’Astrophysique, who is the lead author of the paper which appeared in Astronomy & Astrophysics, said “The ‘chicken and egg’ question of whether a galaxy or its black hole comes first is one of the most debated subjects in astrophysics today. Our study suggests that supermassive black holes can trigger the formation of stars, thus ‘building’ their own host galaxies. This link could also explain why galaxies hosting larger black holes have more stars.”

‘Quasar feedback’ could be a potential explanation for how some galaxies form, and naturally the study of other systems is needed to confirm whether this scenario is unique, or a common feature in the Universe.

Source: ESO, Astronomy & Astrophysics

First Black Holes May Have Formed in “Cocoons”

Artist concept of a view inside a black hole. Credit: April Hobart, NASA, Chandra X-Ray Observatory
Artist concept of a view inside a black hole. Credit: April Hobart, NASA, Chandra X-Ray Observatory

Very likely, the last image that comes to mind when thinking of black holes is that they need to be nurtured, coddled and protected when young. But new research reveals the first large black holes in the universe likely formed and grew deep inside gigantic, starlike cocoons that smothered their powerful x-ray radiation and prevented surrounding gases from being blown away.

“Until recently, the thinking by many has been that supermassive black holes got their start from the merging of numerous, small black holes in the universe,” said Mitchell Begelman, from the University of Colorado-Boulder. “This new model of black hole development indicates a possible alternate route to their formation.”
Ordinary black holes are thought to be remnants of stars slightly larger than our sun that used up their fuel and died.

But the first big black holes likely formed from very large stars that formed early in the Universe, probably within the first few hundred million years after the Big Bang. The unique process of these large stars becoming black holes includes the formation of a protective cocoon, made of gas.

“What’s new here is we think we have found a new mechanism to form these giant supermassive stars, which gives us a new way of understanding how big black holes may have formed relatively fast,” said Begelman.
These early supermassive stars would have grown to a huge size — as much as tens of millions of times the mass of our sun — and would have been short-lived, with its core collapsing in just in few million years.

The main requirement for the formation of supermassive stars is the accumulation of matter at a rate of about one solar mass per year, said Begelman. Because of the tremendous amount of matter consumed by supermassive stars, subsequent seed black holes that formed in their centers may have started out much bigger than ordinary black holes.

Begelman said the hydrogen-burning supermassive stars would had to have been stabilized by their own rotation or some other form of energy like magnetic fields or turbulence in order to facilitate the speedy growth of black holes at their centers.

After the seed black holes formed, the process entered its second stage, which Begelman has dubbed the “quasistar” stage. In this phase, black holes grew rapidly by swallowing matter from the bloated envelope of gas surrounding them, which eventually inflated to a size as large as Earth’s solar system and cooled at the same time, he said.

Once quasistars cooled past a certain point, radiation began escaping at such a high rate that it caused the gas envelope to disperse and left behind black holes up to 10,000 times or more the mass of Earth’s sun. With such a big head start over ordinary black holes, they could have grown into supermassive black holes millions or billions of times the mass of the sun either by gobbling up gas from surrounding galaxies or merging with other black holes in extremely violent galactic collisions.

Begelman said big black holes formed from early supermassive stars could have had a huge impact on the evolution of the universe, including galaxy formation, possibly going on to produce quasars — the very bright, energetic centers of distant galaxies that can be a trillion times brighter than our sun.

Begelman’s paper will be published in Monthly Notices of the Royal Astronomical Society.

Source: EurekAlert

Black Hole Drive Could Power Future Starships

Artist's concept of a black hole from top down. Image credit: NASA

[/caption]

What would happen if humans could deliberately create a blackhole? Well, for starters we might just unlock the ultimate energy source to create the ultimate spacecraft engine — a potential  “black hole-drive” —  to propel ships to the stars.

It turns out black holes are not black at all; they give off “Hawking radiation” that causes them to lose energy (and therefore mass) over time. For large black holes, the amount of radiation produced is miniscule, but very small black holes rapidly turn their mass into a huge amount of energy.

This fact prompted Lois Crane and Shawn Westmoreland of Kansas State University to calculate what it would take to create a small black hole and harness the energy to propel a starship. They found that there is a “sweet spot” for black holes that are small enough to be artificially created and to produce enormous amounts of energy, but are large enough that they don’t immediately evaporate in a burst of particles. Their ideal black hole would have a mass of about a million metric tons and would be about one one-thousandth the size of a proton.

To create such a black hole, Crane and Westmoreland envision a massive spherical gamma-ray laser in space, powered by thousands of square kilometers of solar panels. After charging for a few years, this laser would release the pent-up energy equivalent to a million metric tons of mass in a converging spherical shell of photons. As the shell collapses in on itself, the energy becomes so dense that its own gravity focuses it down to a single point and a black hole is born.

The black hole would immediately begin to disgorge all the energy that was compressed to form it. To harness that energy and propel a starship, the black hole would be placed at the center of a parabolic electron-gas mirror that would reflect all the energy radiated from the black hole out the back of the ship, propelling the ship forward. Particle beams attached to the ship behind the black hole would be used to simultaneously feed the black hole and propel it along with the ship.

Such a black hole drive could easily accelerate to near the speed of light, opening up the cosmos to human travelers, but that’s just the beginning. The micro-black hole could also be used as a power generator capable of transforming any matter directly into energy. This energy could be used to create new black holes and new power generators. Obviously, creating and harnessing black holes is not an easy undertaking, but Crane and Westmoreland point out that the black hole drive has a significant advantage over more speculative technologies like warp drives and wormholes: it is physically possible. And, they believe, worth pursuing “because it allows a completely different and vastly wider destiny for the human race. We should not underestimate the ingenuity of the engineers of the future.”

Article available on ArXiv.
Nod to: io9

Finding the Mama Bear of Black Holes

While astronomers have studied both big and little black holes for decades, evidence for those middle-sized black holes has been much harder to come by. Now, astronomers at NASA’s Goddard Space Flight Center in Greenbelt, Md., find that an X-ray source in galaxy NGC 5408 represents one of the best cases for a middleweight black hole to date. “Intermediate-mass black holes contain between 100 and 10,000 times the sun’s mass,” explained Tod Strohmayer, an astrophysicist at Goddard. “We observe the heavyweight black holes in the centers of galaxies and the lightweight ones orbiting stars in our own galaxy. But finding the ‘tweeners’ remains a challenge.”

Several nearby galaxies contain brilliant objects known as ultraluminous X-ray sources (ULXs). They appear to emit more energy than any known process powered by stars but less energy than the centers of active galaxies, which are known to contain million-solar-mass black holes.

“ULXs are good candidates for intermediate-mass black holes, and the one in galaxy NGC 5408 is especially interesting,” said Richard Mushotzky, an astrophysicist at the University of Maryland, College Park. The galaxy lies 15.8 million light-years away in the constellation Centaurus.

Artists concept of a medium sized black hole. Credit: NASA
Artists concept of a medium sized black hole. Credit: NASA

XMM-Newton detected what the astronomers call “quasi-periodic oscillations,” a nearly regular “flickering” caused by the pile-up of hot gas deep within the accretion disk that forms around a massive object. The rate of this flickering was about 100 times slower than that seen from stellar-mass black holes. Yet, in X-rays, NGC 5408 X-1 outshines these systems by about the same factor.

Based on the timing of the oscillations and other characteristics of the emission, Strohmayer and Mushotzky conclude that NGC 5408 X-1 contains between 1,000 and 9,000 solar masses. This study appears in the October 1 issue of The Astrophysical Journal.

“For this mass range, a black hole’s event horizon — the part beyond which we cannot see — is between 3,800 and 34,000 miles across, or less than half of Earth’s diameter to about four times its size,” said Strohmayer.

If NGC 5408 X-1 is indeed actively gobbling gas to fuel its prodigious X-ray emission, the material likely flows to the black hole from an orbiting star. This is typical for stellar-mass black holes in our galaxy.

Strohmayer next enlisted the help of NASA’s Swift satellite to search for subtle variations of X-rays that would signal the orbit of NGC 5408 X-1’s donor star. “Swift uniquely provides both the X-ray imaging sensitivity and the scheduling flexibility to enable a search like this,” he added. Beginning in April 2008, Swift began turning its X-Ray Telescope toward NGC 5408 X-1 a couple of times a week as part of an on-going campaign.

Swift detects a slight rise and fall of X-rays every 115.5 days. “If this is indeed the orbital period of a stellar companion,” Strohmayer said, “then it’s likely a giant or supergiant star between three and five times the sun’s mass (1 solar mass is the mass of the Sun).” This study has been accepted for publication in a future issue of The Astrophysical Journal.

The Swift observations cover only about four orbital cycles, so continued observation is needed to confirm the orbital nature of the X-ray modulation.

“Astronomers have been studying NGC 5408 X-1 for a long time because it is one of the best candidates for an intermediate-mass black hole,” adds Philip Kaaret at the University of Iowa, who has studied the object at radio wavelengths but is unaffiliated with either study. “These new results probe what is happening close to the black hole and add strong evidence that it is unusually massive.”

Paper: Evidence for an Intermediate-Mass Black Hole in NGC 5804

Source: NASA

Could a Black Hole Fit in Your Computer or In Your Pocket?

Artist's illustration of a supermassive black hole. Image credit: NASA

[/caption]
Some of the most frequently asked questions we get here at Universe Today and Astronomy Cast deal with black holes. Everyone wants to know what conditions would be like at the event horizon, or even inside a black hole. Answering those questions is difficult because so much about black holes is unknown. Black holes can’t be observed directly because their immense gravity won’t let light escape. But in just the past week, three different research teams have released their findings in their attempts to create black holes – or at least conditions analogous to them to advance our understanding.

Make Your Own Accretion Disk

A team of researchers from Osaka University in Japan wanted to sharpen their insights into the behavior of matter and energy in extreme conditions. What could be more extreme than the conditions of the swirling cloud of matter surrounding a black hole, known as the accretion disk? Their unique approach was to blast a plastic pellet with high-energy laser beams.

Accretion disks get crunched and heated by a black hole’s gravitational energy. Because of this, the disks glow in x-ray light. Analyzing the spectra of these x-rays gives researchers clues about the physics of the black hole.

However, scientists don’t know precisely how much energy is required to produce such x-rays. Part of the difficulty is a process called photoionization, in which the high-energy photons conveying the x-rays strip away electrons from atoms within the accretion disk. That lost energy alters the characteristics of the x-ray spectra, making it more difficult to measure precisely the total amount of energy being emitted.
After being hit with laser beams, a small plastic pellet (sunlike object) emits x-rays, some of which bombard a pellet of silicon (blue and purple).  Credit: Adapted from S. Fujioka et al., Nature Physics, Advance Online Publication
To get a better handle on how much energy those photoionized atoms consume, researchers zapped a tiny plastic pellet with 12 laser beams fired simultaneously and allowed some of the resulting radiation to blast a pellet of silicon, a common element in accretion disks.

The synchronized laser strikes caused the plastic pellet to implode, creating an extremely hot and dense core of gas, or plasma. That turned the pellet into “a source of [immensely powerful] x-rays similar to those from an accretion disk around a black hole,” says physicist and lead author Shinsuke Fujioka. The team said the x-rays photoionized the silicon, and that interaction mimicked the emissions observed in accretion disks. By measuring the energy lost from the photoionization, the researchers could measure total energy emitted from the implosion and use it to improve their understanding of the behavior of x-rays emitted by accretion disks.

The Portable Black Hole

Another group of physicists created a tiny device that can create a black hole by sucking up microwave light and converting it into heat. At just 22 centimeters across, the device can fit in your pocket.

The device uses ‘metamaterials’, specially engineered materials that can bend light in unusual ways. Previously, scientists have used such metamaterials to build ‘invisibility carpets’ and super-clear lenses. This latest black hole was made by Qiang Chen and Tie Jun Cui of Southeast University in Nanjing, China.

Real black holes use their huge mass to warp space around it. Light that travels too close to it can become trapped forever.

Metamaterial device that can create a black hole. Credit: Qiang Chen and Tie Jun Cui
Metamaterial device that can create a black hole. Credit: Qiang Chen and Tie Jun Cui

The new meta-black hole also bends light, but in a very different way. Rather than relying on gravity, the black hole uses a series of metallic ‘resonators’ arranged in 60 concentric circles. The resonators affect the electric and magnetic fields of a passing light wave, causing it to bend towards the centre of the hole. It spirals closer and closer to the black hole’s ‘core’ until it reaches the 20 innermost layers. Those layers are made of another set of resonators that convert light into heat. The result: what goes in cannot come out. “The light into the core is totally absorbed,” Cui said.

Not only is the device useful in studying black holes, but the research team hopes to create a version of the device that will suck up light of optical frequencies. If it works, it could be used in applications such as solar cells.

Read their paper here.

Black holes in your computer?

A supercomputer.
A supercomputer.

Could you create a black hole in your computer? Maybe if you had a really big one. Scientists at Rochester Institute of Technology (RIT) hope to make use of two of the fastest supercomputers in the world in their quest to “shine light” on black holes. The team was approved for grants and computing time to study the evolution of black holes and other objects with the “NewHorizons,” a cluster consisting of 85 nodes with four processors each, connected via an Infiniband network that passes data at 10-gigabyte-per-second speeds.

The team has created computer algorithms to simulate with mathematics and computer graphics what cannot be seen directly.

“It is a thrilling time to study black holes,” said Manuela Campanelli, center director. “We’re nearing the point where our calculations will be used to test one of the last unexplored aspects of Einstein’s General Theory of Relativity, possibly confirming that it properly describes the strongest gravitational fields in the universe.”

Sources: Science, Astronomy Magazine Technology Review Blog

Two Black Holes Play a Little One on One

NGC 6240. Image credit: X-ray: NASA/CXC/MIT/ C.Canizares, M.Nowak; Optical: NASA/STScI

[/caption]
If black holes could communicate, there would likely be a lotta in your face trash talkin’ going on between these two merging black holes. This image of NGC 6240 contains new X-ray data from Chandra (shown in red, orange, and yellow) that has been combined with an optical image from the Hubble Space Telescope originally released in 2008. The two black holes are a mere 3,000 light years apart and are seen as the bright point-like sources in the middle of the image.

Scientists think these black holes are in such close proximity because they are in the midst of spiraling toward each other – a process that began about 30 million years ago. It is estimated that the two black holes will eventually drift together and merge into a larger black hole some tens or hundreds of millions of years from now.

Finding and studying merging black holes has become a very active field of research in astrophysics. Since 2002, there has been intense interest in follow-up observations of NGC 6240 by Chandra and other telescopes, as well as a search for similar systems. Understanding what happens when these exotic objects interact with one another remains an intriguing question for scientists.

The formation of multiple systems of supermassive black holes should be common in the Universe, since many galaxies undergo collisions and mergers with other galaxies, most of which contain supermassive black holes. It is thought that pairs of massive black holes can explain some of the unusual behavior seen by rapidly growing supermassive black holes, such as the distortion and bending seen in the powerful jets they produce. Also, pairs of massive black holes in the process of merging are expected to be the most powerful sources of gravitational waves in the Universe.

Click here for access to larger versions of this image.

Source: Marshall Space Flight Center

Blaming Black Holes for Gamma Ray Bursts

Artist's rendering of a black hole. Image Credit: NASA

[/caption]
Black holes get a bad rap. Most people are afraid of them, and some think black holes might even destroy Earth. Now, scientists from the University of Leeds are blaming black holes for causing the most energetic and deadly outbursts in the universe: gamma ray bursts.

The conventional model for GRBs is that a narrow beam of intense radiation is released during a supernova event, as a rapidly rotating, high-mass star collapses to form a black hole. This involves plasma being heated by neutrinos in a disk of matter that forms around the black hole. A subclass of GRBs (the “short” bursts) appear to originate from a different process, possibly the merger of binary neutron stars.

But mathematicians at the University of Leeds have come up with a different explanation: the jets come directly from black holes, which can dive into nearby massive stars and devour them.

Their theory is based on recent observations by the Swift satellite which indicates that the central jet engine operates for up to 10,000 seconds – much longer than the neutrino model can explain.

The scientists believe that this is evidence for an electromagnetic origin of the jets, i.e. that the jets come directly from a rotating black hole, and that it is the magnetic stresses caused by the rotation that focus and accelerate the jet’s flow.

For the mechanism to operate the collapsing star has to be rotating extremely rapidly. This increases the duration of the star’s collapse as the gravity is opposed by strong centrifugal forces.

One particularly peculiar way of creating the right conditions involves not a collapsing star but a star invaded by its black hole companion in a binary system. The black hole acts like a parasite, diving into the normal star, spinning it with gravitational forces on its way to the star’s centre, and finally eating it from the inside.

“The neutrino model cannot explain very long gamma ray bursts and the Swift observations, as the rate at which the black hole swallows the star becomes rather low quite quickly, rendering the neutrino mechanism inefficient, but the magnetic mechanism can,” says Professor Komissarov from the School of Mathematics at the University of Leeds.

“Our knowledge of the amount of the matter that collects around the black hole and the rotation speed of the star allow us to calculate how long these long flashes will be – and the results correlate very well with observations from satellites,” he adds.

Source: EurekAlert