Many Galaxies Found in the Early Universe

13 distant galaxies found in a sample of sky. Image credit: ESO. Click to enlarge.
It is one of the major goals of observational cosmology to trace the way galaxies formed and evolved and to compare it to predictions from theoretical models. It is therefore essential to know as precisely as possible how many galaxies were present in the Universe at different epochs.

This is easier to say than to do. Indeed, if counting galaxies from deep astronomical images is relatively straightforward, measuring their distance – hence, the epoch in the history of the universe where we see it [1] – is much more difficult. This requires taking a spectrum of the galaxy and measuring its redshift [2].

However, for the faintest galaxies – that are most likely the farthest and hence the oldest – this requires a lot of observing time on the largest of the telescopes. Until now, astronomers had thus to first carefully select the candidate high-redshift galaxies, in order to minimise the time spent on measuring the distance. But it seems that astronomers were too careful in doing so, and hence had a wrong picture of the population of galaxies.

It would be better to “simply” observe in a given patch of the sky all galaxies brighter than a given limit. But looking at one object at a time would make such a study impossible.

To take up the challenge, a team of French and Italian astronomers [3] used the largest possible telescope with a highly specialised, very sensitive instrument that is able to observe a very large number of (faint) objects in the remote universe simultaneously.

The astronomers made use of the VIsible Multi-Object Spectrograph (VIMOS) on Melipal, one of the 8.2-m telescopes of ESO’s Very Large Telescope Array. VIMOS can observe the spectra of about 1,000 galaxies in one exposure, from which redshifts, hence distances, can be measured. The possibility to observe two galaxies at once would be equivalent to using two VLT Unit Telescopes simultaneously. VIMOS thus effectively multiplies the efficiency of the VLT hundreds of times.

This makes it possible to complete in a few hours observations that would have taken months only a few years ago. With capabilities up to ten times more productive than competing instruments, VIMOS offers the possibility for the first time to conduct an unbiased census of the distant Universe.

Using the high efficiency of the VIMOS instrument, the team of astronomers embarked in the VIMOS VLT Deep Survey (VVDS) whose aim is to measure in some selected patch of the sky the redshift of all galaxies brighter than magnitude 24 in the red, that is, galaxies that are up to 16 million fainter than what the unaided eye can see.

In a total sample of about 8,000 galaxies selected only on the basis of their observed brightness in red light, almost 1,000 bright and vigorously star forming galaxies were discovered at an epoch 1,500 to 4,500 million years after the Big Bang (redshift between 1.4 and 5).

“To our surprise”, says Olivier Le F?vre, from the Laboratoire d’Astrophysique de Marseille (France) and co-leader of the VVDS project, “this is two to six times higher than had been found by previous works. These galaxies had been missed because previous surveys had selected objects in a much more restrictive manner than we did. And they did so to accommodate the much lower efficiency of the previous generation of instruments.”

While observations and models have consistently indicated that the Universe had not yet formed many stars in the first billion years of cosmic time, the discovery made by the scientists calls for a significant change in this picture.

Combining the spectra of all the galaxies in a given redshift range (i.e. belonging to the same epoch), the astronomers could estimate the amount of star formed in these galaxies. They find that the galaxies in the young Universe transform into stars between 10 and 100 times the mass of our Sun in a year.

“This discovery implies that galaxies formed many more stars early in the life of the Universe than had previously been thought”, explains Gianpaolo Vettolani, the other co-leader of the VVDS project, working at INAF-IRA in Bologna (Italy). “These observations will demand a profound reassessment of our theories of the formation and evolution of galaxies in a changing Universe.”

It now remains for astronomers to explain how one can create such a large population of galaxies, producing more stars than previously assumed, at a time when the Universe was about 10-20% of its current age.

Original Source: ESO News Release

Finding the First Stars

Computer illustration of what the Universe’s first stars looked like. Image credit: CfA. Click to enlarge.
What did the very first stars look like? How did they live and die? Astronomers have ideas, but no proof. The first stars are so distant and formed so long ago that they are invisible to our best telescopes.

Until they explode. Hypernovas (more powerful cousins of supernovas) and their associated gamma-ray bursts offer astronomers the possibility of detecting light from the first generations of stars.

NASA’s Swift satellite already has seen a gamma-ray burst (GRB) with a redshift of 6.29, meaning that the progenitor star exploded about 13 billion years ago, when the universe was less than a billion years old. Theorists Volker Bromm (University of Texas at Austin) and Avi Loeb (Harvard-Smithsonian Center for Astrophysics) predict that one-tenth of the blasts Swift will spot during its operational lifetime will come from stars at a redshift of 5 or greater, that lived and died during the first billion years of the universe.

“Most of those GRBs will come from second generation or later stars,” said Loeb. “But if we get lucky, Swift may even detect a burst from one of the very first stars that formed — a star made of only hydrogen and helium.”

Calculations suggest that such stars, which are called Population III for historical reasons, would have been behemoths weighing 50-500 times as much as the Sun. A Population III star would have gulped its nuclear fuel faster than an SUV, dying quickly and explosively.

“Our best guess right now is that the recent GRB was not from a Pop III star. However, its redshift is high enough to make it very interesting,” said Bromm.

One key question examined by Bromm and Loeb is whether a Pop III star could have generated a GRB — a blast powerful enough to be seen from a distance of more than 13 billion light-years.

The answer they derived is a qualified yes. Pop III stars were massive enough to explode violently, leaving behind a black hole in most cases. However, a Pop III star likely would have to be part of a tight binary system to generate a GRB.

A close binary companion could strip the outer layers of a dying Pop III star, leaving less material to block the star’s explosive death throes. Jets of material generated from the newborn black hole therefore could punch their way out more easily, creating a burst of gamma-ray energy detectable across the universe.

About half of all nearby stars are members of binary or multiple star systems. The frequency of binaries, particularly close binaries, among Pop III stars remains unknown.

“Astronomers will address this question of the Pop III binary frequency using a dual approach, both observational and theoretical,” said Bromm. “By searching for high-redshift GRBs, we can constrain that number empirically. We also will try to improve simulations and make them detailed enough to model those details of star formation.”

If binary star systems are common among Pop III stars, then high-redshift GRBs could offer astronomers an ideal opportunity to study the first generation of stars.

“If Pop III binaries are common, Swift will be the first observatory to probe Population III star formation at high redshifts,” said Loeb.

This research has been submitted for publication to The Astrophysical Journal and is available online at http://arxiv.org/abs/astro-ph/0509303.

Original Source: CfA News Release

Binary Star Baby Picture

The centre of this infrared image shows the higher mass primary star (pink) and its lower mass companion. Image credit: CfA. Click to enlarge.
Newborn stars are difficult to photograph. They tend to hide in the nebulous stellar nurseries where they formed, enshrouded by thick layers of dust. Now, Smithsonian astronomer T.K. Sridharan (Harvard-Smithsonian Center for Astrophysics) and his colleagues have photographed a pair of stellar twins in infrared light, which penetrates the dust. And these babies are whoppers, weighing several times the mass of the Sun.

Moreover, Sridharan’s images reveal a circumstellar disk surrounding the more massive of the two stars. The presence of a disk suggests that massive, multiple-star systems form the same way as the Sun, by gradually accreting material from a gaseous disk.

“This system is the youngest massive binary ever to be directly imaged – only about 100,000 years old,” said Sridharan.

Sridharan and his colleagues studied an object known as IRAS 20126+4104, located more than 5,000 light-years away in the constellation Cygnus the Swan. IRAS 20126+4104 was suspected of harboring a binary star because outflows from the region wobbled back and forth like a spinning top. The wobble hinted at the gravitational tug of an unseen companion.

On several exceptionally clear and steady nights, the researchers were able to take highly detailed infrared images of this object using the UKIRT telescope on Mauna Kea, Hawaii. Those images revealed not one but two stars, as well as a dark dust lane where the inner parts of the disk, known from previous radio-wavelength observations, appeared nearly edge-on in silhouette.

“Many people have seen the iconic Hubble Space Telescope images of circumstellar disks around low-mass stars. This image is the equivalent for high-mass stars,” said Sridharan.

Between them the two stars weigh more than 10 times the mass of the Sun. Sridharan calculates that the surrounding disk contains at least one-tenth of a solar mass, which is enough material to make 100 Jupiter-sized worlds. The disk may be even more massive. It extends outward for at least 850 astronomical units, or 80 billion miles (more than 20 times the distance to Pluto). Interestingly, the smaller companion star currently is located at the same distance from the primary star, hinting that the companion’s gravity may play a role in limiting the outer reaches of the disk.

Sridharan said that the next step in studying this intriguing twin system is to get higher-resolution observations using adaptive optics or interferometry. Such data will yield a better estimate of the companion’s mass and a detailed profile of the disk.

“We are currently following several leads to investigate this star system, so stay tuned,” Sridharan added.

Sridharan’s co-authors are S.J. Williams and G.A. Fuller of UMIST (Manchester, UK). This research was published in the Sept. 20, 2005, issue of The Astrophysical Journal Letters and is available online at http://arxiv.org/abs/astro-ph/0508342.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Original Source: Harvard CfA News Release

Oldest Meteorites Hint at Early Solar System

Different concentrations of elements in a meteorite: magnesium is green, calcium is yellow, aluminium is white, iron is red and silicon is blue. Image credit: Open University. Click to enlarge.
Researchers trying to work out how the planets formed have uncovered a new clue by analysing meteorites that are older than the Earth.

The research shows that the process which depleted planets and meteorites of so-called volatile elements such as zinc, lead and sodium (in their gaseous form) must have been one of the first things to happen in our nebula. The implication is that ‘volatile depletion’ may be an inevitable part of planet formation – a feature not just of our Solar System, but of many other planetary systems too.

The researchers at Imperial College London, who are funded by the Particle Physics and Astronomy Research Council (PPARC), reached their conclusions after analysing the composition of primitive meteorites, stony objects that are older than the Earth and which have barely changed since the Solar System was made up of fine dust and gas.

Their analysis, published today in the Proceedings of the National Academy of Sciences, shows that all the components that make up these rocks are depleted of volatile elements. This means that volatile element depletion must have occurred before the earliest solids had formed.

All of the terrestrial planets in the Solar System as far out as Jupiter, including Earth, are depleted of volatile elements. Researchers have long known that this depletion must have been an early process, but it was unknown whether it occurred at the beginning of the formation of the Solar System, or a few million years later.

It might be that volatile depletion is necessary to make terrestrial planets as we know them -as without it our inner solar system would look more like the outer solar system with Mars and Earth looking more like Neptune and Uranus with much thicker atmospheres.

Dr Phil Bland, from Imperial’s Department of Earth Science and Engineering, who led the research, explains: “Studying meteorites helps us to understand the initial evolution of the early Solar System, its environment, and what the material between stars is made of. Our results answer one of a huge number of questions we have about the processes that converted a nebula of fine dust and gas into planets.”

Professor Monica Grady, a planetary scientist from the Open University and member of PPARC’s Science Committee adds, “This research shows how looking at the tiniest of fragments of material can help us answer one of the biggest questions asked: ‘How did the Solar System form?’. It is fascinating to see how processes that took place over 4.5 billion years ago can be traced in such detail in laboratories on Earth today.

For planetary scientists, the most valuable meteorites are those that are found immediately after falling to earth, and so are only minimally contaminated by the terrestrial environment. The researchers analysed around half of the approximately 45 primitive meteorite falls in existence around the world, including the Renazzo meteorite which was found in Italy in 1824.

Dr Phil Bland is a member of the Impacts and Astromaterials Research Centre (IARC), which combines planetary science researchers from Imperial College London and the Natural History Museum.

Original Source: PPARC News Release

Wide Image of the Virgo Cluster of Galaxies

Deep, wide field view of the Virgo Cluster showing a diffuse web of galaxies. Image credit: Chris Mihos et al. Click to enlarge.
Case Western Reserve University astronomers have captured the deepest wide-field image ever of the nearby Virgo cluster of galaxies, directly revealing for the first time a vast, complex web of “intracluster starlight” — nearly 1,000 times fainter than the dark night sky — filling the space between the galaxies within the cluster. The streamers, plumes and cocoons that make up this extremely faint starlight are made of stars ripped out of galaxies as they collide with one another inside the cluster, and act as a sort of “archaeological record” of the violent lives of cluster galaxies.

The Virgo image was captured through Case’s newly refurbished 24-inch Burrell Schmidt telescope, built in the 1930s and located at the Kitt Peak National Observatory in Arizona. Over the course of 14 dark moonless nights, the researchers took more than 70 images of the Virgo Cluster, then used advanced image processing techniques to combine the individual images into a single image capable of showing the faint intracluster light.

“When we saw all this very faint starlight in the image, my first reaction was WOW!,” project leader Chris Mihos said. “Then I began to worry about all the things we could have done wrong.” Many effects, such as stray light from nearby stars, from instruments in the observatory and even from the changing brightness of the night sky could all contaminate the image and lead to inaccurate results. “But as we corrected for each of these contaminants, not only did the faint starlight not disappear, it became even more apparent. That’s when we knew we had something big.”

The new image gives dramatic evidence of the violent life and death of cluster galaxies. Drawn together into giant clusters over the course of cosmic time by their mutual gravity, galaxies careen around in the cluster, smashing into other galaxies, being stripped apart by gravitational forces and even being cannibalized by the massive galaxies which sit at the cluster’s heart. The force of these encounters literally pulls many galaxies apart, leaving behind ghostly streams of stars adrift in the cluster, a faint tribute to the violence of cluster life.

“From computer simulations, we’ve long suspected this web of intracluster starlight should be there,” says Mihos, associate professor of astronomy at Case, “but it’s been extremely hard to map it out because it’s so faint.” Mihos and graduate students Craig Rudick (Case) and Cameron McBride (University of Pittsburgh, and former Case undergraduate) have developed computer simulations that track how clusters of galaxies evolve over time, to study exactly how this intracluster starlight is created.

“With the data from the telescope, we see how a cluster looks today,” Mihos explains. “But with computer simulations, we can watch how a cluster evolves over 10 billion years of time. By comparing the simulation to the real features we now see in Virgo, we can learn how the cluster formed and what happened to its many galaxies.” For example, the fact that the intracluster light in Virgo is so complex and irregular lends credence to the theory of “hierarchical assembly,” where clusters grow sporadically when groups of galaxies fall into the cluster, rather than through the smooth, slow addition of galaxies one by one.

To detect the faint intracluster light, upgrades were needed to Case’s Burrell Schmidt telescope, originally part of the original Warner and Swasey Observatory in Cleveland until its move to Kitt Peak in 1979. The improvements included the installation of a new camera system and upgrades to the telescope to make it more structurally stable and reduce unwanted scattered light.

“It’s like ‘The Little Engine that Could’,” says Case astronomer Paul Harding, who directed the refurbishment of the telescope. “It’s the smallest telescope on the mountain, but with these upgrades it’s capable of some pretty incredible science.” The telescope’s wide field of view — enough to fit three full moons across the image – proved crucial to the project, allowing the team to map out the intracluster light over a much larger part of the Virgo Cluster than would be possible using larger telescopes with their much smaller fields of view.
The Virgo Cluster of galaxies — so named because it appears in the constellation of Virgo — is the nearest galaxy cluster to the Earth, at a distance of approximately 50 million light years. The cluster contains more than 2,000 galaxies, the brightest of which can be seen with the aide of a small telescope.

The Case findings are reported in the paper “Diffuse Light in the Virgo Cluster” to be published in the September 20th issue of The Astrophysical Journal Letters. Along with Mihos team researchers included Case astronomers Heather Morrison and Paul Harding, and John Feldmeier, a National Science Foundation Fellow at the National Optical Astronomy Observatory in Tucson, Ariz. (and formerly of Case).

The wide-field image of the Virgo Cluster, along with movies of computer simulations of galaxies and galaxy clusters, can be found at http://astroweb.case.edu/hos/Virgo.

Original Source: Case Western University News Release

Podcast: The Fate of the Universe

How will the Universe end? Right now cosmologists have two equally distressing scenarios mapped out for the long term fate of the Universe. On the one hand, gravity might slow down the expansion of our Universe so that it coasts to a stop and possibly even collapses back down into a Big Crunch. On the other hand, the expansion of the Universe could continue indefinitely thanks to the acceleration of dark energy. We would face a cold, lonely future as other galaxies fade away into the distance. My guest today is Eric Linder from the Lawrence Berkeley National Laboratory and he’s proposing experiments that could help us learn which of these two fates await us.
Continue reading “Podcast: The Fate of the Universe”

Planets Are Born Quickly

Artist’s concept of Jupiter-like planet orbiting a star. Image credit: NASA Click to enlarge
Using NASA’s Spitzer Space Telescope, a team of astronomers led by the University of Rochester has detected gaps ringing the dusty disks around two very young stars, which suggests that gas-giant planets have formed there. A year ago, these same researchers found evidence of the first “baby planet” around a young star, challenging most astrophysicists’s models of giant-planet formation.

The new findings in the Sept. 10 issue of Astrophysical Journal Letters not only reinforce the idea that giant planets like Jupiter form much faster than scientists have traditionally expected, but one of the gas-enshrouded stars, called GM Aurigae, is analogous to our own solar system. At a mere 1 million years of age, the star gives a unique window into how our own world may have come into being.

“GM Aurigae is essentially a much younger version of our Sun, and the gap in its disk is about the same size as the space occupied by our own giant planets,” says Dan Watson, professor of physics and astronomy at the University of Rochester and leader of the Spitzer IRS Disks research team. “Looking at it is like looking at baby pictures of our Sun and outer solar system,” he says.

“The results pose a challenge to existing theories of giant-planet formation, especially those in which planets build up gradually over millions of years,” says Nuria Calvet, professor of astronomy at the University of Michigan and lead author of the paper. “Studies like this one will ultimately help us better understand how our outer planets, as well as others in the universe, form.”

The new “baby planets” live within the clearings they have scoured out in the disks around the stars DM Tauri and GM Aurigae, 420 light years away in the Taurus constellation. These disks have been suspected for several years to have central holes that might be due to planet formation. The new spectra, however, leave no doubt: The gaps are so empty and sharp-edged that planetary formation is by far the most reasonable explanation for their appearance.

The new planets cannot yet be seen directly, but Spitzer’s Infrared Spectrograph (IRS) instrument clearly showed that an area of dust surrounding certain stars was missing, strongly suggesting the presence of a planet around each. The dust in a protoplanetary disk is hotter in the center near the star, and so radiates most of its light at shorter wavelengths than the cooler outer reaches of the disk. The IRS Disks team found that there was an abrupt deficit of light radiating at all short infrared wavelengths, strongly suggesting that the central part of the disk was absent. These stars are very young by stellar standards, about a million years old, still surrounded by their embryonic gas disks. The only viable explanation for the absence of gas that could occur during the short lifetime of the star is that a planet?most likely a gas giant like our Jupiter?is orbiting the star and gravitationally “sweeping out” the gas within that distance of the star.

As with last year’s young-planet findings, these observations represent a challenge to all existing theories of giant-planet formation, especially those of the “core-accretion” models in which such planets are built up by accretion of smaller bodies, which require much more time to build a giant planet than the age of these systems.

The IRS Disks team discovered something else curious about GM Aurigae. Instead of a simple central clearing of the dust disk, as in the other cases studied, GM Aurigae has a clear gap in its disk that separates a dense, dusty outer disk from a tenuous inner one. This could be either an intermediate stage as the new planet clears out the dust surrounding it and leading to a complete central clearing like the other “baby planet” disks, or it could be the result of multiple planets forming within a short time and sweeping out the dust in a more complex fashion.

GM Aurigae has 1.05 times the mass of our Sun-a near twin?so it will develop into a star very similar to the Sun. If it were overlaid onto our own Solar System, the discovered gap would extend roughly from the orbit of Jupiter (460 million miles) to the orbit of Uranus (1.7 billion miles). This is the same range in which the gas-giant planets in our own system appear. Small non-gas-giant planets, rocky worlds like Earth, would not sweep up as much material, and so would not be detectable from an absence of dust.

The Spitzer Space Telescope was launched into orbit on Aug. 25, 2003. The IRS Disks research team is led by members that built Spitzer’s Infrared Spectrograph, and includes astronomers at the University of Rochester, Cornell University, the University of Michigan, the Autonomous National University of Mexico, the University of Virginia, Ithaca College, the University of Arizona, and UCLA. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, in Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena.

University of Rochester

Most Distant Explosion Ever Seen

The Distant Gamma-Ray Burst GRB 050904. Image credit: ESO Click to enlarge
An Italian team of astronomers has observed the afterglow of a Gamma-Ray Burst that is the farthest known ever. With a measured redshift of 6.3, the light from this very remote astronomical source has taken 12,700 million years to reach us. It is thus seen when the Universe was less than 900 million years old, or less than 7 percent its present age.

“This also means that it is among the intrinsically brightest Gamma-Ray Burst ever observed”, said Guido Chincarini from INAF-Osservatorio Astronomico di Brera and University of Milano-Bicocca (Italy) and leader of a team that studied the object with ESO’s Very Large Telescope. “Its luminosity is such that within a few minutes it must have released 300 times more energy than the Sun will release during its entire life of 10,000 million years.”

Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. It is now widely accepted that the majority of the gamma-ray bursts signal the explosion of very massive, highly evolved stars that collapse into black holes.

This discovery not only sets a new astronomical record, it is also fundamental to the understanding of the very young Universe. Being such powerful emitters, these Gamma Ray Bursts serve as useful beacons, enabling the study of the physical conditions that prevailed in the early Universe. Indeed, since GRBs are so luminous, they have the potential to outshine the most distant known galaxies and may thus probe the Universe at higher redshifts than currently known. And because Gamma-ray Burst are thought to be associated with the catastrophic death of very massive stars that collapse into black holes, the existence of such objects so early in the life of the Universe provide astronomers with important information to better understand its evolution.

The Gamma-Ray Burst GRB050904 was first detected on September 4, 2005, by the NASA/ASI/PPARC Swift satellite, which is dedicated to the discovery of these powerful explosions.

Immediately after this detection, astronomers in observatories worldwide tried to identify the source by searching for the afterglow in the visible and/or near-infrared, and study it.

First observations by American astronomers with the Palomar Robotic 60-inch Telescope failed to find the source. This sets a very stringent limit: in the visible, the afterglow should thus be at least a million times fainter than the faintest object that can be seen with the unaided eye (magnitude 21). But observations by another team of American astronomers detected the source in the near-infrared J-band with a magnitude 17.5, i.e. at least 25 times brighter than in the visible.

This was indicative of the fact that the object must either be very far away or hidden beyond a large quantity of obscuring dust. Further observations indicated that the latter explanation did not hold and that the Gamma-Ray Burst must lie at a distance larger than 12,500 million light-years. It would thus be the farthest Gamma-Ray Burst ever detected.

Italian astronomers forming the MISTICI collaboration then used Antu, one of four 8.2-m telescopes that comprise ESO’s Very Large Telescope (VLT) to observe the object in the near-infrared with ISAAC and in the visible with FORS2. Observations were done between 24.7 and 26 hours after the burst.

Indeed, the afterglow was detected in all five bands in which they observed (the visible I- and z-bands, and the near-infrared J, H, and K-bands). By comparing the brightness of the source in the various bands, the astronomers could deduce its redshift and, hence, its distance. “The value we derived has since then been confirmed by spectroscopic observations made by another team using the Subaru telescope”, said Angelo Antonelli (Roma Observatory), another member of the team.

Original Source: ESO News Release

Dusty Old Star Could Be Feeding From a Dead Planet

An artist’s impression of dust disk around the white dwarf GD 362. Image credit: Gemini Click to enlarge
Astronomers have glimpsed dusty debris around an essentially dead star where gravity and radiation should have long ago removed any sign of dust ? a discovery that may provide insights into our own solar system’s eventual demise several billion years from now.

The results are based on mid-infrared observations made with the Gemini 8-meter Frederick C. Gillett Telescope (Gemini North) on Hawaii’s Mauna Kea. The Gemini observations reveal a surprisingly high abundance of dust orbiting an ancient stellar ember named GD 362.

“This is not an easy one to explain,” said Eric Becklin, UCLA astronomer and principle investigator for the Gemini observations. “Our best guess is that something similar to an asteroid or possibly even a planet around this long-dead star is being ground up and pulverized to feed the star with dust. The parallel to our own solar system’s eventual demise is chilling.”

“We now have a window to the future of our own planetary system,” said Benjamin Zuckerman, UCLA professor of physics and astronomy, member of NASA’s Astrobiology Institute, and a co-author on the Gemini-based paper. “For perhaps the first time, we have a glimpse into how planetary systems like our own might behave billions of years from now.”

“The reason why this is so interesting is that this particular white dwarf has by far the most metals in its atmosphere of any known white dwarf,” Zuckerman added. “This white dwarf is as rich in calcium, magnesium and iron as our own sun, and you would expect none of these heavier elements. This is a complete surprise. While we have made a substantial advance, significant mysteries remain.”

The research team includes scientists from UCLA, Carnegie Institution and Gemini Observatory. The results are scheduled for publication in an upcoming issue of the Astrophysical Journal. The results will be published concurrently with complementary near-infrared observations made by a University of Texas team led by Mukremin Kilic at the NASA Infrared Telescope Facility, also on Mauna Kea.

“We have confirmed beyond any doubt that dust never does sleep!” quips Gemini Observatory’s Inseok Song, a co-author of the paper. “This dust should only exist for hundreds of years before it is swept into the star by gravity and vaporized by high temperatures in the star’s atmosphere. Something is keeping this star well stocked with dust for us to detect it this long after the star’s death.”

“There are just precious few scenarios that can explain so much dust around an ancient star like this,” said UCLA professor of physics and astronomy Michael Jura, who led the effort to model the dust environment around the star. “We estimate that GD 362 has been cooling now for as long as five billion years since the star’s death-throes began and in that time any dust should have been entirely eliminated.”

Jura likens the disk to the familiar rings of Saturn and thinks that the dust around GD 362 could be the consequence of the relatively recent gravitational destruction of a large “parent body” that got too close to the dead star.

GD 362 is a white dwarf star. It represents the end-state of stellar evolution for stars like the sun and more massive stars like this one’s progenitor, which had an original mass about seven times the sun’s. After undergoing nuclear reactions for millions of years, GD 362’s core ran out of fuel and could no longer create enough heat to counterbalance the inward push of gravity. After a short period of instability and mass loss, the star collapsed into a white-hot corpse. The remains are cooling slowly over many billions of years as the dying ember makes its slow journey into oblivion.

Based on its cooling rate, astronomers estimate that between two billion to five billion years have passed since the death of GD 362.

“This long time frame would explain why there is no sign of a shell of glowing gas known as a planetary nebula from the expulsion of material as the star died,” said team member and Gemini astronomer Jay Farihi.

During its thermonuclear decline, GD 362 went through an extensive period of mass loss, going from a mass of about seven times that of the sun to a smaller, one-solar-mass shadow of its former self.

Although about one-quarter of all white dwarfs contain elements heaver than hydrogen in their atmospheres, only one other white dwarf is known to contain dust. The other dusty white dwarf, designated G29-38, has about 100 times less dust density than GD 362.

The Gemini observations were made with the MICHELLE mid-infrared spectrograph on the Gemini North telescope on Mauna Kea, Hawaii.

“These data are phenomenal,” said Alycia Weinberger of the Carnegie Institution. “Observing this star was a thrill! We were able to find the remnants of a planetary system around this star only because of Gemini’s tremendous sensitivity in the mid-infrared. Usually you need a spacecraft to do this well.”

The Gemini mid-infrared observations were unique in their ability to confirm the properties of the dust responsible for the “infrared excess” around GD 362. The complementary Infrared Telescope Facility near-infrared observations and paper by the University of Texas team provided key constraints on the environment around the star.

University of Texas astronomer and co-author Ted von Hippel describes how the Infrared Telescope Facility (IRTF) observations complement the Gemini results: “The IRTF spectrum rules out the possibility that this star could be a brown dwarf as the source of the ‘infrared excess,'” von Hippel said. “The combination of the two data sets provides a convincing case for a dust disk around GD 362.”

Original Source: UCLA News Release

Star Gobbles Up Its Friend

Artist’s impression of a pulsar ‘eating’ a companion star. Image credit: ESA Click to enlarge
ESA’s Integral space observatory, together with NASA’s Rossi X-ray Timing Explorer spacecraft, has found a fast-spinning pulsar in the process of devouring its companion.

This finding supports the theory that the fastest-spinning isolated pulsars get that fast by cannibalising a nearby star. Gas ripped from the companion fuels the pulsar’s acceleration. This is the sixth pulsar known in such an arrangement, and it represents a ‘stepping stone’ in the evolution of slower-spinning binary pulsars into faster-spinning isolated pulsars.
“We’re getting to the point where we can look at any fast-spinning, isolated pulsar and say, ‘That guy used to have a companion’,” said Dr Maurizio Falanga, who led the Integral observations, at the Commissariat ? l’Energie Atomique (CEA) in Saclay, France.

‘Pulsars’ are rotating neutron stars, which are created in stellar explosions. They are the remnants of stars that were once at least eight times more massive than the Sun. These stars still contain about the mass of our Sun compactified into a sphere of only about 20 kilometres across.

This pulsar, called IGR J00291+5934, belongs to a category of ‘X-ray millisecond pulsars’, which pulse with the X-ray light several hundred times a second, one of the fastest known. It has a period of 1.67 milliseconds which is much smaller that most other pulsars that rotate once every few seconds.

Neutron stars are born rapidly spinning in collapses of massive stars. They gradually slow down after a few hundred thousand years. Neutron stars in binary star systems, however, can reverse this trend and speed up with the help from the companion star.

For the first time ever, this speeding-up has been observed in the act. “We now have direct evidence for the star spinning faster whilst cannibalising its companion, something which no one had ever seen before for such a system,” said Dr Lucien Kuiper from the Netherlands Institute for Space Research (SRON), in Utrecht.

A neutron star can remove gas from its companion star in a process called ‘accretion’. The flow of gas onto the neutron star makes the star spin faster and faster. Both the flow of gas and its crashing upon the neutron star surface releases much energy in the form of X-ray and gamma radiation.

Neutron stars have such a strong gravitational field that light passing by the star changes its direction by almost 100 degrees (in comparison light passing by the Sun is deflected by an angle which is 200 thousands times smaller). “This ‘gravitational bending’ allows us to see the back side of the star,” points out Prof. Juri Poutanen from the University of Oulu, Finland.

“This object was about ten times more energetic than what is usually observed for similar sources,” said Falanga. “Only some kind of monster emits at these energies, which corresponds to a temperature of almost a billion degrees.”

From a previous Integral result, scientists deduced that because the neutron star has a strong magnetic field, charged particles from its companion are channeled along the magnetic field lines until they slam into the neutron star surface at one of its magnetic poles, forming ‘hot spots’. The very high temperatures seen by Integral arise from this very hot plasma over the accretion spots.

IGR J00291+5934 was discovered by Integral during a routine scan of the sky on 2 December 2004, in the outer reaches of our Milky Way galaxy, when it suddenly flared. On the day after, scientists accurately clocked the neutron star with the Rossi X-ray Timing Explorer.

Rossi observations revealed that the companion is already a fraction the size of our Sun, perhaps as small as 40 Jupiter masses. The binary orbit is 2.5 hours long (as opposed to the year long Earth-Sun orbit). The full system is very tight; both stars are so close that they will fit into the radius of the Sun. These details support the theory that the two stars are close enough for accretion to take place and that the companion star is being cannibalised.

“Accretion is expected to cease after a billion of years or so,” said Dr Duncan Galloway of the Massachusetts Institute of Technology, USA, responsible for the Rossi observations. “This Integral-Rossi discovery provides more evidence of how pulsars evolve from one phase to another – from an initially slowly spinning binary neutron star emitting high energies, to a rapidly spinning isolated pulsar emitting in radio wavelengths.”

The discovery is the first of its kind for Integral (four of the first five rapidly spinning X-ray pulsars were discovered by Rossi). This bodes well in the combined search for these rare objects. Integrals’s sensitive detectors can identify relatively dim and distant sources and so, knowing where to look, Rossi can provide timing information through a dedicated observation extending over the entire two-week period of the typical outburst.

Original Source: ESA Portal