Núcleo de Mercurio

Interior of Mercury
Interior of Mercury

Al igual que la Tierra, el interior de Mercurio se cree que tienen distintas regiones. La corteza exterior es el cráter lleno de paisaje que vemos en las imágenes de Mercurio. A continuación que es el manto del planeta. Y en el núcleo de Mercurio se piensa que es una bola de hierro fundido, 3.600 km a través.

La naturaleza exacta del núcleo de Mercurio es un misterio de 30 años, después de la nave espacial Mariner de la NASA analiza primero el planeta de cerca. Ayudó a determinar que el tamaño y la densidad de Mercurio significa que debe tener un gran núcleo de hierro. La cuestión es: el núcleo de Mercurio es sólido o líquido?

La respuesta fue finalmente descubierto en 2007 cuando los científicos rebotado señales de radio fuera de la superficie de Mercurio y se enteró de que es en realidad un núcleo de hierro fundido. El núcleo de Mercurio es líquido. Ellos hicieron esto por el momento cuánto tiempo toma para rebotar señales de radio a la de Mercurio. El tambalearse en la rotación de Mercurio corresponde exactamente lo que los científicos estima que debería ser si Mercurio tiene un núcleo líquido. Piensa en cómo un huevo giros diferente cuando está crudo y cuando es duro.

El núcleo de Mercurio representa el 42% de su volumen. Esto es mucho más que el núcleo de la Tierra, que sólo representa el 17% del volumen del planeta.

Core of Mercury

Composición de Mercurio

Interior of Mercury
Interior of Mercury

El mercurio es un planeta terrestre, al igual que como todos los interiores de los 4 planetas: Mercurio, Venus, Tierra y Marte. Es el más pequeño de ellos, y tiene un diámetro de sólo 4.879 km en su ecuador.

Los astrónomos han estimado que el mercurio está formado por aproximadamente el 70% de los metales y el 30% de silicato de material. De hecho, es sólo ligeramente menos densa que la Tierra, con 5,43 g/cm3.

Dado que el mercurio es más pequeño que la Tierra, su gravedad no comprimirlo como mucho, por lo que en realidad tiene mucho más elementos más pesados en su interior. Los geólogos estiman que su núcleo es muy grande, y en la mayoría de hierro. El núcleo probablemente al 42% del volumen de mercurio, mientras que la Tierra está a sólo 17%.

El núcleo es aproximadamente 3.600 kilometros de ancho. Que es de alrededor de 600 kilometros espeso manto. Y es que alrededor de la corteza, que se cree que es 100-200 km de espesor. La corteza se sabe que tiene estrechas crestas que se extienden durante cientos de kilómetros. Planetaria científicos creen que los cerros se formaron cuando el planeta se enfrió y contratados por debajo de la corteza, haciendo que el colapso.

Una de las razones para explicar por qué Mercurio tiene un núcleo grande es que fue impactada por un gran planetesimal temprano en su historia. El impacto habría despojado fuera gran parte de la corteza del planeta, dejando sólo el núcleo de hierro de espesor. Este es un proceso similar que explica la formación de la Luna. También es posible que el mercurio formado antes de la salida de energía del Sol establecidos. Si hubiera dos veces su masa, el Sol puede vaporizar la superficie del planeta, que arruina lejos con su poder del viento solar.

Composition of Mercury

Color de Mercurio

True color image of Mercury (MESSENGER)

[/caption]
A diferencia de todos los otros planetas del Sistema Solar, Mercurio es sólo roca desnuda. Tiene una tenue atmósfera, el suelo y el espacio, pero las observaciones ver sólo la roca de color gris de Mercurio. Este color gris mercurio proviene de la superficie fundido enfriado y endurecido que miles de millones de años después de la formación del Sistema Solar.

No hay activos procesos de erosión tectónica o pasa en la superficie de Mercurio, que se ha mantenido sin cambios durante miles de millones de años, sólo modificado por el impacto de meteorito ocasional. En el pasado, algunas de las cuencas se llenaron por el magma que fluyó del planeta, cuando todavía tenía un ciclo geológico. Los geólogos son bastante seguros de que no hay volcanes activos sobre el mercurio más, pero es posible que no puede seguir siendo la corriente de lava ocasionales. Flujos de lava fresca parece como un color diferente en la superficie de Mercurio. Tal vez cuando la nave espacial MESSENGER de la NASA entra en órbita alrededor de Mercurio, que tendrá una mejor idea de sus colores. Sin duda sabremos más sobre su geología de superficie.

La fotografía adjunta a la presente artículo se proporciona uno de los mejores, true-color, imágenes de Mercurio que tenemos. Si pudieras volar sobre el mercurio en su nave espacial, esto es esencialmente lo que usted ve. Una superficie de color gris oscuro, roto por cráteres, grandes y pequeños. El color de la superficie de Mercurio es sólo de las texturas de color gris, con la ocasional ligero parche, como el recientemente descubierto la formación de cráteres y trincheras que los geólogos planetarios han llamado “La Araña”.

Mercury coloración es muy similar a la Tierra de la luna. De hecho, cuando estás viendo las imágenes de objetos, es muy difícil decir a los dos objetos separados. A diferencia de la Luna, sin embargo, Mercurio carece de las áreas más oscuras, o “los mares”, que se crearon en la Luna por flujos de lava. De mercurio de color no tiene la variedad que incluso la Luna posee.

Color of Mercury

Clima de Mercurio

Radar image of Mercury that shows water deposits.

[/caption]
El clima de un planeta se define por la temperatura, humedad, presión atmosférica, viento, lluvia y muchos otros factores. Tierra tiene un clima, obviamente, e incluso de Marte y Venus tienen una atmósfera y un tipo de clima. Pero ¿qué hay de los otros terrestres planeta Mercurio? ¿Qué tipo de clima que tienen mercurio?

En primer lugar, echemos un vistazo a la temperatura. Las temperaturas sobre el mercurio puede ir de 700 grados Kelvin (426 grados Celsius) cuando estás en el ecuador a mediodía y, a continuación, inmersión hasta 100 grados Kelvin (-173 grados C) en medio de mercurio de la noche.

La presión atmosférica sobre el mercurio se estima en 0.000000000002 kilogramos por centímetro cuadrado. Sólo por comparación, la presión del aire en la Tierra es de 1,03 kilogramos por centímetro cuadrado. En otras palabras, la presión atmosférica en la Tierra es de 515 mil millones de veces superior a la presión sobre el mercurio. De hecho, el mercurio no tiene realmente un ambiente, tiene un exosphere. Esta es una fina colección de las partículas que rodean el planeta, que es regenerada por el Sol del viento solar y el polvo de patadas hasta micrometeorite impactos.

Y luego de aquí en adelante, no hay mucho más que el clima de Mercurio. Hay un poco de agua en vapor de mercurio de la “atmósfera”, pero en realidad no es posible medir en términos de humedad. No hay viento, además de la constante soplar del viento solar. No hay lluvias, los aerosoles en la atmósfera, etc

El mercurio es realmente sólo un lugar seco, muerto mundo con activos no hablar de clima.

Climate of Mercury

Planetary Alignment

Planets and other objects in our Solar System. Credit: NASA.

[/caption]
Thousands of years ago, men looked to the planets to guide them. Planetary alignments foretold momentous events of good and evil. In those days, planning wedding,s or even assassinations, according to the planets and stars was common in many cultures. Many people still look to the planets to tell the future. But what really is a planetary alignment and how does it happen?

There are two different ways that the term alignment is used referring to the planets in our Solar System. The first way is if you were standing on the Sun, all the planets would appear to be lined up in a row. This is what most people think of when the they hear the term planetary alignment. The other kind of alignment is if all the planets follow a straight line. In other words, it is as if a straight line can be drawn through the center of all the planets.

It is impossible for an exact alignment as viewed from the Sun – where the planets are superimposed – because of the differences in axial tilts of the planets. What we actually see in the sky is planetary configuration where the planets are in the same quadrant. It is very rare for all the planets to be within the exact same quadrant – approximately 90° of each other. Having all the planets within about 90° of each other only occurs about every 200 years, which is a long time for humans, although it is nothing for the universe. The planets do however line up loosely more often than that.

In 2000, five of the planets – Mars, Saturn, Jupiter, Mercury, and Venus were within 50° of each other. You may have heard a lot about future planetary alignments, including rumors about 12/21/2012 when some say the world is going to end, and there will be a planetary alignment. That is all it is, a rumor. There will be no planetary alignment in 2012. Many of the planets will align in a rather straight line in 2010. On June 13, 2010, Uranus, Jupiter, and Mercury will be lined up on one side of the Sun while Venus, Mars, and Saturn will be lined up on the other side. Earth will be perpendicular to the Sun at this time. In September of the year 2040, four of the planets – Saturn, Venus, Jupiter and Mars – will be roughly aligned when seen from Earth. Check out when other planetary alignments will happen, and then search for them in the sky.

Check out this site about planetary alignments and this site, which shows you the position of the planets for any date you enter.

Universe Today has a number of articles to read including galactic alignment and planets line up.

Astronomy Cast has an episode about planetary alignment.

What is Interplanetary Space?

The heliosphere Credit: NASA/Feimer)

[/caption]
The region of space within our Solar System is called interplanetary space, also known as interplanetary medium. Most people are so fascinated by the planets, Sun, and other celestial objects that they do not pay any attention to space. After all, there is nothing in outer space right? A common misconception is that outer space is a perfect vacuum, but there are actually particles in space including dust, cosmic rays, and burning plasma spread by solar winds. Particles in interplanetary space have a very low density, approximately 5 particles per cubic centimeter around Earth and the density decreases further from the Sun. The density of these particles is also affected by other factors including magnetic fields. The temperature of interplanetary medium is about 99,727°C.

Interplanetary space extends to the edge of the Solar System where it hits interstellar space and forms the heliosphere, which is a kind of magnetic bubble around our Solar System. The boundary between interplanetary space and interstellar space is known as the heliopause and is believed to be approximately 110 to 160 astronomical units (AU) from the Sun. The solar winds that blow from the Sun, and are part of the material in interplanetary space, flow all the way to the edge of the Solar System where they hit interstellar space. The magnetic particles in these solar winds interact with interstellar space and form the protective sphere.

The way that interplanetary space interacts with the planets depends on the nature of the planets’ magnetic fields. The Moon has no magnetic field, so the solar winds can bombard the satellite. Astronomers study rocks from Earth’s Moon to learn more about the effects of solar winds. So many particles have hit the Moon that it emits faint radiation. Some planets, including Earth, have their own magnetospheres where the planets’ magnetic fields override the Sun’s.  The Earth’s magnetic field deflects dangerous cosmic rays that would otherwise damage or kill life on Earth. Material leaking from the solar winds is responsible for auroras in our atmosphere. The most famous aurora is the Aurora Borealis, which appears in the sky and is only visible in the Northern Hemisphere.

Interplanetary medium also causes a number of phenomena including the zodiacal light, which appear as a faint broad band of light only seen before sunrise or after sunset. This light, brightest near the horizon, occurs when light bounces off dust particles in the interstellar medium near Earth. In addition to interplanetary space, there is also interstellar space, which is the space in a galaxy in between stars.

Universe Today has a number of articles on space including the heliosphere and zodiacal light.

Check out these articles from NASA on the heliosphere and sunspots leaking plasma into interplanetary space.

Astronomy Cast has an episode on the heliosphere and interstellar medium.

References:
NASA: Heliosphere
NASA Voyager: Interstellar Mission
What’s It Like Where Voyager Is?

What is Mercury Made Of?

Interior of Mercury
Interior of Mercury

[/caption]
Mercury is the closest planet to the Sun, orbiting at only 57.9 million km. It’s classified as one of the “rocky” or terrestrial planets of the Solar System. But what is Mercury made of? How does Mercury’s composition compare to the other planets in the Solar System.

Scientists believe that Mercury has an interior composition similar to Earth. Mercury has a large core of liquid metal surrounded by a mantle of silica and a solid outer crust. In the case of Mercury, though, the core accounts for 42% of the planet, while Earth’s core is only 17%.

It’s difficult to know the actual interior composition of Mercury. Scientists know that it has a density of 5.427 grams per cubic centimeter. This is only a little less than our own planet. That means that Mercury has an interior metal core, and the rest is rock. In fact, Mercury’s core is thought to have a higher iron content than any other planet in the Solar System. It’s believed that Mercury used to be similar in composition to a chondrite meteorite, but then it was struck by a planetesimal early in its history that stripped away its outer crust and mantle. The remaining planet was much denser.

Astronomers were unsure if Mercury’s core was solid or liquid until recently. They bounced radio signals off the surface of the planet and measured how long they took to return. They determined that Mercury was wobbling at a rate you would expect if its core was liquid and not solid.

Mercury’s surface is similar in appearance to the Moon, with large basins and impact craters. The largest crater is Caloris Basin, measuring 1,550 km across. The impact that created Caloris Basin sent shock waves around the planet, causing volcanic activity on the opposite point of the impact.

We have written many stories about what is Mercury made out of here on Universe Today. Here’s an article about a the discovery that Mercury’s core is liquid. And how Mercury is actually less like the Moon than previously believed.

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We have also recorded a whole episode of Astronomy Cast that’s just about planet Mercury. Listen to it here, Episode 49: Mercury.

Qué es el mercurio hecho

Mercury and Pluto

Size of the planets compared.

[/caption]
Before Pluto was discovered, there were 8 planets in the Solar System; and Mercury was the smallest. And then in 1930, the discovery of Pluto brought that number up to 9. For most of the 20th century, scientists weren’t sure which was bigger, Pluto or Mercury. But accurate measurements helped scientists conclude that Pluto was the smaller planet. And then in 2006, astronomers voted to remove Pluto as a planet, and so we’ve got back to 8 planets. And once again, Mercury is the smallest planet in the Solar System. But let’s compare the dwarf planet Pluto and Mercury.

In terms of size, scientists now know that Mercury is significantly larger than Pluto. The diameter of Mercury is 4,879.4 km across, while Pluto’s diameter is 2,360 km across. So Mercury is about twice as large Pluto. And just for comparison, Pluto is only 18% the diameter of Earth, while Mercury is 38% the diameter of Earth.

When it comes to density, though, Mercury and Pluto are very different. Mercury is comprised of rock and metal, while Pluto is ice and rock. The density of Mercury is 5.427 g/cm3, while the density of Pluto is about 2 g/cm3. And since Pluto is smaller and less dense than Mercury, it has a much lower force of gravity. While you would feel 38% the force of Earth gravity standing on the surface of Mercury, you would experience only 5.9% of Earth gravity on Pluto. It would be extremely difficult to walk around the surface of Pluto without flying up in the air with every step.

Mercury is the closest planet to the Sun, orbiting at an average distance of only 57.9 million km, while Pluto orbit at an average distance of 5.9 billion km. Mercury completes an orbit in just 88 days, while Pluto takes 248 years to go around the Sun just once.

Mercury has no rings or moons, while Pluto has at least 3 moons (Charon, Nix and Hydra) and might even have faint ice rings; these could be generated by meteorite impacts on the surface of Pluto kicking up material into orbit around it.

There’s one big difference between the two worlds, though. It’s possible to see Mercury with the unaided eye. If you head out before sunrise, or after sunset and look to the horizon, you can see Mercury with your own eyeballs. Pluto, on the other hand, requires a very powerful telescope; and even then it’ll only look like a faint dot.

Another difference is the fact that Mercury has been visited by spacecraft from Earth. This has given us close up images of the surface of the planet. Pluto has never been seen up close. That’s going to change soon, though, when NASA’s New Horizons spacecraft arrives at Pluto in 2015 and takes the first close up images of the dwarf planet.

We have written many stories about Mercury here on Universe Today. Here’s an article about a the discovery that Mercury’s core is liquid. And how Mercury is actually less like the Moon than previously believed.

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

Mercurio y Plutón

Source: NASA

Weekend SkyWatcher’s Forecast: July 3-5, 2009

Greetings, fellow SkyWatchers! Are you ready for a Moon-filled weekend? Then let’s have a look a some great lunar features as we race Mad Max to the “Megadome”! For some lucky viewers in Japan and Hawaii, there will be an occultation of Antares to enjoy. How about some great double stars… Or a chance to see if you can spot a penumbral lunar eclipse? Then follow me out to the backyard. The stars are waiting…

Friday, July 3, 2009 – Tonight let’s venture toward the south shore of Palus Epidemiarum to have a high-power look at crater Capuanus. Named for Italian astronomer Francesco Capuano di Manfredonia, this 60 kilometer-wide crater boasts a still tall southwest wall, but the northeast one was destroyed by lava flow.

capuanus

At its highest, it reaches around 1,900 meters above the lunar surface, yet drops to no more than 300 meters at the lowest. Look for several strikes along the crater walls as well as more evidence of a strong geological history. To the north is the Hesiodus Rima, a huge fault line that extends 300 kilometers across the surface!

mu_serpWhen you’re done, why not have a look at 156-light-year-distant Mu Serpentis (RA 15 49 37 Dec –03 25 48)? Its name is Leiolepis, which means ‘‘smooth scaled.’’ Perhaps a fitting name, because this normal A-type main sequence star is also known as the head of the serpent. Have a look in binoculars, and you’ll note several optical companions. Or use a telescope to locate delicate binary Struve 1985 (RA 15 56 01 Dec –02 11 00) nearby!

Saturday, July 4, 2009 – Look closely at the Moon. For some lucky viewers, it’s about to occult Antares! Check International Occultation and Timing Association (IOTA) for times and locations.

Also be sure to look for the ‘‘Cow Jumping over the Moon,’’ but power up with a telescope to study some very wild looking features—lunar lava domes. North of Aristarchus, west of Promontorium Heraclides, and near the terminator is Rumker—the largest of the lava domes. Only visible when near the terminator, this roughly 77-kilometer-diameter ‘‘soft hill’’ ranges anywhere from 60 to 760 meters tall. Although it is not much more than a bump on the lunar surface, it does contain a few summit craters at its highest points. What we are looking at is really an important part of the geology that shaped the Moon’s surface. In all likelihood, Rumker is a shield volcano. . .in an area of many!

megadome

Now continue east toward the prominent crater Marian, set in a bright peninsula extending into Sinus Roris and Mare Imbrium. Just southwest are two more—Mons Gruithuisen Gamma (the ‘‘Megadome’’) and Mons Gruithuisen Delta. Although you might not find these features particularly impressive, consider that we’re looking at something only 20 kilometers wide and only a few meters high!

deltacephTonight we honor American astronomer Henrietta Swan Leavitt, the discoverer of the relationship between period and luminosity in Cepheid variables. This led to understanding the distance to the galaxies! Said Leavitt, ‘‘Since the variables are probably nearly the same distance from Earth, their periods are apparently associated with their actual emission of light, as determined by their mass, density, and surface brightness.’’ Do her memory honor and check out Delta Cephei (RA 22 29 10 Dec þ58 24 54) tonight! Thirty to forty times more massive than our own Sun, Delta varies from magnitude 3.6–4.3 in just slightly over 5 days. And look for its companion star as well.

Sunday, July 5, 2009 – Tonight let’s go deep south and have look at an area that once held something almost half a bright as tonight’s Moon and over four times brighter than Venus. Only one thing could light up the skies like that—a supernova.

SNAccording to historical records from Europe, China, Egypt, Arabia, and Japan, 1,003 years ago the very first supernova event was noted. Appearing in the constellation of Lupus, it was at first believed to be a comet by the Egyptians, yet the Arabs saw it as an illuminating ‘‘star.’’ Located less than a finger-width northeast of Beta Lupi (RA 15 02 48 Dec –41 54 42) and half a degree east of Kappa Centaurus, no visible trace is left of a once-grand event that spanned 5 months of observation, beginning in May and lasting until it dropped below the horizon in September 1006. It is believed that most of the star was converted to energy, and very little mass remains. In the area, a 17th magnitude star that shows a tiny gas ring and radio source 1459-41 remains our best candidate for pinpointing this incredible event.

uplibWhy you’re at it, try a challenging double star—Upsilon Librae (RA 15 37 01 Dec –28 08 06). This beautiful red star is right at the limit for a small telescope, but quite worthy, as the pair is a widely disparate double. Look for the 11.5-magnitude companion to the south in a very nice field of stars!

Lunar_eclipse_chart_close-2009jul07If you’d like to try for a challenging observation, then take look on the universal date of July 7th for a partial penumbral eclipse. While this isn’t anything to get intensely excited over, since the Moon will only graze through a small portion of the Earth’s shadow, chances are you might just notice something a little different. While a certain very reputable periodical says “The moon skims through too little of the penumbra to be noticed even by the most intent observer.” – I have also heard them say things like the partial solar eclipse won’t be visible here or there – and proved them wrong. It’s only my opinion, of course, but I believe no one should be discouraged from making an observation if they have the time, the energy, the location or the desire! So here’s what to do…

The partial penumbral eclipse will be seen starting in eastern Australia as the Moon rises just after dusk on July 7th and it will occur as the Moon is setting over western North and South America in the early predawn hours of July 7th. Only the northern third of the lunar surface will be affected, and it will be just a slight change in coloration – a vague gray shadowing. However, this is simply a prediction on the vague part! I have seen times when this happens that the appearance is very noticeable, and times when you truly can’t tell at all. Why not judge for yourself? I look forward to hearing your results!

Good luck and clear skies…

This week’s awesome images are: Capuanus, Marian and the Megadome (credit—Wes Higgins), Mu Serpentis, Delta Cephei, Field of SN 1006 and Upsilon Librae (credit – Palomar Observatory, courtesy of Caltech). We thank you so much!