ESA Picks an Asteroid to Move

Computer animation of Don Quijote and its asteroid target. Image credit: ESA. Click to enlarge.
Based on the recommendations of asteroid experts, ESA has selected two target asteroids for its Near-Earth Object deflecting mission, Don Quijote.

Don Quijote is an asteroid-deflecting mission currently under study by ESA?s Advanced Concepts Team (ACT). Earlier this year the NEO Mission Advisory Panel (NEOMAP), consisting of well-known experts in the field, delivered to ESA a target selection report for Europe?s future asteroid mitigation missions, identifying the relevant criteria for selecting a target and picking up two objects that meet most of those criteria. The asteroids? temporary designations are 2002 AT4 and 1989 ML.

With this input and the support of ESA?s Concurrent Design Facility (CDF) experts, the Advanced Concepts Team has now completed an extensive assessment of suitable mission architectures, launch strategies, propulsion system options and experiments.

The current scenario envisages two spacecraft in separate interplanetary trajectories. One spacecraft (Hidalgo) will impact an asteroid, the other (Sancho) will arrive earlier at the target asteroid, rendezvous and orbit the asteroid for several months, observing it before and after the impact to detect any changes in its orbit.

Industrial studies are now about to start; it will be down to European experts to propose alternative solutions for the design of the low-cost NEO precursor mission. This will be the first step towards the development of a means to tackle asteroid impacts ? one of the few natural disasters that our technology can prevent.

A near miss?
While the eyes of the world were on the Asian tsunami last Christmas, one group of scientists were watching uneasily for another potential natural disaster ? the threat of an asteroid impact.

On 19 December 2004 MN4, an asteroid of about 400 m, lost since its discovery six months earlier, was observed again and its orbit was computed. It immediately became clear that the chances that it could hit the Earth during a close encounter in 2029 were unusually high. As the days passed the probability did not decrease and the asteroid became notorious for surpassing all previous records in the Torino and Palermo impact risk scales – scales that measure the risk of an asteroid impact just as the Richter scale quantifies the size of an earthquake.

Only after earlier observations of the object were found and a more accurate trajectory was computed did it become clear that it would not impact the Earth ? at least not in 2029. Impacts on later dates, though unlikely, have not been totally ruled out. It is extremely difficult to tell what will happen unless we come up with a better way to track this or other NEOs and if necessary take steps to tackle them.

Most world experts agree that this capability is now within our reach. A mission like ESA?s Don Quijote could provide a means to assess a threatening NEO and take concrete steps to deflect it away from the Earth.

But every good performance needs rehearsing and in order to be ready for such a threat, we should try our hardware on a harmless asteroid first. Don Quijote would be the first mission to make such an attempt. The big question was: which asteroid and what should it be like?

Looking for the perfect target
The NEO population contains a confusing variety of objects, and deciding which physical parameters are most relevant for mitigation considerations is no trivial task. But the NEOMAP experts took on the challenge and in February 2005 provided ESA with their recommendations on the asteroid selection criteria for ESA?s deflection rehearsal.

People might wonder whether performing a deflection test, such as that planned for Don Quijote, represents any risk to our planet. What if things go wrong? Could we create a problem, rather than learn how to avoid one?

Experts world-wide say the answer is no. Even a very dramatic impact of a heavy spacecraft on a small asteroid would only result in a minuscule modification of the object?s orbit. In fact the change would be so small that the Don Quijote mission requires two spacecraft ? one to monitor the impact of the other. The second spacecraft measures the subtle variation of the object?s orbital parameters that would not be noticeable from Earth.

Target objects can also be selected so that all possible concerns are avoided altogether, by looking into the way the distance between the asteroid?s and the Earth?s orbits changes with time. If the target asteroid is not an ?Earth crosser?, as is the case with NEOs in the ?Amor? class (which have orbits with perihelion distance well in excess of 1 AU), testing a deflection manoeuvre represents no risk to the Earth.

Other considerations related to the orbit of the target asteroid are also important, especially the change of orbital velocity that is required by the spacecraft to ?catch up? with the target asteroid ? the so-called ?delta V?. This should be sufficiently small to minimise the required amount of spacecraft propellant and enable the use of cheaper launchers, but high enough to allow the same spacecraft to be used with a number of possible targets.

Navigation and deflection measurements requirements set some heavy constraints on the target selection. The shape, density, and size are all important factors, but are often poorly known. A spacecraft orbiting an asteroid needs to know about the object?s gravitational field in order to navigate. The ?impactor spacecraft? must know the position of the centre of mass to define the point it is aiming for.

Asteroids come in all sort of flavours, but as far as composition is concerned two main types dominate. Our still rudimentary knowledge of the abundance of asteroids of different types in the near-Earth asteroid population indicates that the next hazardous asteroid is more likely to be a ?C-type?, than an ?S-type?. C-types have dark surfaces with a carbonaceous spectral signature, while S-types have brighter surfaces, their spectra matching closely that of silicates. The surface properties of the target asteroid -and in particular the percentage of light that it reflects – are a critical factor in the final phase of the impactor spacecraft navigation. The brighter it looks the easier it is to aim at. However for a rehearsal the target should not be too easy.

ESA has selected asteroids 2002 AT4 and (10302) 1989 ML as mission targets because they represent best compromise among all the (sometimes conflicting) selection criteria. A decision on which of the two will become the final destination of both Sancho and Hidalgo spacecraft will be made in 2007.

Don Quijote ? the knight errant rides again
The phase of internal studies on the Don Quijote mission is now over, and it is time for the space industry to suggest suitable design solutions. ESA has made an open invitation to European space companies to submit proposals on possible designs. The selection of the most promising ones will take place towards the end of the year. In early 2006, two teams should start working on their interpretations of this technology demonstration mission. A year later, once the results are available, ESA will select the final design to be implemented, and then Don Quijote will be ready to take on an asteroid!

Additional Notes
Don Quijote is a NEO deflection test mission based entirely on conventional spacecraft technologies. It would comprise two spacecraft – one of them (Hidalgo) impacting an asteroid at a very high relative speed while a second one (Sancho) would arrive earlier at the same asteroid and remain in its vicinity before and after the impact to measure the variation on the asteroid?s orbital parameters, as well as to study the object.

Asteroid 2004 MN has now been given an official designation, (99942) Apophis. Recent observations using Doppler radar using Arecibo radio telescope in Puerto Rico have reduced the impact probability during future encounters to very small levels, though they have not totally ruled out an Earth impact. In 2029, the asteroid will have the closest approach ever witnessed for an object of this size, swinging by the Earth at a distance of around 32,000 kilometres. Its trajectory will be well within the geosynchronous orbit used by most telecommunications and weather satellites, and the object will be visible to the naked eye. Further radar measurements are expected in 2013.

Original Source: ESA News Release

Leftover Material Caused the Late Heavy Bombardment

Lunar surface. Image credit: LPI Click to enlarge
University of Arizona and Japanese scientists are convinced that evidence at last settles decades-long arguments about what objects bombarded the early inner solar system in a cataclysm 3.9 billion years ago.

Ancient main belt asteroids identical in size to present-day asteroids in the Mars-Jupiter belt — not comets — hammered the inner rocky planets in a unique catastrophe that lasted for a blink of geologic time, anywhere from 20 million to 150 million years, they report in the Sept. 16 issue of Science.

However, the objects that have been battering our inner solar system after the so-called Late Heavy Bombardment ended are a distinctly different population, UA Professor Emeritus Robert Strom and colleagues report in the article, “The Origin of Planetary Impactors in the Inner Solar System.”

After the Late Heavy Bombardment or Lunar Cataclysm period ended, mostly near-Earth asteroids (NEAs) have peppered the terrestrial region.

Strom has been studying the size and distribution of craters across solar system surfaces for the past 35 years. He has long suspected that two different projectile populations have been responsible for cratering inner solar system surfaces. But there’s been too little data to prove it.

Now asteroid surveys conducted by UA’s Spacewatch, the Sloan Digital Sky Survey, Japan’s Subaru telescope and the like have amassed fairly complete data on asteroids down to those with diameters of less than a kilometer. Suddenly it has become possible to compare the sizes of asteroids with the sizes of projectiles that blasted craters into surfaces from Mars inward to Mercury.

“When we derived the projectile sizes from the cratering record using scaling laws, the ancient and more recent projectile sizes matched the ancient and younger asteroid populations smack on,” Strom said. “It’s an astonishing fit.”

“One thing this says is that the present-day size-distribution of asteroids in the asteroid belt was established at least as far back as 4 billion years ago,” UA planetary scientist Renu Malhotra, a co-author of the Science paper, said. “Another thing it says is that the mechanism that caused the Late Heavy Bombardment was a gravitational event that swept objects out of the asteroid belt regardless of size.”

Malhotra discovered in previous research what this mechanism must have been. Near the end of their formation, Jupiter and the other outer gas giant planets swept up planetary debris farther out in the solar system, the Kuiper Belt region. In clearing up dust and pieces leftover from outer solar system planet formation, Jupiter, especially, lost orbital energy and moved inward, closer to the sun. That migration greatly enhanced Jupiter’s gravitational influence on the asteroid belt, flinging asteroids irrespective of size toward the inner solar system.

Evidence that main belt asteroids pummeled the early inner solar system confirms a previously published cosmochemical analysis by UA planetary scientist David A. Kring and colleagues.

“The size distribution of impact craters in the ancient highlands of the moon and Mars is a completely independent test of the inner solar system cataclysm and confirms our cosmochemical evidence of an asteroid source,” Kring, a co-author of the Science paper, said.

Kring was part of a team that earlier used an argon-argon dating technique in analyzing impact melt ages of lunar meteorites — rocks ejected at random from the moon’s surface and that landed on Earth after a million or so years in space. They found from the ages of the “clasts,” or melted rock fragments, in the breccia meteorites that all of the moon was bombarded 3.9 billion years ago, a true global lunar cataclysm. The Apollo lunar sample analysis said that asteroids account for at least 80 percent of lunar impacts.

Comets have played a relatively minor role in inner solar system impacts, Strom, Malhotra and Kring also conclude from their work. Contrary to popular belief, probably no more than 10 percent of Earth’s water has come from comets, Strom said.

After the Late Heavy Bombardment, terrestrial surfaces were so completely altered that no surface older than 3.9 billion years can be dated using the cratering record. Older rocks and minerals are found on the moon and Earth, but they are fragments of older surfaces that were broken up by impacts, the researchers said.

Strom said that if Earth had oceans between 4.4 billion and 4 billion years ago, as other geological evidence suggests, those oceans must have been vaporized by the asteroid impacts during the cataclysm.

Kring also has developed a hypothesis that suggests that the impact events during Late Heavy Bombardment generated vast subsurface hydrothermal systems that were critical to the early development of life. He estimated that the inner solar system cataclysm produced more than 20,000 craters between 10 kilometers to 1,000 kilometers in diameter on Earth.

Inner solar system cratering dynamics changed dramatically after the Late Heavy Bombardment. From then on, the impact cratering record reflects that most objects hitting inner solar system surfaces have been near-Earth asteroids, smaller asteroids from the main belt that are nudged into terrestrial-crossing orbits by a size-selective phenomenon called the Yarkovsky Effect.

The effect has to do with the way asteroids unevenly absorb and re-radiate the sun’s energy. Over tens of millions of years, the effect is large enough to push asteroids smaller than 20 kilometers across into the jovian resonances, or gaps, that deliver them to terrestrial-crossing orbits. The smaller the asteroid, the more it is influenced by the Yarkovsky Effect.

Planetary geologists have tried counting craters and their size distribution to get absolute ages for surfaces on the planets and moons.

“But until we knew the origin of the projectiles, there has been so much uncertainty that I thought it could lead to enormous error,” Strom said. “And now I know I’m right. For example, people have based the geologic history of Mars on the heavy bombardment cratering record, and it’s wrong because they’re using only one cratering curve, not two.”

Attempts to date outer solar system bodies using the inner solar system cratering record is completely wrong, Strom said. But it should be possible to more accurately date inner solar system surfaces once researchers determine the cratering rate from the near-Earth asteroid bombardment, he added.

The authors of the Science paper are Strom, Malhotra and Kring from the University of Arizona Lunar and Planetary Laboratory, and Takashi Ito and Fumi Yoshida of National Astronomical Observatory, Tokyo, Japan.

Original Source: UA News Release

What the Ground Telescopes Saw During Deep Impact

Mid-infrared image of comet 9P/Tempel 1 after the Deep Impact collision. Image credit: NAOJ Click to enlarge
When NASA’s Deep Impact mission ploughed into comet 9P/Tempel 1 on July 4th of this year, the giant telescopes on Mauna Kea had a unique view of the massive cloud of dust, gas and ice expelled during the collision.

A series of coordinated observations, made under ideal conditions by the world’s largest collection of big telescopes, delivered surprising new insights into the ancestry and l7ife cycles of comets. Specifically, materials beneath the comet’s dusty skin reveal striking similarities between two families of comets where no relationship had been suspected.

The observations also allowed scientists to determine the mass of material blasted out by the collision, which is estimated to be as much as 25 fully-loaded tractor trailer-trucks.

The findings are based on the composition of rocky dust detected by both the Subaru and Gemini 8-meter telescopes and ethane, water and carbon-based organic compounds revealed by the 10-meter W.M. Keck Observatory. The results from these Mauna Kea observations were made available today in a special segment in the journal Science highlighting results from the Deep Impact experiment.

Comet Tempel 1 was selected for the Deep Impact experiment because it orbits the Sun in a stable orbit that allows its surface to be gently baked with solar radiation. As a result, the comet has an old weathered,protective layer of dust that covers the icy material beneath, much like a snowbank builds up dirt on its surface as it melts in the springtime sunlight. The Deep Impact mission was designed to dig deep beneath this crusty exterior to learn more about the true nature of the comet’s dust and ice components. “This comet definitely had something to hide under its veneer of rock and ice and we were ready with the world’s biggest telescopes to find out what it was,” said Chick Woodward of the University of Minneapolis and part of the Gemini observing team.

The combined observations show a complex mix of silicates, water and organic compounds beneath the surface of the comet. These materials are similar to what is seen in another class of comets thought to reside in a distant swarm of pristine bodies called the Oort Cloud. Oort Cloud comets are well preserved fossils in the frozen suburbs of the solar system that have changed little over the billions of years since their formation. When they are occasionally nudged gravitationally toward the Sun they warm up and release a profuse amount of gas and dust on a one-time visit to the inner solar system..

Returning comets like Tempel 1 (known as periodic comets) were believed to have formed in a colder nursery distinctly different from the birthplaces of their cousins, the Oort Cloud comets. The evidence for two distinct “family trees” lies in their vastly different orbits and apparent composition. “Now we see that the difference may really be just superficial: only skin deep.” said Woodward. “Under the surface, these comets may not be so different after all.

This similarity indicates that both types of comets might have shared a birthplace in a region of the forming solar system where temperatures were warm enough to produce the materials observed. “It is now likely that these bodies formed between the orbits of Jupiter and Neptune in a common nursery,” said Seiji Sugita of the University of Tokyo and Subaru team member.

“Another question that the Mauna Kea telescopes were able to address is the amount of mass ejected when the comet was impacted by the chunk of copper about the size of a grand piano from the Deep Impact spacecraft,” Sugita commented. At the time of impact the spacecraft was traveling at about 23,000 miles per hour or nearly 37,000 kilometers per hour.

Because the spacecraft was unable to study the size of the crater created after it was formed, the high-resolution Mauna Kea observations provided the necessary data to get a firm estimate of the mass ejection, which was about 1000 tons. “To release this amount of material, the comet must have a fairly soft consistency,” Sugita said.

“The splash from NASA’s impact probe freed these materials and we were in the right place to capture them with the biggest telescopes on Earth,” said W.M. Keck Director Fred Chaffee. “The close collaboration among Keck, Gemini and Subaru assured that the very best science was done by the best telescopes in the world, demonstrating that the whole is often greater than the sum of its parts.”

All three of Mauna Kea’s largest telescopes observed the comet in the infrared part of the spectrum which is light that can be described as “redder than red.” The Deep Impact spacecraft was not designed to observe the comet in the mid-infrared (or thermal infrared) part of the spectrum, which is what Subaru and Gemini were able to do. The Keck observations used a near-infrared, high-resolution spectrograph. Large instruments of this sort would have been impossible to fit on the Deep Impact spacecraft.

“These observations give us the best glimpse yet at what’s under the dusty skin of a comet,” said David Harker who led the Gemini team. “Within an hour of impact, the comet’s glow was transformed and we were able to detect a whole host of fine dusty silicates propelled by a sustained gas geyser from under the comet’s protective crust. These included a large amount of olivine, similar in composition to what you would find at the beaches below Mauna Kea. This incredible data was really a gift from Mauna Kea!”

Instruments that made these observations were:

* MICHELLE (Mid-Infrared Echelle Spectrograph/Imager) on the 8-meter Fredrick C. Gillett (Gemini North) Telescope
* NIRSPEC (Near-Infrared Spectrograph) on the 10-meter on the Keck II 10-meter telescope
* COMICS (COoled Mid-Infrared Camera and Spectrograph) on the 8-meter Subaru telescope

Original Source: NAOJ News Release

What is the biggest telescope?

Hayabusa’s Photo of Itokawa

Itokawa. Image credit: JAXA Click to enlarge
Hayabusa arrived at Itokawa on September 12. The distance between the spacecraft and Itokawa is approximately 20 kilometers. This is the composite color image of Itokawa taken at September 12, 2005. This image composed of three images with different filters as red, green and blue. The irregular shape is clearly seen.
Hayabusa science observations started.

Original Source: JAXA News Release

Asteroid Ceres Could Have Large Amounts of Water

Hubble tracks Ceres. Image credit: NASA/ESA Click to enlarge
Observations of 1 Ceres, the largest known asteroid, have revealed that the object may be a “mini planet,” and may contain large amounts of pure water ice beneath its surface.

The observations by NASA’s Hubble Space Telescope also show that Ceres shares characteristics of the rocky, terrestrial planets like Earth. Ceres’ shape is almost round like Earth’s, suggesting that the asteroid may have a “differentiated interior,” with a rocky inner core and a thin, dusty outer crust.

“Ceres is an embryonic planet,” said Lucy A. McFadden of the Department of Astronomy at the University of Maryland, College Park and a member of the team that made the observations. “Gravitational perturbations from Jupiter billions of years ago prevented Ceres from accreting more material to become a full-fledged planet.”

The finding will appear Sept. 8 in a letter to the journal Nature. The paper is led by Peter C. Thomas of the Center for Radiophysics and Space Research at Cornell University in Ithaca, N.Y., and also includes project leader Joel William Parker of the Department of Space Studies at Southwest Research Institute in Boulder, Colo.

Asteroid Ceres is approximately 580 miles (930 kilometers) across, about the size of Texas. It resides with tens of thousands of other asteroids in the main asteroid belt. Located between Mars and Jupiter, the asteroid belt probably represents primitive pieces of the solar system that never managed to accumulate into a genuine planet. Ceres comprises 25 percent of the asteroid belt’s total mass. However, Pluto, our solar system’s smallest planet, is 14 times more massive than Ceres.

The astronomers used Hubble’s Advanced Camera for Surveys to study Ceres for nine hours, the time it takes the asteroid to complete a rotation. Hubble snapped 267 images of Ceres. From those snapshots, the astronomers determined that the asteroid has a nearly round body. The diameter at its equator is wider than at its poles. Computer models show that a nearly round object like Ceres has a differentiated interior, with denser material at the core and lighter minerals near the surface. All terrestrial planets have differentiated interiors. Asteroids much smaller than Ceres have not been found to have such interiors.

The astronomers suspect that water ice may be buried under the asteroid’s crust because the density of Ceres is less than that of the Earth’s crust, and because the surface bears spectral evidence of water-bearing minerals. They estimate that if Ceres were composed of 25 percent water, it may have more water than all the fresh water on Earth. Ceres’ water, unlike Earth’s, would be in the form of water ice and located in the mantle, which wraps around the asteroid’s solid core.

Besides being the largest asteroid, Ceres also was the first asteroid to be discovered. Sicilian astronomer Father Giuseppe Piazzi spotted the object in 1801. Piazzi was looking for suspected planets in a large gap between the orbits of Mars and Jupiter. As more such objects were found in the same region, they became known as “asteroids” or “minor planets”.

Original source: Hubble News Release

Asteroid Dust Could Influence the Weather

The asteroid’s dust trail. Image credit: Sandia National Laboratories. Click to enlarge
Dust from asteroids entering the atmosphere may influence Earth?s weather more than previously believed, researchers have found.

In a study to be published this week in the journal Nature, scientists from the Australian Antarctic Division, the University of Western Ontario, the Aerospace Corporation, and Sandia and Los Alamos national laboratories found evidence that dust from an asteroid burning up as it descended through Earth?s atmosphere formed a cloud of micron-sized particles significant enough to influence local weather in Antarctica.

Micron-sized particles are big enough to reflect sunlight, cause local cooling, and play a major role in cloud formation, the Nature brief observes. Longer research papers being prepared from the same data for other journals are expected to discuss possible negative effects on the planet?s ozone layer.

?Our observations suggest that [meteors exploding] in Earth?s atmosphere could play a more important role in climate than previously recognized,? the researchers write.

Scientists had formerly paid little attention to asteroid dust, assuming that the burnt matter disintegrated into nanometer-sized particles that did not affect Earth?s environment. Some researchers (and science fiction writers) were more interested in the damage that could be caused by the intact portion of a large asteroid striking Earth.

But the size of an asteroid entering Earth?s atmosphere is significantly reduced by the fireball caused by the friction of its passage. The mass turned to dust may be as much as 90 to 99 percent of the original asteroid. Where does this dust go?

The uniquely well-observed descent of a particular asteroid and its resultant dust cloud gave an unexpected answer.

On Sept. 3, 2004, the space-based infrared sensors of the U.S. Department of Defense detected an asteroid a little less than 10 meters across, at an altitude of 75 kilometers, descending off the coast of Antarctica. U.S. Department of Energy visible-light sensors built by Sandia National Laboratories, a National Nuclear Security Administration lab, also detected the intruder when it became a fireball at approximately 56 kilometers above Earth. Five infrasound stations, built to detect nuclear explosions anywhere in the world, registered acoustic waves from the speeding asteroid that were analyzed by LANL researcher Doug ReVelle. NASA?s multispectral polar orbiting sensor then picked up the debris cloud formed by the disintegrating space rock.

Some 7.5 hours after the initial observation, a cloud of anomalous material was detected in the upper stratosphere over Davis Station in Antarctica by ground-based lidar.

?We noticed something unusual in the data,? says Andrew Klekociuk, a research scientist at the Australian Antarctic division. ?We?d never seen anything like this before ? [a cloud that] sits vertically and things blow through it. It had a wispy nature, with thin layers separated by a few kilometers. Clouds are more consistent and last longer. This one blew through in about an hour.?

The cloud was too high for ordinary water-bearing clouds (32 kilometers instead of 20 km) and too warm to consist of known manmade pollutants (55 degrees warmer than the highest expected frost point of human-released solid cloud constituents). It could have been dust from a solid rocket launch, but the asteroid?s descent and the progress of its resultant cloud had been too well observed and charted; the pedigree, so to speak, of the cloud was clear.

Computer simulations agreed with sensor data that the particles? mass, shape, and behavior identified them as meteorite constituents roughly 10 to 20 microns in size.

Says Dee Pack of Aerospace Corporation, ?This asteroid deposited 1,000 metric tons in the stratosphere in a few seconds, a sizable perturbation.? Every year, he says, 50 to 60 meter-sized asteroids hit Earth.

Peter Brown at the University of Western Ontario, who was initially contacted by Klekociuk, helped analyze data and did theoretical modeling. He points out that climate modelers might have to extrapolate from this one event to its larger implications. ?[Asteroid dust could be modeled as] the equivalent of volcanic eruptions of dust, with atmospheric deposition from above rather than below.? The new information on micron-sized particles ?have much greater implications for [extraterrestrial visitors] like Tunguska,? a reference to an asteroid or comet that exploded 8 km above the Stony Tunguska river in Siberia in 1908. About 2150 square kilometers were devastated, but little formal analysis was done on the atmospheric effect of the dust that must have been deposited in the atmosphere.

The Sandia sensors? primary function is to observe nuclear explosions anywhere on Earth. Their evolution to include meteor fireball observations came when Sandia researcher Dick Spalding recognized that ground-based processing of data might be modified to record the relatively slower flashes due to asteroids and meteoroids. Sandia computer programmer Joe Chavez wrote the program that filtered out signal noise caused by variations in sunlight, satellite rotation, and changes in cloud cover to realize the additional capability. The Sandia data constituted a basis for the energy and mass estimate of the asteroid, says Spalding.

The capabilities of defense-related sensors to distinguish between the explosion of a nuclear bomb and the entry into the atmosphere of an asteroid that releases similar amounts of energy ? in this case, about 13 kilotons ? could provide an additional margin of world safety. Without that information, a country that experienced a high-energy asteroid burst that penetrated the atmosphere might provoke a military response by leaders who are under the false impression that a nuclear attack is underway, or lead other countries to assume a nuclear test has occurred.

Original Source: Sandia National Labs

Asteroid Close Call Will Be a Gain for Science

Asteroid. Image credit: U.S. Geological Survey Click to enlarge
A University of Michigan-led research team has discovered that for the first time in history, scientists will be able to observe how the Earth’s gravity will disrupt a massive asteroid’s spin.

Scientists predict a near-miss when Asteroid 99942 Apophis, also known as the 2029 meteor, passes Earth in 2029. An asteroid flies this close to the planet only once every 1,300 years. The chance to study it will help scientists deal with the object should it threaten collision with Earth.

Only about three Earth diameters will separate Apophis and Earth when the 400-meter asteroid hurtles by Earth’s gravity, which will twist the object into a complex wobbling rotation. Such an occurrence has never been witnessed but could yield important clues to the interior of the sphere, according to a paper entitled, “Abrupt alteration of the spin state of asteroid 99942 Apophis (2004 MN4) during its 2029 Earth flyby,” accepted for publication in the journal Icarus.

The team of scientists is led by U-M’s Daniel Scheeres, associate professor of aerospace engineering, and includes U-M’s Peter Washabaugh, associate professor of aerospace engineering.

Apophis is one of more than 600 known potentially hazardous asteroids and one of several that scientists hope to study more closely. In Apophis’ case, additional measurements are necessary because the 2029 flyby could be followed by frequent close approaches thereafter, or even a collision.

Scheeres said not only is it the closest asteroid flyby ever predicted in advance, but it could provide a birds-eye view of the asteroid’s “belly.”

“In some sense it’s like a space science mission ‘for free’ in that something scientifically interesting will happen, it will be observable from Earth, and it can be predicted far in advance,” Scheeres said.

If NASA places measuring equipment on the asteroid’s surface, scientists could for the first time study an asteroid’s interior, similar to how geologists study earthquakes to gain understanding of the Earth’s core, Scheeres said. Because the torque caused by the Earth’s gravitational pull will cause surface and interior disruption to Apophis, scientists have a unique opportunity to observe its otherwise inaccessible mechanical properties, Scheeres said. Throwing the asteroid off balance could also affect its orbit and how close it comes to Earth in future years.

“Monitoring of this event telescopically and with devices placed on the asteroid’s surface could reveal the nature of its interior, and provide us insight into how to deal with it should it ever threaten collision,” Scheeres said.

The asteroid will be visible in the night sky of Europe, Africa and Western Asia.

The asteroid was discovered late last year and initially scientists gave it a 1-in-300 chance of hitting the Earth on April 13, 2029. Subsequent analysis of new and archived pre-discovery images showed that Apophis won’t collide with Earth that day, but that later in 2035, 2036, and 2037 there remains a 1-in-6,250 chance that the asteroid could hit Earth, Scheeres said. Conversely, that’s a 99.98 percent chance that the asteroid will miss Earth.

The asteroid is relatively small, about the length of three football fields. If it hit it wouldn’t create wide-scale damage to the Earth, but would cause major damage at the impact site, Scheeres said.

The team of scientists also includes Lance Benner and Steve Ostro of NASA’s Jet Propulsion Laboratory, Alessandro Rossi of ISTI-CNR, Italy, and Francesco Marzari of the University of Padova, Italy.

U-M University News Release

Triple Asteroid System Discovered

Orbits of twin moonlets around 87 Sylvia. Image credit: ESO Click to enlarge
One of the thousands of minor planets orbiting the Sun has been found to have its own mini planetary system. Astronomer Franck Marchis (University of California, Berkeley, USA) and his colleagues at the Observatoire de Paris (France) have discovered the first triple asteroid system – two small asteroids orbiting a larger one known since 1866 as 87 Sylvia.

“Since double asteroids seem to be common, people have been looking for multiple asteroid systems for a long time,” said Marchis. “I couldn’t believe we found one.”

The discovery was made with Yepun, one of ESO’s 8.2-m telescopes of the Very Large Telescope Array at Cerro Paranal (Chile), using the outstanding image’ sharpness provided by the adaptive optics NACO instrument. Via the observatory’s proven “Service Observing Mode”, Marchis and his colleagues were able to obtain sky images of many asteroids over a six-month period without actually having to travel to Chile.

One of these asteroids was 87 Sylvia, which was known to be double since 2001, from observations made by Mike Brown and Jean-Luc Margot with the Keck telescope. The astronomers used NACO to observe Sylvia on 27 occasions, over a two-month period. On each of the images, the known small companion was seen, allowing Marchis and his colleagues to precisely compute its orbit. But on 12 of the images, the astronomers also found a closer and smaller companion. 87 Sylvia is thus not double but triple!

Because 87 Sylvia was named after Rhea Sylvia, the mythical mother of the founders of Rome, Marchis proposed naming the twin moons after those founders: Romulus and Remus. The International Astronomical Union approved the names.

Sylvia’s moons are considerably smaller, orbiting in nearly circular orbits and in the same plane and direction. The closest and newly discovered moonlet, orbiting about 710 km from Sylvia, is Remus, a body only 7 km across and circling Sylvia every 33 hours. The second, Romulus, orbits at about 1360 km in 87.6 hours and measures about 18 km across.

The asteroid 87 Sylvia is one of the largest known from the asteroid main belt, and is located about 3.5 times further away from the Sun than the Earth, between the orbits of Mars and Jupiter. The wealth of details provided by the NACO images show that 87 Sylvia is shaped like a lumpy potato, measuring 380 x 260 x 230 km. It is spinning at a rapid rate, once every 5 hours and 11 minutes.

The observations of the moonlets’ orbits allow the astronomers to precisely calculate the mass and density of Sylvia. With a density only 20% higher than the density of water, it is likely composed of water ice and rubble from a primordial asteroid. “It could be up to 60 percent empty space,” said co-discoverer Daniel Hestroffer (Observatoire de Paris, France).

“It is most probably a “rubble-pile” asteroid”, Marchis added. These asteroids are loose aggregations of rock, presumably the result of a collision. Two asteroids smacked into each other and got disrupted. The new rubble-pile asteroid formed later by accumulation of large fragments while the moonlets are probably debris left over from the collision that were captured by the newly formed asteroid and eventually settled into orbits around it. “Because of the way they form, we expect to see more multiple asteroid systems like this.”

Marchis and his colleagues will report their discovery in the August 11 issue of the journal Nature, simultaneously with an announcement that day at the Asteroid Comet Meteor conference in Arma??o dos B?zios, Rio de Janeiro state, Brazil.

Original Source: ESO News Release

Massive Asteroids Transformed the Earth’s Surface

Asteroid. Image credit: NEAR Click to enlarge
A cluster of at least three asteroids between 20 and 50 kilometres across colliding with Earth over 3.2 billion years ago caused a massive change in the structure and composition of the earth?s surface, according to new research by ANU earth scientists.

According to Dr Andrew Glikson and Mr John Vickers from the Department of Earth and Marine Sciences at ANU, the impact of these asteroids triggered major earthquakes, faulting, volcanic eruption and deep-seated magmatic activity and interrupted the evolution of parts of the Earth?s crust.

The research extends the original discovery of extraterrestrial impact deposits, discovered in South Africa by two US scientists, D.R. Lowe and G.R. Byerly, identifying their effects in the Pilbara region in Western Australia.

?Our findings are further evidence that the seismic aftershocks of these massive impacts resulted in the abrupt termination of an over 300 million years-long evolutionary stage dominated by basaltic volcanic activity and protracted accretion of granitic plutons,? Dr Glikson said.

The identification of impact ejecta ? materials ejected by the hitting asteroid ? is based on unique minerals and chemical and isotopic compositions indicative of extraterrestrial origin, including iridium anomalies.

The impact ejecta from the Barberton region in the eastern Transvaal indicate the formation of impact craters several hundred kilometres in diameter in oceanic regions of the earth, analogous to the lunar maria basins (large dark impressions on the surface of the moon). The seismic effects of the impacts included vertical block movements, exposure of deep-seated granites and onset of continental conditions on parts of the earth surface.

In the Pilbara, the formation of fault escarpments and fault troughs is represented by collapse of blocks up to 250-metres wide and 150-metres high, buried canyons and a major volcanic episode 3240 million years ago.

?The precise coincidence of the faulting and igneous activity with the impact deposits, coupled with the sharp break between basaltic crust and continental formations, throws a new light on the role of asteroid impacts in terrestrial evolution,? Dr Glikson said.

Preliminary indications suggest that at about the same time the Moon was also affected by asteroid impacts and by resurgent volcanic activity.

Dr Glikson and Mr Vickers will continue to investigate the extent and effects of large asteroid impacts by studying early terrains in other parts of the world, including India and Canada.

Original Source: ANU News Release

Why Are There Smooth Spots on Eros?

Asteroid 433 Eros taken by NEAR Shoemaker. Image credit: NASA. Click to enlarge
An asteroid’s external features, when analyzed carefully, can say a lot about its interior. So it was while he was mapping the surface of asteroid 433 Eros that Peter Thomas, a senior research associate in astronomy at Cornell University, found a simple solution to an earlier puzzle about the asteroid’s composition.

Thomas was using images collected by the Near Earth Asteroid Rendezvous mission in 2001 to create a digital map of Eros. On the asteroid’s surface, predictably pock-marked with thousands of craters accumulated from impacts over its lifetime, he saw a feature first noticed by Cornell graduate student Marc Berthoud: that a few particular patches were inexplicably smooth. That observation had led to various theories — but none that seemed completely satisfying.

In a letter appearing in the current issue of the journal Nature (Vol. 436, No. 7049, p. 366), Thomas and Northwestern University geologist Mark Robinson show that the asteroid’s smooth patches can be explained by a seismic disturbance that occurred when the crater, known as the Shoemaker crater, was formed.

The fact that seismic waves were carried through the center of the asteroid shows that the asteroid’s core is cohesive enough to transmit such waves, Thomas says. And the smoothing-out effect within a radius of up to 9 kilometers from the 7.6-kilometer Shoemaker crater — even on the opposite side of the asteroid — indicates that Eros’ surface is loose enough to get shaken down by the impact.

Asteroids are small, planetlike bodies that date back to the beginning of the solar system, so studying them can give astronomers insight into the solar system’s formation. And while no asteroids currently threaten Earth, knowing more about their composition could help prepare for a possible future encounter.

Eros, whose surface is a jumble of house-sized boulders and small stones (“what geologists call ‘poorly sorted,'” says Thomas), is the most carefully studied asteroid, in part because its orbit brings it close to earth.

Thomas and Robinson considered various theories for the regions of smoothness, including the idea that ejecta from another impact had blanketed the areas. But they rejected the ejecta hypothesis when calculations showed an impact Shoemaker’s size wouldn’t create enough material to cover the surface indicated. And even if it did, they add, the asteroid’s irregular shape and motion would cause the ejecta to be distributed differently.

In contrast, says Thomas, the shaking-down hypothesis fits the evidence neatly. “The classic light bulb goes on in your head,” he says; the crater density of small craters increases with the distance from the Shoemaker crater. “Simple geometry says something like a simple seismic wave.”

The NEAR mission, in which a NASA spacecraft landed on the asteroid’s surface in 2001 after orbiting it for a year, yielded more than 100,000 images of the small asteroid. (Eros is about 33 kilometers long, 13 kilometers wide and 8 kilometers thick). Since the mission’s conclusion 16 days after the landing, scientists from institutions around the world have been sorting through the data.

That process is expected to continue for years. “Careful mapping of things on the surface can give you a good clue as to what’s inside,” says Thomas. “And in one sense, we’ve barely begun.”

Original Source: Cornell University News Release