Binary Icy Asteroid in Jupiter’s Orbit

An artist’s illustration of the binary asteroids Patroclus (center) and Menoetius. Image credit: W.M. Keck Observatory. Click to enlarge
A bound pair of icy comets similar to the dirty snowballs circling outside the orbit of Neptune has been found lurking in the shadow of Jupiter.

Astronomers at the University of California, Berkeley, working with colleagues in France and at the Keck Telescope in Hawaii, have calculated the density of a known binary asteroid system that shares Jupiter’s orbit, and concluded that Patroclus and its companion probably are composed mostly of water ice covered by a patina of dirt.

Because dirty snowballs are thought to have formed in the outer reaches of the solar system, from which they are occasionally dislodged and end up looping closer to the sun as comets, the team suggests that the asteroid probably formed far from the sun. It most likely was captured in one of Jupiter’s Trojan points – two eddies where debris collects in Jupiter’s orbit – during a period when the inner solar system was intensely bombarded by comets, around 650 million years after the formation of the solar system.

If confirmed, this could mean that many or most of the probably thousands of Jupiter’s Trojan asteroids are dirty snowballs that originated much farther from the sun and at the same time as the objects now occupying the Kuiper Belt.

“It’s our suspicion that the Trojans are small Kuiper Belt objects,” said study leader Franck Marchis, a research astronomer at UC Berkeley.

Marchis and colleagues from the Institut de M??bf?canique C??bf?leste et Calculs d’??bf?ph??bf?m??bf?rides (IMCCE) at the Observatoire de Paris and from the W. M. Keck Observatory report their findings in the Feb. 2 issue of Nature.

The team’s conclusion adds support to a recent hypothesis about the evolution of the orbits of our solar system’s largest planets, Jupiter, Saturn, Uranus and Neptune, put forth by a group of researchers headed by Alessandro Morbidelli, a theoretical astronomer with the Conseil National de la Recherche Scientifique laboratory of the Observatoire de la Cote d’Azur, Nice, France.
Diagram of the asteroid 617 Patroclus and its companion in the solar system

In a Nature paper last year, Morbidelli and colleagues proposed that icy comets would have been captured in Jupiter’s Trojan points during the early history of the solar system. According to their scenario, during the first few hundred million years after the birth of the solar system, the large gas planets orbited closer to the sun, enveloped in a cloud of billions of large asteroids called planetesimals, perhaps 100 kilometers (62 miles) in diameter or less. Interactions with these planetesimals caused the large gaseous planets to migrate outward until about 3.9 billion years ago, when Jupiter and Saturn entered resonant orbits and began tossing the planetesimals around like confetti, some of them leaving the solar system for good.

The bulk of the remaining planetesimals settled into orbits beyond Neptune – today’s Kuiper Belt and the source of short-period comets – but a small number were captured in the Trojan eddies of the giant planets, in particular Jupiter.

“This is the first time anyone has determined directly the density of a Trojan asteroid, and it supports the new scenario proposed by Morbidelli,” said coauthor Daniel Hestroffer, an astronomer at the IMCEE. “These asteroids would have been captured in the Trojan points at a time when the rocky planets were still forming, and this perturbation of the planetesimals about 650 million years after the birth of the solar system could have created the late bombardment of the moon and Mars.”

Though Marchis refers to the scenario as “a nice story,” he admits that more work needs to be done to provide support for it.

“We need to discover more binary Trojans and observe them to see if low density is a characteristic of all Trojans,” he said.

Trojan asteroids are those caught in the so-called Lagrange points of Jupiter’s orbit, located the same distance from Jupiter as Jupiter is from the sun – 5 astronomical units, or 465 million miles. These points, one leading and the other trailing Jupiter, are places were the gravitational attraction of the sun and Jupiter are balanced, allowing debris to collect like dust bunnies in the corner of a room. Hundreds of asteroids have been discovered in the leading (L4) and trailing (L5) points, each orbiting around that point as if in an eddy.

The asteroid 617 Patroclus, originally discovered at L5 and named in 1906, was found to have a companion in 2001, and so far is the only known Trojan binary. The discoverers were not able to estimate the orbit of the components because they had too few observations.

As experienced asteroid hunters, Marchis and his colleagues in August this year discovered the first triple asteroid system, 87 Sylvia, much closer to the sun in the main asteroid belt between Mars and Jupiter, and used a powerful 8-meter telescope of the European Southern Observatory’s Very Large Telescope in Chile to study the three objects. They were able to chart the orbits of the asteroids to estimate the density of Sylvia, from which they concluded it is a rubble-pile of loosely, packed rock.

The French and American team tried the same technique with the much more distant Patroclus, employing imaging data from the Keck II Laser Guide Star System at the W. M. Keck Observatory on Mauna Kea, which yields a sharp resolution impossible with any other ground-based telescope.

“Before, we could only look at objects near a bright reference star, limiting the use of adaptive optics to a small percentage of the heavens,” Marchis said. “Now, we can use adaptive optics to view almost any point on the sky.”

The laser guide star system uses a laser beam to excite sodium atoms within a small spot in the upper atmosphere. This artificial “star” is used to measure atmospheric turbulence, which is then removed by the movable mirrors of the Keck adaptive optics system.

With the system providing an unparalleled 58 milliarcsecond resolution, the Keck team made five observations in the infrared between November 2004 and July 2005. Marchis and his colleagues determined that the density of Patroclus and its companion, which are about the same size and circle around their center of mass every 4.3 days at a distance of 680 kilometers (423 miles), was very low: 0.8 grams per cubic centimeter, about one third that of rock and light enough to float in water. Assuming a rocky composition similar to that of Jupiter’s moons Callisto and Ganymede, the components of the system would have to be very loosely packed – about half empty space, an internal characteristic which is not expected for a same-size binary system, the researchers concluded.

The team suggests a more reasonable composition of water ice with only 15 percent open space, which makes these objects similar to comets and small Kuiper Belt objects, which have been determined to have densities less than water.

Marchis suspects that the binary system formed when a single large asteroid was torn asunder by the gravitational tug of Jupiter.

“The Patroclus system displays similar characteristics to the binary Near Earth Asteroids, which are believed to have formed during an encounter with a terrestrial planet by tidal splitting,” he said. “In the case of a Trojan asteroid, it is only when the work of our collaborators was published recently that we could suggest that this encounter was with Jupiter.”

Because in Homer’s Iliad, Patroclus was Achilles’ companion and a hero of the Trojan War, Achilles would have been an appropriate name for one of the two asteroids, which are about the same size. However, another asteroid already has the name Achilles, so Marchis and his collaborators proposed naming the smallest member of the binary system Menoetius, after the father of Patroclus. The Committee on Small Body Names of the International Astronomical Union has tentatively accepted the name. The asteroid designated Menoetius is about 112 kilometers (70 miles) in diameter, while Patroclus is about 122 kilometers (76 miles) wide.

In addition to Marchis, the team included astronomy professor Imke de Pater and postdoctoral fellow Michael H. Wong of UC Berkeley; Daniel Hestroffer, Pascal Descamps, J??bf?r??bf?me Berthier and Fr??bf?d??bf?ric Vachier of the Institut de M??bf?canique C??bf?leste et de Calculs des ??bf?ph??bf?m??bf?rides (IMCCE); and Antonin Bouchez, Randall Campbell, Jason Chin, Marcos van Dam, Scott Hartman, Erik Johansson, Robert Lafon, David Le Mignant, Paul Stomski, Doug Summers and Peter Wizinovich of the W. M. Keck Observatory.

The project was supported by grants from the National Science Foundation through the Science and Technology Center for Adaptive Optics and by the National Aeronautics and Space Administration. Most of the data were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California and NASA, with additional observations obtained at the Gemini Observatory operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership.

Original Source: UC Berkeley News Release

Asteroid Broke Up 8.2 Million Years Ago

The Earth. Image credit: NASA Click to enlarge
In a new study that provides a novel way of looking at our solar system’s past, a group of planetary scientists and geochemists announce that they have found evidence on Earth of an asteroid breakup or collision that occurred 8.2 million years ago.

Reporting in the January 19 issue of the journal Nature, scientists from the California Institute of Technology, the Southwest Research Institute (SwRI), and Charles University in the Czech Republic show that core samples from oceanic sediment are consistent with computer simulations of the breakup of a 100-mile-wide body in the asteroid belt between Mars and Jupiter. The larger fragments of this asteroid are still orbiting the asteroid belt, and their hypothetical source has been known for years as the asteroid “Veritas.”

Ken Farley of Caltech discovered a spike in a rare isotope known as helium 3 that began 8.2 million years ago and gradually decreased over the next 1.5 million years. This information suggests that Earth must have been dusted with an extraterrestrial source.

“The helium 3 spike found in these sediments is the smoking gun that something quite dramatic happened to the interplanetary dust population 8.2 million years ago,” says Farley, the Keck Foundation Professor of Geochemistry at Caltech and chair of the Division of Geological and Planetary Sciences. “It’s one of the biggest dust events of the last 80 million years.”

Interplanetary dust is composed of bits of rock from a few to several hundred microns in diameter produced by asteroid collisions or ejected from comets. Interplanetary dust migrates toward the sun, and en route some of this dust is captured by the Earth’s gravitational field and deposited on its surface.

Presently, more than 20,000 tons of this material accumulates on Earth each year, but the accretion rate should fluctuate with the level of asteroid collisions and changes in the number of active comets. By looking at ancient sediments that include both interplanetary dust and ordinary terrestrial sediment, the researchers for the first time have been able to detect major dust-producing solar system events of the past.

Because interplanetary dust particles are so small and rare in sediment-significantly less than a part per million-they are difficult to detect using direct measurements. However, these particles are extremely rich in helium 3, in comparison with terrestrial materials. Over the last decade, Ken Farley has measured helium 3 concentrations in sediments formed over the last 80 million years to create a record of the interplanetary dust flux.

To assure that the peak was not a fluke present at only one site on the seafloor, Farley studied two different localities: one in the Indian Ocean and one in the Atlantic. The event is recorded clearly at both sites.

To find the source of these particles, William F. Bottke and David Nesvorny of the SwRI Space Studies Department in Boulder, Colorado, along with David Vokrouhlicky of Charles University, studied clusters of asteroid orbits that are likely the consequence of ancient asteroidal collisions.

“While asteroids are constantly crashing into one another in the main asteroid belt,” says Bottke, “only once in a great while does an extremely large one shatter.”

The scientists identified one cluster of asteroid fragments whose size, age, and remarkably similar orbits made it a likely candidate for the Earth-dusting event. Tracking the orbits of the cluster backwards in time using computer models, they found that, 8.2 million years ago, all of its fragments shared the same orbital orientation in space. This event defines when the 100-mile-wide asteroid called Veritas was blown apart by impact and coincides with the spike in the interplanetary seafloor sediments Farley had found.

“The Veritas disruption was extraordinary,” says Nesvorny. “It was the largest asteroid collision to take place in the last 100 million years.”

As a final check, the SwRI-Czech team used computer simulations to follow the evolution of dust particles produced by the 100-mile-wide Veritas breakup event. Their work shows that the Veritas event could produce the spike in extraterrestrial dust raining on the Earth 8.2 million years ago as well as a gradual decline in the dust flux.

“The match between our model results and the helium 3 deposits is very compelling,” Vokrouhlicky says. “It makes us wonder whether other helium 3 peaks in oceanic cores can also be traced back to asteroid breakups.”

This research was funded by NASA’s Planetary Geology and Geophysics program and received additional financial support from Czech Republic grant agency and the National Science Foundation’s COBASE program. The Nature paper is titled “A late Miocene dust shower from the breakup of an asteroid in the main belt.”

Original Source: caltech News Release

Kuiper Belt Moons Might Be More Common

Artist’s concept of Xena the Sun, appearing from a distance. Image credit: NASA/JPL-Caltech. Click to enlarge
In the not-too-distant past, the planet Pluto was thought to be an odd bird in the outer reaches of the solar system because it has a moon, Charon, that was formed much like Earth’s own moon was formed. But Pluto is getting a lot of company these days. Of the four largest objects in the Kuiper belt, three have one or more moons.

“We’re now beginning to realize that Pluto is one of a small family of similar objects, nearly all of which have moons in orbit around them,” says Antonin Bouchez, a California Institute of Technology astronomer.

Bouchez discussed his work on the Kuiper belt at the winter meeting of the American Astronomical Society (AAS).

Bouchez says that the puzzle for planetary scientists is that, as a whole, the hundreds of objects now known to inhabit the Kuiper belt beyond the orbit of Neptune have only about an 11 percent chance of possessing their own satellites. But three of the four largest objects now known in the region have satellites, which means that different processes are at work for the large and small bodies.

Experts have been fairly confident for a decade or more that Pluto’s moon Charon was formed as the result of an impact, but that the planet seemed unique in this. According to computer models, Pluto was hit by an object roughly one-half its own size, vaporizing some of the planet’s material. A large piece, however, was cleaved off nearly intact, forming Pluto’s moon Charon.

Earth’s moon is thought to have been formed in a similar way, though our moon most likely formed out of a hot disk of material left in orbit after such a violent impact.

Just in the last year, astronomers have discovered two additional moons for Pluto, but the consensus is still that the huge Charon was formed by a glancing blow with another body, and that all three known satellites-as well as anything else not yet spotted from Earth-were built up from the debris.

As for the other Kuiper belt objects, experts at first thought that the bodies acquired their moons only occasionally by snagging them through gravitational capture. For the smaller bodies, the 11 percent figure would be about right.

But the bigger bodies are another story. The biggest of all – and still awaiting designation as the tenth planet – is currently nicknamed “Xena.” Discovered by Caltech’s Professor of Planetary Science Mike Brown and his associates, Chad Trujillo of the Gemini Observatory and David Rabinowitz of Yale University, Xena is 25 percent larger than Pluto and is known to have at least one moon.

The second-largest Kuiper belt object is Pluto, which has three moons and counting. The third-largest is nicknamed “Santa” because of the time of its discovery by the Mike Brown team, and is known to have two moons.

“Santa is an odd one,” says Bouchez. “You normally would expect moons to form in the same plane because they would have accreted from a disk of material in orbit around the main body.

“But Santa’s moons are 40 degrees apart. We can’t explain it yet.”

The fourth-largest Kuiper belt object is nicknamed “Easterbunny” – again, because of the time the Brown team discovered it – and is not yet known to have a moon. But in April, Bouchez and Brown will again be looking at Easterbunny with the adaptive-optics rig on one of the 10-meter Keck telescopes, and a moon might very well turn up.

Original Source: NASA Astrobiology

Podcast: Gravity Tractor Beam for Asteroids

Forget about nuclear weapons, if you need to move a dangerous asteroid, you should use a tractor beam. Think that’s just Star Trek science? Think again. A team of NASA astronauts have recently published a paper in the Journal Nature. They’re proposing an interesting strategy that would use the gravity of an ion-powered spacecraft parked beside an asteroid to slowly shift it out of a hazardous orbit. Dr. Stanley G. Love is member of the team and speaks to me from his office in Houston.
Continue reading “Podcast: Gravity Tractor Beam for Asteroids”

Hayabusa’s Return Probably Delayed

An Orbit Synthesis Example for Hayabusa Return starting in 2007. Image credit: JAXA Click to enlarge
Hayabusa spacecraft currently undergoes the recovery operation to resume the communication with the ground stations. It was hit by an abrupt disturbing torque owing to the fuel leak that occurred before, and has been out of the ground contact since December 9th. The project team has a good expect to have the spacecraft resume the communication soon. However, the project is now not so sure to make the spacecraft return to earth in June of 2007 and has decided to lengthen the flight period for three years more to have it return to the Earth in June of 2010.

On December 8th, Usuda station observed the sudden shifts of the range-rate measurements at 4:13 UTC with the corresponding gradual decrease of signal intensity AGC (Automated Gain Controller) read. The measurement and the intensity change slowly and are currently estimated due to the out-gassing effect that derived from the fuel leak-out at the end of last month. The leak occurred on November 26th and 27th. Since the beacon signal communication resumed on 29th, the project has made an effort to exclude the vapor gas of the fuel from the spacecraft. The project has by now identified the out-gassing has successfully been performed, as its exponential acceleration decay has shown so far.

On December 8th, the spacecraft was under the resume operation phase for the chemical propulsion, and was given a slow spin whose period is about six minutes. From the beginning of December, the project has introduced the Xenon gas thruster control strategy for emergency, replacing the chemical propulsion system. But the control capability of it was not enough strong for the spacecraft to withstand the disturbance on December 8th. Current estimation says the spacecraft may be in a large coning motion and that is why the spacecraft has not responded to the commands sent from the ground station.

The spacecraft has been out of communication since December 9th. Analysis predicting the attitude property relating to both the Sun and Earth shows that there will be high possibility counted on for the resumption of the communication from the ground for several months or more ahead. However, the spacecraft may have to undergo another long term baking cycle before it starts the return cruise operation using ion engines aboard. And it is concluded that the commencement of the return cruise during December is found difficult. The project has determined that the return cruise should start from 2007 so that the spacecraft can return to the Earth in June of 2010, three years later than the original plan, as long as no immediate resumption tales place very soon.

The spacecraft operation will shift from the normal mode to the rescue mode for several months to one year long. Long term predict indicates high probability of having the spacecraft communicated with the ground station again, with the spacecraft captured well in the beam width of the Usuda deep space antenna.

The spacecraft will take the advantage of Xenon gas attitude control again after enough length of baking operation. The Xenon gas that remains is adequate for the return cruise devised by the ion engines carried by Hayabusa.

The Hayabusa web page will report anything updated, as soon as it becomes available.

(Supplement) Hayabusa Rescue Operation

Hayabusa spacecraft is designed to allow the spin-stabilization and the attitude will converge to a certain pure spin around its high gain antenna axis ultimately. About the current state affected by the disturbance on December 8th, the attitude is conceived not to meet either of the Sun and Earth geometry requirement in terms of power and communication.

Once the coning motion damps, there will be some high probability that the spacecraft spin attitude satisfies both the power and communication conditions in several months.

There will be little possibility that the spacecraft position is out of the deep space antenna beam width for at least several months.

The Hayabusa system is designed to be initialized even once the whole power is down. Actually, on November 29th, the Hayabusa system restarted as these procedures functioned as prescribed.

There has been come up with a new trajectory synthesis that makes the spacecraft return to the earth in June of 2010. Without immediate communication resumption, the project thinks it should take this new schedule soon.

Original Source: JAXA News Release

Hayabusa Probably Didn’t Get a Sample After All

Artist’s impression of Hayabusa spacecraft. Image credit: JAXA Click to enlarge
As has been reported, it is estimated that part of a series of attitude and orbit control commands to restore the Hayabusa from its safe-hold mode have not gone well, and the functions of its major systems, including its attitude and communication network, have significantly deteriorated. However, on Nov. 29, a beacon line through a low gain antenna was restored.

On Nov. 30, we started a restoration operation by turning on and off the radio frequency modulation through the autonomous diagnostic function. Subsequently, on Dec. 1, telemetry data were acquired at 8 bits per second through the low gain antenna, although the line was weak and often disconnected. According to the data transmitted so far, the attitude and orbit control commands sent on Nov. 27 did not work well due to an unknown reason, and either major attitude control trouble or a large electric power loss seems to have occurred. It is estimated that the overall power switching systems for many pieces of onboard equipment were reset as their temperature dropped substantially due to the evaporation of leaked propellant, and also because of a serious discharge of electricity from the batteries of many sets of onboard equipment and systems due to declining power generation. Details are still under analysis.

On Dec. 2, we tried to restart the chemical engine, but, even though a small thrust was confirmed, we were not able to restore full-scale operations. Consequently, the cause of the anomaly on Nov 27 is still under investigation, and we suspect that one of the causes could be the malfunction of the chemical engine.

On Dec. 3, we found that the angles between the axis of the onboard high gain antenna (+Z angle) and the Sun, and also that with the earth, had increased to 20 to 30 degrees. As an emergency attitude control method, we decided to adopt a method of jetting out xenon for the ion engine operation. Accordingly, we immediately started to create the necessary operation software. As we completed the software on Dec. 4, we changed the spin speed by xenon jet, and its function was confirmed. Without delay, we sent an attitude change command through this function.

As a result, on Dec. 5, the angle between the +Z axis and the sun, and the earth, recovered to 10 to 20 degrees, and the telemetry data reception and acquisition speed was restored to the maximum 256 bits per second through the mid gain antenna.

After that, we found that there was a high possibility that the projectile (bullet) for sampling had not been discharged on Nov. 26, as we finally acquired a record of the pyrotechnics control device for projectile discharging from which we were not able to confirm data showing a successful discharge. However, it may be because of the impact of the system power reset; therefore, we are now analyzing the details including the confirmation of the sequence before and after the landing on Nov. 26.

As of Dec. 6, the distance between the Hayabusa and the Itokawa is about 550 kilometers, and that from the earth is about 290 million kilometers. The explorer is relatively moving from the Itokawa toward the earth at about 5 kilometers per hour.

We are now engaging in turning on, testing, and verifying onboard equipment of the Hayabusa one by one to start the ion engine. We currently plan to shift the attitude control to one using the Z-axis reaction wheel, and restart the ion engine. The restart is expected to happen no earlier than the 14th. We are currently rescheduling the plan for the return trip to earth. We need to study how to relax the engine operation efficiency. We will do our utmost to solve the problem with the attitude control (such as the restoration of the chemical engine), then find a solution for the return trip.

Original Source: JAXA News Release

Hayabusa Successfully Collects an Asteroid Sample

Hayabusa Muses-C. Image credit: ISAS Click to enlarge
With a maneuver that scientists compared to landing a jumbo jet in a moving Grand Canyon, Japan’s asteroid explorer, Hayabusa, touched down on the surface of the asteroid Itokawa Saturday for the second time in a week and this time it successfully collected a sample of the surface soils, the Japan Aerospace Exploration Agency (JAXA) announced several hours after its bird had flown.

The world’s first mission to attempt to land on an asteroid, collect samples, and return them to Earth has completed what is, arguably, the most difficult challenge on its agenda, and will begin the long journey back to Earth in early December. If all goes as planned, the sample will be returned in a capsule slated to land in the Australian outback in June 2007.

Every command necessary for the sampling was carried out, JAXA announced Saturday evening Japan Standard Time (JST) on its website, and agency officials firmly believe that the mission succeeded in the world’s first collection of samples of surface materials from an asteroid. It is highly probable, according to the agency, that the asteroid explorer has snatched several grams of surface samples from the near Earth asteroid named after the “father” of Japan’s space program, Hideo Itokawa, but the exact volume will not be known until the spacecraft returns safely to Earth.

The spacecraft was on its own once it began to carry out the series of commands for Saturday’s touch-down, because signals take around 17 minutes to get from Earth to Hayabusa. The spacecraft’s autonomous navigation relies on the Optical Navigation Camera and Light Detection and Ranging (ONC/LD&R) instrument that measures the distance to and the shapes of the asteroid surface. Once the data from those and other instruments are fully analyzed, more specific details will be forthcoming.

Hayabusa which means “falcon” in Japanese — flew up and away from the asteroid after snatching its prey, and was subsequently “restored” by its ground team and instructed to return to its home orbit around 7 kilometers away from the asteroid. Japan, meanwhile, is soaring into space exploration history with a flight that has provided a stellar boost for the Japanese space program, and cause for major celebration in the homeland.

“This is a superb achievement, a great moment is space exploration,” said Planetary Society Executive Director Louis D. Friedman. “Automated surface sample return from another world has been done only from the Moon, and only by the Russians. This venture by the Japanese space agency is bold, and Hayabusa has been brilliantly executed mission.”

Hayabusa which was developed at the Institute of Space and Astronautical Science (ISAS), a space science research division of JAXA — launched from Japan’s Kagoshima Space Center on May 9, 2003 and arrived in September of this year despite being rocked on the way by several solar flares, and losing one of its three reaction wheels used to control the spacecraft’s orientation, point instruments, antennas, or subsystems at chosen targets.

Since then it has met with other misfortunes, including the loss of another reaction wheel and the loss of its tiny robot lander, Minerva, which it released at the wrong time. Still, from every mishap, Hayabusa has rebounded. “It’s the little spacecraft that could,” marveled Donald K. Yeomans, senior research scientist at the Jet Propulsion Laboratory (JPL) and the U.S. project scientist for the mission during an interview with The Planetary Society. “And the operations guys are working their tails off around the clock.”

The touch-down landing Saturday was Hayabusa’s second and final attempt to collect a sample from the small asteroid, which, according to the latest Japanese measurements is only 540 meters by 310 meters by 250 meters (about 1800 feet by 1000 feet by 820 feet), and is some 180 million miles from Earth. Although the spacecraft did bounce down twice and even settled on Itokawa’s surface for 30 minutes last weekend — marking a milestone as the first Japanese spacecraft to land on an extraterrestrial body — the sample collection device did not deploy, so that attempt to get a sample failed.

This time around, Hayabusa began its descent around 10:00 p.m., JST, Friday, November 25. By 7:15 a.m., the following morning, it was just 14 meters above Itokawa. At around 8:45 a.m., at least one tantulum pellet was fired through the cylinder in the sample collection device and into the surface at 300 meters per second and the ejecta from that cratering effect was captured and secured in the sample chamber.

The handful of dirt and dust that Hayabusa snatched Saturday may seem a small prize for all the effort, but the knowledge these samples hold about our solar system is by all accounts great. Asteroids preserve in their make-up the pristine materials that went into formation of the solar system, unlike the Moon or other larger planetary bodies that have undergone thermal alterations over the eons.

Hayabusa is “the next giant step forward” in understanding the role of near-Earth asteroids in the origin of the solar system, their potential threat to Earth, and the future use of their raw materials to expand human presence beyond Earth, according to Yeomans. “Near Earth asteroids are easier to land on than the Moon itself, some of them, and they’re far more rich in minerals,” he pointed out. “If you’re going to build structures in space, you’re not going to build them on the ground and launch them, you’re going to look for raw materials up there and asteroids provide some ready supplies of minerals, metals, and possibly water.”

Perhaps even more remarkable than Hayabusa’s achievements is the fact that the Japanese have pulled this mission off for a price tag of about $170-million-dollars [about one-third the cost of a NASA Discovery mission], and with a small mission operations team at the helm. “That is extraordinary,” said Yeomans.

Before the mission launched, Yeomans and others at JPL and NASA provided JAXA and ISAS division, with the ephemeris, a table that shows the coordinates of a celestial body at a number of specific times during a given period — essentially “directions” on how to get to the asteroid. NASA is tracking the spacecraft with the Deep Space Network (DSN) and the Americans there are providing some back-up navigation assistance. However, Hayabusa is not relying on NASA for navigation. In Yeomans’ words: “Since the spacecraft arrived at the asteroid it, has been Japan’s show.”

And what a show it’s been.

Original Source: NASA Astrobiology

Upcoming Solutions for Near Earth Objects

Artist’s impression of ESA’s Hildalgo spacecraft. Image credit: ESA.Click to enlarge
Telescope facilities across the world are watching the skies for rocky remnants from outer space on a collision course with planet Earth. Currently one or two of these so called ‘Near Earth Objects’ [NEOs] are being recorded each day but fortunately for humankind the vast majority are the size of a human fist and pose no threat. Nevertheless, the presence of large impact craters on Earth provides dramatic evidence of past collisions, some of which have been catastrophic for the planet’s species, as was the case with the dinosaurs. This week, experts from across Europe and the US met in London to consider current and future efforts to monitor NEOs in order to better predict those with Earth impacting trajectories, since it is inevitable that a catastrophic collision will happen again in the future.

Professor Monica Grady, a leading expert on meteorites from the Open University explains, “It’s simply a question of when, not if, a NEO collides with the Earth. Many of the smaller objects break up when they reach Earth’s atmosphere and have no impact. However, a NEO larger than 1 km will collide with Earth every few hundred thousand years and an NEO larger than 6 km, which could cause a mass extinction, will collide with Earth every hundred million years. And we are overdue for a big one!”

NEO’s, remnants from the formation of the inner planets, range in size from 10 metre objects to those in excess of 1 km. It is estimated that 100 fist sized meteorites, fragments of NEO’s, fall to Earth on a daily basis but larger objects impact with Earth on a much less regular basis.

Professor Alan Fitzsimmons from Queens University Belfast is a UK astronomer (supported by the Particle Physics and Astronomy Research Council) involved in the study of NEO’s, using telescope facilities such as the European Southern Observatory’s Very Large telescope in Chile, the Isaac Newton Telescope in La Palma and the Faulkes Telescope in Hawaii. He said, “By the end of the decade as new dedicated facilities, such as the Pan-STARR project in Hawaii, come on line there will be a quantum leap in the discovery of NEO’s – with rates anticipated to increase to hundreds per day. This will provide us with a greater ability to determine which ones are on a potential Earth colliding trajectory.”

Studies of one such asteroid (Apophis), which was discovered in June2004, have shown that there is a low probability that this object will impact the Earth in 2036. This has raised a whole series of issues about the prospect of deflecting the asteroid before a very close approach in 2029. Government’s across the world are looking at the issue and in particular at the technologies and methods required to carry out an asteroid deflection manoeuvre in space.

The European Space Agency’s NEO Mission Advisory Panel (NEOMAP), of which Professor Fitzsimmons is a member, has selected “Don Quixote” as their preferred option for an asteroid deflecting test mission. Don Quixote would comprise two spacecraft – one of them (Hildalgo) would impact the asteroid at a very high relative speed while the second spacecraft (Sancho) would arrive earlier to monitor the effect of the impact to measure the variation of the asteroid’s orbital parameters. This attempt to deflect an incoming NEO would act as a precursor mission with the primary objective of modifying the trajectory of a “non-threatening” asteroid.

Richard Tremayne-Smith, from the British National Space Centre, heads up the coordination of UK NEO activity and helps provide an international lead on NEO efforts on the issue. He said, “NEO collisions are the only known natural disaster that can be avoided by applying appropriate technology – and so it is the interest of Governments across the World to take interest in this global issue. Here in the UK we take the matter very seriously and progress is being made in taking forward the recommendations of the UK NEO Task Force Report in an international arena.”

The current method of studying NEOs is achieved through a combination of 3 different methods:- the study of meteorites to understand their structure and composition; earth based astronomical observations of asteroids; and space based observations and encounters with asteroids.

Much can be understood about the nature of asteroids from the study of meteorites which are fragments of asteroids that have broken up and fallen to Earth. Professor Grady explains how the ground based study of meteorites is crucial to future plans for dealing with asteroids.

“In order to define successful strategies for deflecting asteroids that might collide with Earth, it is essential to understand the material properties such as the composition, strength and porosity of asteroids. By putting together such information with data from both ground based and space based studies we can begin to build an accurate picture of these diverse phenomena.”

UK scientists are involved in a number of other missions which will also be investigating the properties of asteroids and comets. This includes NASA’s Stardust mission which collected samples from Comet Wild 2 in January 2004. These samples are set to return to Earth in January 2006 and scientists from the Open University will be involved in their analysis. The European Space Agency’s Rosetta mission which is currently on route to Comet Churyumov-Gerasimenko will pass by two asteroids, Steins and Lutetia, before reaching its target in 2014, gathering data about their properties as it flies past.

Original Source: PPARC News Release

Hayabusa Landed on Itokawa Successfully

Hayabusa descending on Itokawa before landing. Image credit: JAXA Click to enlarge
Hayabusa attempted its first soft-landing on Itokawa for the purpose of touch down and sample collection on November 20-21, 2005. Below is the data information with the related advance report on its status.

Hayabusa started descending at 9:00pm on Nov. 19th, 2005 (JST) from 1km in altitude. The guidance and navigation during the process of approach was operated normally, and at 4:33am on Nov. 20th, the last approach of vertical descent was commanded from ground, of which soft-landing was successfully achieved almost on the designated landing site of the surface. Deviation from the target point is now under investigation but presumed within a margin of 30cm.

The velocity at the time of starting descent was 12cm/sec. At the altitude 54m at 5:28am, wire-cutting of target marker was commanded, after which, at 5:30am at altitude 40m, the spacecraft autonomously reduced its own speed by 9cm/sec to have substantially separated the target marker. It means that Hayabusa’s speed became 3 cm/sec. Separation and freefall of the marker was confirmed from the image as well as from descending velocity of the spacecraft at the time of reducing the speed. The marker is presumed to have landed on southwest of MUSES Sea.

Hayabusa then switched its range measurement from Laser Altimeter (LIDAR) to Laser Range Finder (LRF) at the altitude 35m and moved to hovering by reducing descending speed to zero at 25m above the surface, below where Hayabusa, at 5:40am at altitude 17m, let itself to freefall, functioning itself to the attitude control mode adjustable to the shapes of the asteroid surface. At this point, the spacecraft autonomously stopped telemetry transmission to the earth (as scheduled) to have changed to transmission with beacon mode more efficient for Doppler measurement by switching to low gain antenna (LGA) coverable larger area.

Since then, checking of the onboard instruments was not possible on a real time basis (as scheduled), but as a result of analyzing the data recorded onboard and sent back to the earth in the past two days, Hayabusa seemed to have autonomously judged to abort descending and attempted emergency ascent because its Fan Beam sensors for obstacle checking detected some kind of catch-light. Allowable margin is set for Hayabusa for its attitude control, in the case the spacecraft takes off the ground by accelerating the velocity on its own. Under such circumstances, the then spacecraft’s attitude was out of the margin, because of which continuing of safe descent was consequently chosen. As a result, Hayabusa did not activate its Touch Down Sensor function.

At the timepoint of Nov. 21, Hayabusa was judged not to have landed on the surface. According to the replayed data, however, it was confirmed that Hayabusa stayed on Itokawa by keeping contact with the surface for about 30 minutes after having softly bounced twice before settling. This can be verified by the data history of LRF and also by attitude control record.

This phenomenon took place during switching interval from Deep Space Network (DSN) of NASA to Usuda Deep Space Center, because of which the incident was not detected by ground Doppler measurement. The descending speed at the time of bouncing twice was 10cm/sec. respectively. Serious damage to the spacecraft has not been found yet except heating sensor that may need checking in some part of its instrument.

Hayabusa kept steady contacting with the surface until signaled from ground to make emergency takeoff at 6:58am (JST). The Touch Down Sensor supposed to function for sampling did not work because of the reason above stated, for which reason firing of projector was not implemented in spite of the fact that the spacecraft actually made landing. The attitude at landing is so presumed that the both bottom ends of +X axis of sampler horn and either the spacecraft or tip end of the solar panels was in contact with the surface. Hayabusa became the world-first spacecraft that took off from the asteroid. Really speaking, it is the world-first departure from an celestial body except the moon.

After departure from the asteroid by ground command, Hayabusa moved into safe mode due to the unsteady communication line and the conflict with onboard controlling and computing priority. The comeback from safety mode to normal 3-axis control mode needed full two days of Nov. 21 and 22. Owing to this reason, replaying of the data recorded on 20th is still midway, which means the possibility to reveal much more new information through further analysis of the data. As of now, the detailed image of the landing site to know its exact location has not been processed yet. Hayabusa is now on the way to fly over to the position to enable landing and sampling sequence again. It’s not certain yet if or not descent operation will be able to carry out from the night of Nov. 25 (JST). We will announce our schedule in the evening of Nov. 24.

Descending and landing operation will all depend upon availability of DSN of NASA. We would like to express our sincere gratitude for cooperation of NASA for tracking networks including backup stations.

Original Source: JAXA News Release

Japanese Probe Seems Lost in Space

It appears that the Japanese Space Agency (JAXA) has lost contact with a small probe released from its mothership Hayabusa on Saturday. After its release, the Minerva probe failed to make contact with the asteroid Itokawa’s surface, and controllers have no idea where it went. Hayabusa has been having problems with its positioning control system, so it’s possible that it put Minerva on an incorrect vector to reach the asteroid’s surface. Hayabusa is still scheduled to dip down and scoop some material off Hayabusa’s surface to return to Earth for analysis.