Astronomy Jargon 101: Electromagnetism

An artist view of a highly magnetized neutron star -- a magnetar. It's thought that these objects have solid surfaces and suffer eruptions when their magnetic fields are disturbed. Credit: Carl Knox/ OzGrav
An artist view of a highly magnetized neutron star -- a magnetar. It's thought that these objects have solid surfaces and suffer eruptions when their magnetic fields are disturbed. Credit: Carl Knox/ OzGrav

In this series we are exploring the weird and wonderful world of astronomy jargon! There’s a lot to see with today’s topic: electromagnetism!

Continue reading “Astronomy Jargon 101: Electromagnetism”

Astronomy Jargon 101: Weak Force

A view of the Large Underground Xenon (LUX) dark matter detector. Shown are photomultiplier tubes that can ferret out single photons of light. Signals from these photons told physicists that they had not yet found Weakly Interacting Massive Particles (WIMPs) Credit: Matthew Kapust / South Dakota Science and Technology Authority

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll be surprised by the power of today’s topic: the weak force!

Continue reading “Astronomy Jargon 101: Weak Force”

Astronomy Jargon 101: Strong Nuclear Force

The pentaquark, a novel arrangement of five elementary particles, has been detected at the Large Hadron Collider. This particle may hold the key to a better understanding of the Universe's strong nuclear force. [Image credit: CERN/LHCb experiment]

In this series we are exploring the weird and wonderful world of astronomy jargon! Feel the power of today’s topic: the strong force!

Continue reading “Astronomy Jargon 101: Strong Nuclear Force”

Astronomy Jargon 101: Baryon Acoustic Oscillations

An artist's concept of the latest, highly accurate measurement of the Universe from BOSS. The spheres show the current size of the "baryon acoustic oscillations" (BAOs) from the early universe, which have helped to set the distribution of galaxies that we see in the universe today. Galaxies have a slight tendency to align along the edges of the spheres — the alignment has been greatly exaggerated in this illustration. BAOs can be used as a "standard ruler" (white line) to measure the distances to all the galaxies in the universe. Credit: Zosia Rostomian, Lawrence Berkeley National Laboratory

In this series we are exploring the weird and wonderful world of astronomy jargon! Listen carefully for today’s topic: baryon acoustic oscillations!

Continue reading “Astronomy Jargon 101: Baryon Acoustic Oscillations”

Astronomy Jargon 101: Type-II Supernovae

This image of the supernova remnant SN 1987A was taken by the NASA/ESA Hubble Space Telescope in January 2017 using its Wide Field Camera 3 (WFC3). Since its launch in 1990 Hubble has observed the expanding dust cloud of SN 1987A several times has helped astronomers get a better understanding of these cosmic explosions. Supernova 1987A is located in the centre of the image amidst a backdrop of stars. The bright ring around the central region of the exploded star is material ejected by the star about 20 000 years before the actual explosion took place. The supernova is surrounded by gaseous clouds. The clouds’ red colour represents the glow of hydrogen gas. Image Credit: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)
This image of the supernova remnant SN 1987A was taken by the NASA/ESA Hubble Space Telescope in January 2017 using its Wide Field Camera 3 (WFC3). Since its launch in 1990 Hubble has observed the expanding dust cloud of SN 1987A several times has helped astronomers get a better understanding of these cosmic explosions. Supernova 1987A is located in the centre of the image amidst a backdrop of stars. The bright ring around the central region of the exploded star is material ejected by the star about 20 000 years before the actual explosion took place. The supernova is surrounded by gaseous clouds. The clouds’ red colour represents the glow of hydrogen gas. Image Credit: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll have a blast learning about today’s topic: Type-II Supernovae!

Continue reading “Astronomy Jargon 101: Type-II Supernovae”

Next Generation Telescopes Could Detect the Direct Collapse of Enormous Black Holes Near the Beginning of Time

Dust in the Quasar Wind
Dust in the Quasar Wind

The first black holes to appear in the universe may have formed from the direct collapse of gas. When they collapsed, they released a flood of radiation, including radio waves. A new study has found that the next generation of massive radio telescopes may be able to detect these bursts, giving precious insights into a critical epoch in the history of the universe.

Continue reading “Next Generation Telescopes Could Detect the Direct Collapse of Enormous Black Holes Near the Beginning of Time”