Astronomy Jargon 101: Galactic Halo

This NASA/ESA Hubble Space Telescope image shows a compact and distant globular star cluster that lies in one of the smallest constellations in the night sky, Delphinus (The Dolphin). Due to its modest size, great distance and relatively low brightness, NGC 7006 is often ignored by amateur astronomers. But even remote globular clusters such as this one appear bright and clear when imaged by Hubble’s Advanced Camera for Surveys. NGC 7006 resides in the outskirts of the Milky Way. It is about 135 000 light-years away, five times the distance between the Sun and the centre of the galaxy, and it is part of the galactic halo. This roughly spherical region of the Milky Way is made up of dark matter, gas and sparsely distributed stellar clusters. Like other remote globular clusters, NGC 7006 provides important clues that help astronomers to understand how stars formed and assembled in the halo. The cluster now pictured by Hubble has a very eccentric orbit indicating that it may have formed independently, in a small galaxy outside our own that was then captured by the Milky Way. Although NGC 7006 is very distant for a Milky Way globular cluster, it is much closer than the many faint galaxies that can be seen in the background of this image. Each of these faint smudges is probably accompanied by many globular clusters similar to NGC 7006 that are too faint to be seen even by Hubble. This image was taken using the Wide Field Channel of the Advanced Camera for Surveys, in a combination of visible and near-infrared light. The field of view is a little over 3 by 3 arcminutes.

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll wrap your head around today’s topic: galactic halo!

Continue reading “Astronomy Jargon 101: Galactic Halo”

Astronomy Jargon 101: Dark Matter

This image shows the galaxy MCS J0416.1–2403, one of six clusters targeted by the Hubble Frontier Fields programme. The blue in this image is a mass map created by using new Hubble observations combined with the magnifying power of a process known as gravitational lensing. In red is the hot gas detected by NASA’s Chandra X-Ray Observatory and shows the location of the gas, dust and stars in the cluster. The matter shown in blue that is separate from the red areas detected by Chandra consists of what is known as dark matter, and which can only be detected directly by gravitational lensing.Credit: ESA/Hubble, NASA, HST Frontier Fields. Acknowledgement: Mathilde Jauzac (Durham University, UK) and Jean-Paul Kneib (École Polytechnique Fédérale de Lausanne, Switzerland).

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll feel mysterious about today’s topic: dark matter!

Continue reading “Astronomy Jargon 101: Dark Matter”

Astronomy Jargon 101: Absolute Magnitude

Taken with the HAWK-I instrument on ESO’s Very Large Telescope in the Chilean Atacama Desert, this stunning image shows the Milky Way’s central region with an angular resolution of 0.2 arcseconds. This means the level of detail picked up by HAWK-I is roughly equivalent to seeing a football (soccer ball) in Zurich from Munich, where ESO’s headquarters are located. The image combines observations in three different wavelength bands. The team used the broadband filters J (centred at 1250 nanometres, in blue), H (centred at 1635 nanometres, in green), and Ks (centred at 2150 nanometres, in red), to cover the near infrared region of the electromagnetic spectrum. By observing in this range of wavelengths, HAWK-I can peer through the dust, allowing it to see certain stars in the central region of our galaxy that would otherwise be hidden.   

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll surely measure the awesomeness of today’s topic: absolute magnitude!

Continue reading “Astronomy Jargon 101: Absolute Magnitude”