Astronomers Could Detect Oceans on Extrasolar Planets

Imagine if astronomers could tell the difference between Earth-like extrasolar planets just by seeing the reflected light from their oceans? That sounds like science fiction, but a team of researchers have proposed that it’s really possible to detect the shape of the light curve glinting off an extrasolar planet and know if it has oceans.

This ground-breaking (water splashing?) idea was written in a recent journal article by D.M. Williams and E. Gaidos, entitled Detecting the Glint of Starlight on the Oceans of Distant Planets published January, 2008 in the Arxiv prepress e-Print archive.

The article describes the methods astronomers could use to detect the glint, or water reflection, from the “disk-averaged signal of an Earth-like planet in crescent phase.” They used the Earth as an example, and generated a series of light curves for a planet with our orientation and axial tilt.

They calculated that planets partially covered by water should appear much brighter when they’re near the crescent phase because light from the parent star reflects off the oceans very efficiently at just the right angles. By watching an extrasolar planet move through its orbit, its light curve should give off the telltale signature that there are oceans present.

According to their calculations, this method should work for about 50% of the visible planets. Furthermore, it should be possible to measure the ratio of land to water, and even get a sense of continents.

In order to test their theories, they’re planning to use remote observations of Earth, using interplanetary spacecraft. This will demonstrate if Earth can be observed at extreme phase angles—orbiting spacecraft around or on route to Mars.

And then the upcoming planet hunting missions, such as Darwin and the Terrestrial Planet Finder (if it ever gets completed) should be able to make the direct analysis of Earth-sized worlds orbiting other stars. Just by measuring the brightness, they should know if there are oceans, boosting the prospects for life.

Original Source: Arxiv

Meteor Shower Throws Over 100 Meteors per Hour

quawolf4-thumb1.thumbnail.jpg

With over 100 meteors per hour, the Quadrantid Meteor Shower is one of the latest mergers between Google and NASA, a major asset to space research due to their successful combination of ideas and plans. This peak shower began around 0200 UTC on Friday morning, January 4th, with the jet owned by the founders of Mountain View-based Google flying amongst big science players, such as the SETI research team.

To see this spectacular sight and to partake in a scientific mission, Google carried a team of NASA scientists and their high-technology instruments on board the Google owned Gulfstream V jet, which left the Mineta San Jose International Airport on Thursday late afternoon about 4:30 p.m. Plans were made for a ten-hour flight over the Arctic, returning to home base when the meteor shower mission was accomplished with the resulting data.

The GOOG Google.com Stock Message Board is full of the things that Google has been doing to improve the world—a real biggie was to develop a cheaper solar, wind power for Earth—excellent idea from a company whose corporate motto is to “do not be evil.â€? That plan involved the creation of a research group to develop energy sources that was a cheaper renewable alternative which focuses on solar, wind and any other forms of power through the Renewable Energy “Cheaper Than Coalâ€? project. And of course, lowering Google’s power bill was top of the list before anyone else as a huge incentive.

Last September, as most are aware of, NASA and Google had launched a $2.6 million dollar agreement to let the Google co-founders house their aircraft at Moffett Field while NASA was to be allowed to use it for their science work, such as that of the Quadrantid Meteor Shower. Other prospective plans for Google are to hand out $30 million dollars to any company that successfully comes up with a plan to bring people to the moon. Another plan is to fund a space race through Google’s Lunar X Prize competition.

Original Source: NASA News Release