Profiling Potential Supernovae

Astronomical plate showing Sagittarius. Credit: Ashley Pagnotta

[/caption]

Just as psychologists and detectives try to “profile” serial killers and other criminals, astronomers are trying to determine what type of star system will explode as a supernova. While criminals can sometimes be caught or rehabilitated before they do the crime, supernovae, well, there’s no stopping them. But there’s the potential of learning a great deal in both astronomy and cosmology by theorizing about potential stellar explosions. At the American Astronomical Society meeting last week, Professor Bradley E. Schaefer of Louisiana State University, Baton Rouge, discussed how searching through old astronomical archives can produce unique and front-line science about supernovae – as well as providing information about dark energy — in ways that no combination of modern telescopes can provide. Additionally, Schaefer said amateur astronomers can help in the search, too.

Schaefer has been studying archived data back to 1890. “Archival data is the only way to see the long-term behavior of stars, unless you want to keep watch nightly for the next century, and this is central to many front-line astronomy questions,” he said.

Bradley E. Schaefer of Louisiana State University, Baton Rouge
Bradley E. Schaefer of Louisiana State University, Baton Rouge

The main question Schaefer is trying answer is what stars are progenitors for type Ia supernovae. Astronomers have been trying to track down this mystery for over 40 years.

Type Ia supernovae are remarkably bright but also remarkably uniform in their brightness, and therefore are regarded as the best astronomical “standard candles” for measurement across cosmological distances. Type Ia supernovae are also key to the search for dark energy. These blasts have been used as distance markers for measuring how fast the Universe is expanding.

However, a potential problem is that distant supernovae might be different from nearby events, thus confounding the measures. Schaefer said the only way to solve this problem is to identify the type of stars that explode as Type Ia supernovae so that corrections can be calculated. “The upcoming big-money supernova-cosmology programs require the answer to this problem for them to achieve their goal of precision cosmology,” said Schaefer.

Supernova 1994D in the outskirts of the galaxy NGC 4526.
Supernova 1994D in the outskirts of the galaxy NGC 4526.

Many types of star systems have been proposed as being the potential supernovae, such as double white dwarf binaries which were not discovered until 1988, and symbiotic stars which are very rare. But the most promising progenitor is the recurrent novae (RN) which are usually binary systems with matter flowing off a companion star onto a white dwarf. The matter accumulates onto the white dwarf’s surface until the pressure gets high enough to trigger a thermonuclear reaction (like an H-bomb). RNs can have multiple eruptions every century (as opposed to classical novae which have only one observed eruption).

To answer the question if RN are supernova progenitors, Schaefer conducted extensive research to get RN orbital periods, accretion rates, outburst dates, eruption light curves, and the average magnitudes between outbursts.

Artists impression of a recurrent nova.
Artists impression of a recurrent nova.

One big question was whether there were enough RN occurrences to supply the observed rate of supernovae. Another question was if the nova eruption itself blows off more material than is accumulated between eruptions, so the white dwarf would not be gaining mass.

In looking at the old sky photos, he was able count all the discovered eruptions and measure the frequency of RN eruptions back to 1890. He could also measure the mass ejected during an eruption by measuring eclipse times on the archived photos, and then looking at the change in the orbital period across an eruption.

In doing so, Schaefer was able to answer both questions: There was enough RN occurrences to provide sources for the observed Type Ia supernovae rate. “With 10,000 recurrent novae in our Milky Way, their numbers are high enough to account for all of the Type Ia supernovae,” he said.

He also found the mass of the white dwarf is increasing and its collapse will occur within a million years or so, and cause a Type Ia supernova.

Schaefer concluded that roughly one-third of all ‘classical novae’ are really RNe with two-or-more eruptions in the last century.

With this knowledge, astronomical theorists can now perform the calculations to make subtle corrections in using supernovae to measure the Universe’s expansion, which may help the search for dark energy.

An important result from this archival search is the prediction of a RN that will erupt at any time. An RN named U Scorpii (U Sco) is ready to “blow,” and already a large worldwide collaboration (dubbed ‘USCO2009’) has been formed to make concentrated observations (in x-ray, ultraviolet, optical, and infrared wavelengths) of the upcoming event. This is the first time that a confident prediction has identified which star will go nova and which year it will blow up in.

During this search Schaefer also discovered one new RN (V2487 Oph), six new eruptions, five orbital periods, and two mysterious sudden drops in brightness during eruptions.

Another discovery is that the nova discovery efficiency is “horrifyingly low,” Schaefer said, being typically 4%. That is, only 1-out-of-25 novae are ever spotted. Schaefer said this is an obvious opportunity for amateur astronomers to use digital cameras to monitor the sky and discover all the missing eruptions.

Photo archive at Harvard.  Credit: Ashley Pagnotta
Photo archive at Harvard. Credit: Ashley Pagnotta

Schaefer used archives from around the world, with the two primary archives being the Harvard College Observatory in Boston, Massachusetts and at the headquarters of the American Association of Variable Star Observers (AAVSO) in Cambridge, Massachusetts. Harvard has a collection of half-a-million old sky photos covering the entire sky with 1000-3000 pictures of each star going back to 1890. The AAVSO is the clearinghouse for countless measures of star brightness by many thousands of amateurs worldwide from 1911 to present.

Source: Louisiana State University, AAS meeting press conference

Watch the New Moon Rover in Action

Small Pressurized Rover prototype. Credit: NASA

[/caption]
The prototype for NASA’s new moon buggy will be part of the inauguration day parade on January 20 when Barack Obama becomes the new president of the US. The space agency is hoping the new president — and the rest of the viewing audience — will be impressed with the new concept for roving across the lunar surface. At the parade down Pennsylvania Avenue in Washington D.C., astronaut Mike Gerhardt will show off the rover’s capabilities of gliding smoothly, pirouetting and walking like a crab. Last Friday, NASA had a “test run” of the parade, showcasing the rover in a demonstration at Johnson Space Center in Houston.
Watch a video from the Houston Chronicle to see the rover in action. Reportedly, the rover will bring up the rear of the parade and hopefully provide a lasting impression on the new president. Just what can this rover do?

In October 2008, NASA tested the rover and several other new concepts in a desert in Arizona (see related article.) The Small Pressurized Rover, has a module on top of a rover chassis where the crew can sit inside in a shirt-sleeves environment as they drive the vehicle. The wide windows provide a full view for the astronauts, making unobstructed observations easy from inside the rover. NASA is thinking the SPR could be the astronauts’ main mode of transportation on the Moon, and could also allow them the flexibility to work inside of it without the restrictions imposed by spacesuits.

The SPR during the October desert test.  Credit: NASA
The SPR during the October desert test. Credit: NASA

The adaptable vehicle features pivoting wheels that enable crab style movement to help the rover maneuver through difficult spots. Early concepts provide an exercise ergometer that allow crews to exercise while driving and simultaneously charge the vehicle’s batteries. The rover provides spacesuits, easily accessible from inside the rover whenever the astronauts need to get out of the rover.

Top speed is 15 mph, but engineers said it outpaced Hummers, trucks and Jeeps as it crossed lava flows in the Arizona desert.

According to the Houston Chronicle, at the end of the parade when the rover reaches President Barack Obama’s box, Gernhardt will stop the rover, and he and astronaut Rex Walheim, one of two people in white spacesuits attached to the rear of the buggy, will step away from the rover.

Then, carrying an American flag, he’ll stride several paces toward Obama, halt and salute the new president, ending the parade.

Said Walheim: “I hope he sees that NASA is looking forward, that we have some really exciting ideas on how to handle lunar exploration. I think he may get excited about it, too.”

Source: Houston Chronicle

NASA Tests New Super-Thin High Alitude Balloon

Super pressure balloon in flight. Credit: NASA

[/caption]
High altitude balloons are an inexpensive means of getting payloads to the brink of space, where all sorts of great science and astronomy can be done. A new prototype of balloon that uses material as thin as plastic food wrap was successfully checked out in an 11-day test flight, and this new design may usher in a new era of high altitude flight. NASA and the National Science Foundation sponsored the test, which was launched from McMurdo Station in Antarctica. The balloon reached a float altitude of more than 111,000 feet and maintained it for the entire 11 days of flight. It’s hoped that the super-pressure balloon ultimately will carry large scientific experiments to the edge of space for 100 days or more.

The flight tested the durability and functionality of the scientific balloon’s novel globe-shaped design and the unique lightweight and thin polyethylene film. It launched on December 28, 2008 and returned on January 8, 2009.

“Our balloon development team is very proud of the tremendous success of the test flight and is focused on continued development of this new capability to fly balloons for months at a time in support of scientific investigations,” said David Pierce, chief of the Balloon Program Office at NASA’s Wallops Flight Facility at Wallops Island, Va. “The test flight has demonstrated that 100 day flights of large, heavy payloads is a realistic goal.”

This seven-million-cubic-foot super-pressure balloon is the largest single-cell, super-pressure, fully-sealed balloon ever flown. When development concludes, NASA will have a 22 million-cubic-foot balloon that can carry a one-ton instrument to an altitude of more than 110,000 feet, which is three to four times higher than passenger planes fly. Ultra-long duration missions using the super pressure balloon cost considerably less than a satellite and the scientific instruments flown can be retrieved and launched again, making them ideal very-high altitude research platforms.

CREAM team.  Credit: CREAM
CREAM team. Credit: CREAM

In addition to the super pressure test flight, two additional long-duration balloons were launched from McMurdo during the 2008-2009 campaign. The University of Maryland’s Cosmic Ray Energetics and Mass, or CREAM IV, experiment launched December 19, 2008, and landed January 6, 2009. The CREAM investigation was used to directly measure high energy cosmic-ray particles arriving at Earth after originating from distant supernova explosions elsewhere in the Milky Way galaxy. The payload for this experiment was refurbished from an earlier flight. The team released data and their findings from their first flight in August 2008.

The University of Hawaii Manoa’s Antarctic Impulsive Transient Antenna launched December 21, 2008, and is still aloft. Its radio telescope is searching for indirect evidence of extremely high-energy neutrino particles possibly coming from outside our Milky Way galaxy.

Source: NASA

Who Will Be the Next NASA Administrator?

While we’ve been overwhelmed with astronomical news from the AAS meetings this week, meanwhile back at the NASA ranch, Administrator Mike Griffin appears to be on his way to riding off into the sunset. He and all other political appointees from the Bush administration have submitted their letters of resignation as a matter of course, but it’s not expected that Griffin will be asked to stay on. Even though family and friends of Griffin’s have been petitioning to keep him on board, all indications are that Griffin will be replaced. His resignation is effective Jan. 20, the day Barack Obama is sworn in as the new president of the US. There are some lists developing of potential replacements. The trouble is, as happens most of the time, many of these lists are complete speculation. Keith Cowing over at NASA Watch is trying to keep track of it all, sorting out real from not-so-real. Then there’s another list, at Obamanasa.gov – and nothing about the authenticity of this site can be found — where you can actually vote for who you think would best serve as the new head of NASA. And guess who is currently (as of 11:30 am CST) leading the vote count: our very own good friend Phil Plait, the Bad Astronomer. Right now he has a comfortable lead (2,614 to 695) over – you’ll never guess: Wil Wheaton, aka Wesley Crusher on Star Trek the Next Generation. OK, you’re probably seeing the legitimacy of this list. But it’s fun, nonetheless, to speculate. So who is really in the running for the NASA Administrator job?

Charles Bolden. A former astronaut who, if chosen, would be the first black NASA administrator. He currently seems to lead the list of potential candidates.

Pete Worden. Currently the Director of NASA’s Ames Research Center, was Commander, 50th Space Wing, at Air Force Space Command, and a professor of Astronomy at the University of Arizona

Sally Ride. The first American woman to fly in space in 1983. She served on the commissions that investigated both the Challenger and Columbia accidents, and wrote an editorial in support of Obama during the presidential election.

Alan Stern. The principal investigator the New Horizons mission to Pluto. He was the associate administrator for the Science Mission Directorate at NASA headquarters, but left abruptly, and later criticized NASA for ongoing cost overruns in space and planetary science missions.

Wesley Huntress. A former NASA space science chief, was key in getting the Hubble Space Telescope and the Galileo probe to Jupiter launched.

Scott Hubbard. Known for turning around NASA’s Mars program after back-to-back failures in the late 1990s, Hubbard was a key member of the Columbia Accident Investigation Board. He went on to serve as a director of NASA’s Ames Research Center before leaving the agency for academia.

Don’t think this isn’t a big decision for Obama. The Government Accountability Office rated the impending retirement of NASA’s shuttle orbiter fleet as one of the top 13 issues the new president will have to deal with, and deal with soon. The administration is expected to nominate new NASA leadership before making any significant decisions regarding U.S. space policy and the future of the human spaceflight program.

So, who do you think should be the next NASA Administrator?

Source: Florida Today

What a Relief! New Space Toilet Being Designed

New space toilet? Credt: Pink Tentacle

[/caption]
The International Space Station’s toilet has had its troubles, and Japan’s Aerospace Exploration Agency (JAXA) has decided they want to “eliminate” this problem for future astronauts and procure a new way to deal with human waste in space. They formed a space toilet research group and came up with an idea that is sure to revolutionize space travel. The wearable toilet. “Clean and easy to use, the envisioned space toilet is designed to be worn like a diaper around the astronaut’s waist at all times,” says an article on Pink Tentacle. Engineers hope to have this next-generation space toilet available to use in space within the next five years.

How does it work?

“Sensors detect when the user relieves him or herself, automatically activating a rear-mounted suction unit that draws the waste away from the body through tubes into a separate container,” the article says. It’s also a full feature toilet/shower almost like a bidet, as well as eliminating potential embarrassing situations in space. “In addition to washing and drying the wearer after each use, the next-generation space toilet will incorporate features that eliminate unwanted sound and odor.”

Plans are to test working prototypes of the space toilet in Japan’s Kibo lab aboard the ISS. The developers indicate their next-generation space toilet may also prove useful on Earth as well, such as in hospitals with bedridden patients.

The current ISS toilet sucks waste away like a vacuum cleaner. Use of that toilet requires practice before heading to space, particularly because an improperly seated user has the potential to create a messy situation.

Chiaki Mukai, head of JAXA’s Space Biomedical Research Office, is looking forward to the development of the new toilet. “Long-term stays in space place significant stress on the mind and body,” Mukai says. “The toilet plays a crucial role in maintaining good health in space.”

Source: Pink Tentacle

Latest Images From HiRISE (More Eye Candy)

Gullies on the dunes of Russell Crater on Mars. Credit: NASA/JPL/University of Arizona

[/caption]
I don’t know about the rest of you, but I could look at images from the HiRISE camera on the Mars Reconnaissance Orbiter all day…and there are days I have spent a great deal of time perusing through the gorgeous, high-resolution images. Here are just a few of the latest images the HiRISE team has released. This first one is one of the most stunning yet. It’s part of a dune field in a crater called Russell Crater (53.3S and 12.9E.) The dune field itself is roughly 30 kilometers long, and appears to have formed from windblown material trapped by the local topography. The image was taken in October 2008, during the Mars’ southern hemisphere’s deep winter, where temperatures are low enough to allow the carbon dioxide frost to be stable. Looking closely, you can see the frost, visible on the slopes that don’t get full sunlight. The team says this region is the target of a long term monitoring program by HiRISE.

And there’s more…

Features in Moreau Crater. Credit: NASA/JPL/UA
Features in Moreau Crater. Credit: NASA/JPL/UA

This image is of a so called “flow feature” within Moreux Crater, located at 42N and 44.6E on the edge of Mars’ highlands/lowlands boundary. The crater itself is roughly 135 kilometers in diameter. During an impact event that creates a crater, central uplifts or mounds form on the floor of the crater in craters larger than 7km in diameter. This image focuses on a portion of the Moreux central uplift that apparently broke off and slid away, forming a type of giant landslide. Interesting hummocks, swirls and ridges are found on the surface of the landslide. There are also distinct, almost circular depressions of unknown origin near the foot of the flow. Both light and dark toned dunes later formed on this landform.
Features in a volcano, Hecates Tholus.  Credit: NASA/JPL/UA
Features in a volcano, Hecates Tholus. Credit: NASA/JPL/UA

This image shows features on a volcano called Hecates Tholus. This volcano is located in the northern hemisphere of Mars and is the northernmost of three volcanoes within Elysium Planitia. The “braided” channels seen in this image appear to have formed by water carving into young lava flows. Like braided rivers on Earth, they consist of a network of small channels, often separated by small streamlined “islands.” The fact that they are braided and have streamlined islands has led scientists to interpret these landforms as being created by water (fluvial) rather than by volcanic activity, and perhaps even more than one water-related event created these features, since there are fine sediments and multiple channels.

The water that potentially formed the braided channels may have been released when hot lava came into contact with ground ice.

For more images, as well as more information on these images and high resolution versions, see the HiRISE site. But watch out, you might be there for awhile — there’s lots to look at!

Source: HiRISE

A Cheap Solution for Getting to Mars?

Two shuttles on the pads in September 2008.Credit: NASA

[/caption]
The space shuttles are slated to be retired in September of 2010. NASA put out a call recently to ask what should be done with the shuttles post-retirement, and many think they should be put in museums or on display in rocket parks. But futurist and entrepreneur Eric Knight, (founder of UP Aerospace and Remarkable Technologies) has a somewhat novel idea of what to do with the shuttles after they are done with their current duties: Send them to Mars. He says his formula is simple and will allow humans to travel to Mars in years, not decades.

Knight’s proposal, which he calls “Mars on a Shoestring,” outlines two shuttles going into Earth orbit, hooking them together with a truss and strapping on a powerful enough propulsion system. And that’s pretty much it. A pressurized inflatable conduit would connect the two orbiters so the astronauts could go back and forth between the two shuttles.

Then comes the really cool part; a way to provide artificial gravity during the trip to Mars. From Knight’s webpage:

• Once the propulsion stage has accelerated this entire system on its trek to Mars, the truss is detached from the two orbiters and the truss-propulsion assembly is jettisoned.

• The two orbiters then separate to a distance of a few hundred feet, but remain connected — top to top — by a tether cable that is spooled out.

• During the separation, the accordion-style inflatable crew-transfer conduit equally elongates.

• Once the orbiters are at their maximum fixed distance apart, they would simultaneously fire their reaction control systems to set the pair into an elegant pirouette — creating a comfortable level of artificial gravity for the crew’s voyage to the red planet.

It gets a little dicey once the shuttles arrive at Mars, however. How would these huge spacecrafts get to Mars surface? Knight’s only proposal is separating the orbiters and each having a REALLY huge parachute. Right now, the largest parachute that’s been successfully tested is 150 ft (45 m) in diameter.

However, in an interview we did with JPL’s Rob Manning for a previous article on Universe Today (see “The Mars Landing Approach: Getting Large Payloads to the Surface of the Red Planet), Manning says there’s currently no way and there’s not a parachute big enough to allow a big spacecraft, even a high lift vehicle like a shuttle to land successfully on Mars. The atmosphere is too thin to provide any drag.

From our earlier article:

“Well, on Mars, when you use a very high lift to weight to drag ratio like the shuttle,” said Manning, “in order to get good deceleration and use the lift properly, you’d need to cut low into the atmosphere. You’d still be going at Mach 2 or 3 fairly close to the ground. If you had a good control system you could spread out your deceleration to lengthen the time you are in the air. You’d eventually slow down to under Mach 2 to open a parachute, but you’d be too close to the ground and even an ultra large supersonic parachute would not save you.”

Supersonic parachute experts have concluded that to sufficiently slow a large shuttle-type vehicle on Mars and reach the ground at reasonable speeds would require a parachute one hundred meters in diameter.

“That’s a good fraction of the Rose Bowl. That’s huge,” said Manning. “We believe there’s no way to make a 100-meter parachute that can be opened safely supersonically, not to mention the time it takes to inflate something that large. You’d be on the ground before it was fully inflated. It would not be a good outcome.”

So, while Knight’s proposal is interesting and perhaps forward-thinking, it would need quite a bit of work to actually be feasible. He admits as much, saying “This thought paper is certainly not meant to be the technical be all, end all on the topic — but merely a springboard to new thought. The science and topics touched on herein are superficial; the concepts are simply provided to fuel the imagination and promote discussion.”

Knight said he was inspired by Robert Zubrin’s Mars Direct concept, and he also wanted to “repurpose” the space shuttle fleet.

“In all, I hope that my thought paper provides a catalyst for additional thinking as we ponder our place in the universe — and the methods to transport us to new frontiers.”

Who knows? Many successful endeavors start out as crazy ideas. But first, someone has to have the idea.

Source: Remarkable Technologies

Cosmic Radio Noise Booms Six Times Louder Than Expected

The balloon-borne ARCADE instrument discovered this cosmic static (white band, top) on its July 2006 flight. The noise is six times louder than expected. Astronomers have no idea why. Credit: NASA/ARCADE/Roen Kelly

[/caption]

Loud sounds tend to startle us. But imagine being surprised by a sound six times louder than you expect. A balloon-borne instrument called ARCADE, (Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission) was supposed to be used to search for heat signature from the first stars to form after the Big Bang. Instead it found an unexplained “booming” radio static that fills the sky.

In July 2006, the instrument launched from NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, and flew to an altitude of 36,000 meters (120,000 feet) where the atmosphere thins into the vacuum of space. Its mission lasted four hours.

The team, led by Alan Kogut of NASA’s Goddard Space Flight Center said they found the radio noise almost immediately. “We were calibrating the instrument, and we saw this big point in the graph. I said, ‘What the heck is this — this shouldn’t be here.’ We spent the next year trying to make that point go away, but it didn’t.”

shows the extragalactic temperature measured by ARCADE from the 2006 flight
shows the extragalactic temperature measured by ARCADE from the 2006 flight

Detailed analysis has ruled out an origin from primordial stars, user error or a mis-identified galactic emission, and the scientists are sure there aren’t more radio sources than we expect. “Radio source counts are well known and they don’t even come close to making up the detected background,” said Kogut. “New sources, too faint to observe directly would have to vastly outnumber the number everything else in the sky.”

Dale Fixsen of the University of Maryland at College Park, added that to get the signal they detected, radio galaxies would have to be packed “into the universe like sardines,” he said. “There wouldn’t be any space left between one galaxy and the next.”

The sought-for signal from the earliest stars remains hidden behind the newly detected cosmic radio background. This noise complicates efforts to detect the very first stars, which are thought to have formed about 13 billion years ago — not long, in cosmic terms, after the Big Bang. Nevertheless, this cosmic static may provide important clues to the development of galaxies when the universe was less than half its present age. Unlocking its origins should provide new insight into the development of radio sources in the early universe.

“This is what makes science so exciting,” says Michael Seiffert, a team member at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “You start out on a path to measure something — in this case, the heat from the very first stars — but run into something else entirely, something unexplained.”

ARCADE launches on its July 2006 discovery flight from NASA's Columbia Scientific Balloon Facility in Palestine, Texas. The balloon lofted the instrument to its observation altitude of 120,000 feet. Credit: NASA/ARCADE
ARCADE launches on its July 2006 discovery flight from NASA's Columbia Scientific Balloon Facility in Palestine, Texas. The balloon lofted the instrument to its observation altitude of 120,000 feet. Credit: NASA/ARCADE

ARCADE’s revolutionary design makes it super-sensitive to cosmic noise. Chilled to 2.7 degrees above absolute zero by immersion into more than 500 gallons of liquid helium, each of ARCADE’s seven radiometers alternately views the sky and a calibration target. The project allows for significant high school and undergraduate student participation. ARCADE is the first instrument to measure the radio sky with enough precision to detect this mysterious signal.

This is the same temperature as the cosmic microwave background (CMB) radiation, the remnant heat of the Big Bang that was itself discovered as cosmic radio noise in 1965. “If ARCADE is the same temperature as the microwave background, then the instrument’s heat cannot contaminate the cosmic signal,” Kogut explains.

“We don’t really know what this signal is,” said Seiffert. “We’re relying on our colleagues to to study the data and put forth some new theories.”

Source: NASA, AAS Press Conference

Which Comes First: Galaxy or Black Hole?

Enlarge VLA image (right) of gas in young galaxy seen as it was when the Universe was only 870 million years old. Image: NRAO/AUI/NSF, SDSS

[/caption]

Do galaxies form first and then a black hole springs up in the center, or possibly, do galaxies form around an already existing black hole? That’s the cosmic chicken-and-the-egg problem astronomers have been trying to figure out. The answer? “It looks like the black holes form before the host galaxy, and somehow grow a galaxy around them. The evidence is piling up,” said Chris Carilli, of the National Radio Astronomy Observatory (NRAO), speaking at today’s press conference at the American Astronomical Society’s meeting. By observing with the Very Large Array radio telescope and the Plateau de Bure Interferometer in France at sub-kiloparsec resolution, the researchers have been “weighing” the earliest galaxies, ones that formed within a billion years of the Big Bang.

Previous studies of galaxies and their central black holes in the nearby Universe revealed an intriguing connection between the masses of the black holes and of the central “bulges” of stars and gas in the galaxies. The ratio of the black hole and the bulge mass is nearly the same for a wide range of galactic sizes and ages. For central black holes from a few million to many billions of times the mass of our Sun, the black hole’s mass is about one one-thousandth of the mass of the surrounding galactic bulge.

“This constant ratio indicates that the black hole and the bulge affect each others’ growth in some sort of interactive relationship,” said Dominik Riechers, of Caltech. “The big question has been whether one grows before the other or if they grow together, maintaining their mass ratio throughout the entire process.”

“We finally have been able to measure black-hole and bulge masses in several galaxies seen as they were in the first billion years after the Big Bang, and the evidence suggests that the constant ratio seen nearby may not hold in the early Universe. The black holes in these young galaxies are much more massive compared to the bulges than those seen in the nearby Universe,” said Fabian Walter of the Max-Planck Institute for Radioastronomy (MPIfR) in Germany.

“The implication is that the black holes started growing first.”

The next challenge is to figure out how the black hole and the bulge affect each others’ growth. “We don’t know what mechanism is at work here, and why, at some point in the process, the ‘standard’ ratio between the masses is established,” Riechers said.

New telescopes now under construction will be key tools for unraveling this mystery, Carilli explained. “The Expanded Very Large Array (EVLA) and the Atacama Large Millimeter/submillimeter Array (ALMA) will give us dramatic improvements in sensitivity and the resolving power to image the gas in these galaxies on the small scales required to make detailed studies of their dynamics,” he said.

“To understand how the Universe got to be the way it is today, we must understand how the first stars and galaxies were formed when the Universe was young. With the new observatories we’ll have in the next few years, we’ll have the opportunity to learn important details from the era when the Universe was only a toddler compared to today’s adult,” Carilli said.

Carilli, Riechers and Walter worked with Frank Bertoldi of Bonn University; Karl Menten of MPIfR; and Pierre Cox and Roberto Neri of the Insitute for Millimeter Radio Astronomy (IRAM) in France.

Source: NRAO, AAS Press Conference

Invading Stars Faster Than Speeding Bullet

Bow shocks created by runaway stars. Credit: NASA/JPL/ESA

[/caption]

A team of astronomers looking for pre-planetary nebulae using the Hubble Space Telescope instead came across some renegade stars screaming through space. These runaway stars are moving along at 50 km/s (112,000 miles an hour), and have traveled an estimated 160 light years from where they originated. “We think we have found a new class of bright, high-velocity stellar interlopers,” says astronomer Raghvendra Sahai from JPL. “Finding these stars is a complete surprise because we were not looking for them. When I first saw the images, I said ‘Wow. This is like a bullet speeding through the interstellar medium.’ Hubble’s sharp ‘eye’ reveals the structure and shape of these bow shocks.”

Just as a speedboat on a lake creates a wake, as these speedy stars plow through the interstellar “ocean” they create brilliant bow shocks as streams of matter flowing from the stars slam into the surrounding dense gas.

So far, 14 of these runaway stars have been found. What kind of stars are they? Astronomers can only estimate the ages, masses, and velocities of these renegade stars. The stars appear to be young — just millions of years old. Their ages are inferred from their strong stellar winds. Most star produce such winds either when they are very young or when they are dying, and Sahia said it is clear they are not dying. Massive dying stars produce flowing clouds of ionized gas around them and that type of gas is not around these interlopers and old stars are almost never found near dense interstellar clouds.

They appear to be medium-sized stars that are a few to eight times more massive than the sun.
The research team believes the interloper stars were dynamically ejected from their natal environments which were probably massive star clusters. There are two way this could have happened. One possible scenario is that a star in a binary system exploded as a supernova and the partner got kicked out. Another possibility is a collision between two binary star systems or a binary system and a third star. One or more of these stars could have picked up energy from the interaction and escaped the cluster.

Depending on their distance from Earth, the bullet-nosed bow shocks could be 100 billion to a trillion miles wide (the equivalent of 17 to 170 solar system diameters, measured out to Neptune’s orbit). The bow shocks indicate that the stars are traveling fast, more than 112,000 miles an hour (more than 180,000 kilometers an hour) with respect to the dense gas they are plowing through, which is roughly five times faster than typical young stars.

Runaway stars have been seen before. The Infrared Astronomical Satellite (IRAS), which performed an all-sky infrared survey in 1983, spied a few similar-looking objects. The first observation of these objects was in the late 1980s. But those stars produced much larger bow shocks than the stars in the Hubble study, suggesting that they are more massive stars with more powerful stellar winds.

“The stars in our study are likely the lower-mass and/or lower-speed counterparts to the massive stars with bow shocks detected by IRAS,” Sahai explains. “We think the massive runaway stars observed before were just the tip of the iceberg. The stars seen with Hubble may represent the bulk of the population, both because many more lower-mass stars inhabit the universe than higher-mass stars, and because a much larger number are subject to modest speed kicks.”

Astronomers have not spotted many of these stellar interlopers before because they are hard to find. “You don’t know where to look for them because you cannot predict where they will be,” Sahai says. “So all of them have been found serendipitously, including the 14 stars we found with Hubble.”

“One of the questions that these very showy encounters raise is what effect they have on the clouds,” says team member Mark Morris of the University of California, Los Angeles. “Is it an insignificant flash in the pan, or do the strong winds from these stars stir up the clouds and thereby slow down their evolution toward forming another generation of stars?”

Sahai and his team used Hubble’s Advanced Camera for Surveys to examine 35 objects that appeared as bright infrared sources in the IRAS archive. The team is planning follow-up studies to search for more interlopers, as well as study selected objects from this Hubble survey in greater detail in order to understand their effects on their environment.

Source: NASA, AAS Press Conference