This Hot Jupiter is Doomed to Crash Into its Star in Just Three Million Years

Artist's impression of the searing-hot gas planet WASP-12b and its star. A Princeton-led team of astrophysicists has shown that this exoplanet is spiraling in toward its host star, heading toward certain destruction in about 3 million years. Credit: NASA/JPL-Caltech

In 2008, astronomers with the SuperWASP survey spotted WASP-12b as it transited in front of its star. At the time, it was part of a new class of exoplanets (“Hot Jupiters”) discovered a little more than a decade before. However, subsequent observations revealed that WASP-12b was the first Hot Jupiter observed that orbits so closely to its parent star that it has become deformed. While several plausible scenarios have been suggested to explain these observations, a widely accepted theory is that the planet is being pulled apart as it slowly falls into its star.

Based on the observed rate of “tidal decay,” astronomers estimate that WASP-12b will fall into its parent star in about ten million years. In a recent study, astronomers with The Asiago Search for Transit Timing Variations of Exoplanets (TASTE) project presented an analysis that combines new spectral data from the Telescopio Nazionale Galileo (TNG) in La Palma with 12 years worth of unpublished transit light curves and archival data. Their results are consistent with previous observations that suggest WASP-12b is rapidly undergoing tidal dissipation and will be consumed by its star.

Continue reading “This Hot Jupiter is Doomed to Crash Into its Star in Just Three Million Years”

Science Fiction is Learning About Exoplanets From Science

Artist’s impression of a sunset seen from the surface of an Earth-like exoplanet. Credit: ESO/L. Calçada

As long as it has existed as a genre, there has been a notable relationship between science fiction and science fact. Since our awareness of the Universe and everything in it has changed with time, so have depictions and representations in popular culture. This includes everything from space exploration and extraterrestrial life to extraterrestrial environments. As scientists keep pushing the boundaries of what is known about the cosmos, their discoveries are being related to the public in film, television, print, and other media.

In the field of science communication, however, there is a certain hesitancy to use science fiction materials as an educational tool. In a recent paper that appeared in the Journal of Science Communication (JCOM), a team from the St Andrews Centre for Exoplanet Science and the Space Research Institute (IWF) of the Austrian Academy of Sciences focused on a specific area of scientific study – extrasolar planets. After analyzing a multimedia body of science fiction works produced since the first confirmed exoplanet discovery, they found that depictions have become more realistic over time.

Continue reading “Science Fiction is Learning About Exoplanets From Science”

Satellite Measurements Show That Global Carbon Emissions are Still Rising

Tracking carbon emissions and sinks to determine Earth's annual Global Carbon Budget. Credit: NASA GEOS

According to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), human activities have significantly impacted the planet. As global greenhouse gas emissions (mainly carbon dioxide) have continued to increase, so too have global temperatures – with severe ecological consequences. Between 2011 and 2020, global surface temperatures rose by an estimated 1.07 °C (2.01 °F) above the average in 1850–1900. At this rate, temperatures could further increase by 1.5 to 2 °C (2.7 to 3.6 °F) in the coming decades, depending on whether we can achieve net zero by 2050.

Unfortunately, the data for the past year is not encouraging. According to the 2023 Global Carbon Budget (GCB), an annual assessment of Earth’s carbon cycle, emissions in 2023 continued to rise by 1.1 percent compared to the previous year. This placed the total fossil fuel emissions from anthropogenic sources at 36.8 billion metric tons (over 40 US tons) of carbon dioxide, with an additional 4.1 billion metric tons (4.5 US tons) added by deforestation, extreme wildfires, and other sources. This trend indicates we are moving away from our goals and that things will get worse before they get better!

Continue reading “Satellite Measurements Show That Global Carbon Emissions are Still Rising”

A Giant Gamma-Ray Bubble is a Source of Extreme Cosmic Rays

An artist's depiction of a gamma-ray burst's relativistic jet full of very-high-energy photons breaking out of a collapsing star. Credit: DESY, Science Communication Lab

Gamma-ray bursts (GRBs) are one of the most powerful phenomena in the Universe and something that astronomers have been studying furiously to learn more about their origins. In recent years, astronomers have set new records for the most powerful GRB ever observed – this includes GRB 190114C, observed by the Hubble Space Telescope in 2019, and GRB 221009A, detected by the Gemini South telescope in 2022. The same is true for high-energy cosmic rays that originate from within the Milky Way, whose origins are still not fully understood.

In a recent study, members of China’s Large High Altitude Air Shower Observatory (LHAASO) Collaboration discovered a massive gamma-ray burst (designated GRB 221009A) in the Cygnus star-forming region that was more powerful than 10 peta-electronvolts (PeV, 1PeV=1015eV), over ten times the average. In addition to being the brightest GRB studied to date, the team was able to precisely measure the energy spectrum of the burst, making this the first time astronomers have traced cosmic rays with this energy level back to their source.

Continue reading “A Giant Gamma-Ray Bubble is a Source of Extreme Cosmic Rays”

New Study Addresses how Lunar Missions will Kick up Moondust.

Buzz Aldrin (left) and his Aldrin’s bootprint in the lunar regolith (right). Credit: NASA

Before the end of this decade, NASA plans to return astronauts to the Moon for the first time since the Apollo Era. But this time, through the Artemis Program, it won’t be a “footprints and flags” affair. With other space agencies and commercial partners, the long-term aim is to create the infrastructure that will allow for a “sustained program of lunar exploration and development.” If all goes according to plan, multiple space agencies will have established bases around the South Pole-Aitken Basin, which will pave the way for lunar industries and tourism.

For humans to live, work, and conduct various activities on the Moon, strategies are needed to deal with all the hazards – not the least of which is lunar regolith (or “moondust”). As the Apollo astronauts learned, moondust is jagged, sticks to everything, and can cause significant wear on astronaut suits, equipment, vehicles, and health. In a new study by a team of Texas A&M engineers, the regolith motion was found to be significantly altered due to inter-particle collisions. Given the many spacecraft and landers that will be delivering crews and cargo to the Moon in the near future, this is one hazard that merits close attention!

Continue reading “New Study Addresses how Lunar Missions will Kick up Moondust.”

When an Object Like ‘Oumuamua Comes Around Again, We Could be Ready With an Interstellar Object Explorer (IOE)

Artist’s impression of the interstellar object, `Oumuamua, experiencing outgassing as it leaves our Solar System. Credit: ESA/Hubble, NASA, ESO, M. Kornmesser

On October 19th, 2017, astronomers with the Pann-STARRS survey observed an Interstellar Object (ISO) passing through our system – 1I/2017 U1 ‘Oumuamua. This was the first time an ISO was detected, confirming that such objects pass through the Solar System regularly, as astronomers predicted decades prior. Just two years later, a second object was detected, the interstellar comet 2I/Borisov. Given ‘Oumuamua’s unusual nature (still a source of controversy) and the information ISOs could reveal about distant star systems, astronomers are keen to get a closer look at future visitors.

For instance, multiple proposals have been made for interceptor spacecraft that could catch up with future ISOs, study them, and even conduct a sample return (like the ESA’s Comet Interceptor). In a new paper by a team from the Southwest Research Institute (SwRI), Alan Stern and his colleagues studied possible concepts and recommended a purpose-built robotic ISO flyby mission called the Interstellar Object Explorer (IOE). They also demonstrate how this mission could be performed on a modest budget with current spaceflight technology.

Continue reading “When an Object Like ‘Oumuamua Comes Around Again, We Could be Ready With an Interstellar Object Explorer (IOE)”

Electrodes in Spacesuits Could Protect Astronauts from Harmful Dust on Mars

Martian dust could be a serious health hazard for future missions to Mars. Credit: NASA/AI. SpaceFactory

To quote NASA associate administrator Jim Reuter, sending crewed missions to Mars by 2040 is an “audacious goal.” The challenges include the distance involved, which can take up to six months to traverse using conventional propulsion methods. Then there’s the hazard posed by radiation, which includes increased exposure to solar particles, flares, and galactic cosmic rays (GCRs). And then there’s the time the crews will spend in microgravity during transits, which can take a serious toll on human health, physiology, and psychology.

But what about the challenges of living and working on Mars for several months at a time? While elevated radiation and lower gravity are a concern, so is Martian regolith. Like lunar regolith, dust on Mars will adhere to astronauts’ spacesuits and inflict wear on their equipment. However, it also contains harmful particles that must be removed to prevent contaminating habitats. In a recent study, a team of aerospace engineers tested a new electrostatic system for removing Martian regolith from spacesuits that could potentially remove harmful dust with up to 98% efficiency.

Continue reading “Electrodes in Spacesuits Could Protect Astronauts from Harmful Dust on Mars”

A Capsule With Antiviral Drugs Grown in Space Returns to Earth

The W-1 capsule landing at the Utah Test and Training Range. Credit: Vargas Space Industries

On Wednesday, February 21st, at 01:40 p.m. PST (04:40 p.m. EST), an interesting package returned to Earth from space. This was the capsule from the W-1 mission, an orbital platform manufactured by California-based Varda Space Industries, which landed at the Utah Test and Training Range (UTTR). Even more interesting was the payload, which consisted of antiviral drugs grown in the microgravity environment of Low Earth Orbit (LEO). The mission is part of the company’s goal to develop the infrastructure to make LEO more accessible to commercial industries.

Continue reading “A Capsule With Antiviral Drugs Grown in Space Returns to Earth”

Can We Survive in Space? It Might Depend on How Our Gut Microbiome Adapts

Researchers at Penn State University are developing a way to use microbes to turn human waste into food on long space voyages. Image: Yuri Gorby, Rensselaer Polytechnic Institute
Microbes play a critical role on Earth. Understanding how they react to space travel is crucial to ensuring astronaut health. Credit: Yuri Gorby, Rensselaer Polytechnic Institute

For over a century, people have dreamed of the day when humanity (as a species) would venture into space. In recent decades, that dream has moved much closer to realization, thanks to the rise of the commercial space industry (NewSpace), renewed interest in space exploration, and long-term plans to establish habitats in Low Earth Orbit (LEO), on the lunar surface, and Mars. Based on the progression, it is clear that going to space exploration will not be reserved for astronauts and government space agencies for much longer.

But before the “Great Migration” can begin, there are a lot of questions that need to be addressed. Namely, how will prolonged exposure to microgravity and space radiation affect human health? These include the well-studied aspects of muscle and bone density loss and how time in space can impact our organ function and cardiovascular and psychological health. In a recent study, an international team of scientists considered an often-overlooked aspect of human health: our microbiome. In short, how will time in space affect our gut bacteria, which is crucial to our well-being?

Continue reading “Can We Survive in Space? It Might Depend on How Our Gut Microbiome Adapts”

The Brightest Object Ever Seen in the Universe

This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. Credit: ESO/M. Kornmesser

It’s an exciting time in astronomy today, where records are being broken and reset regularly. We are barely two months into 2024, and already new records have been set for the farthest black hole yet observed, the brightest supernova, and the highest-energy gamma rays from our Sun. Most recently, an international team of astronomers using the ESO’s Very Large Telescope in Chile reportedly saw the brightest object ever observed in the Universe: a quasar (J0529-4351) located about 12 billion light years away that has the fastest-growing supermassive black hole (SMBH) at its center.

Continue reading “The Brightest Object Ever Seen in the Universe”