“Super Saturn” Has an Enormous Ring System and Maybe Even Exomoons

Artist's impression of a gigantic ring system around a distant exoplanet. Credit and ©: Ron Miller

Astronomers watching the repeated and drawn-out dimming of a relatively nearby Sun-like star have interpreted their observations to indicate an eclipse by a gigantic exoplanet’s complex ring system, similar to Saturn’s except much, much bigger. What’s more, apparent gaps and varying densities of the rings imply the presence of at least one large exomoon, and perhaps even more in the process of formation!

J1407 is a main-sequence orange dwarf star about 434 light-years away*. Over the course of 57 days in spring of 2007 J1407 underwent a “complex series of deep eclipses,” which an international team of astronomers asserts is the result of a ring system around the massive orbiting exoplanet J1407b.

“This planet is much larger than Jupiter or Saturn, and its ring system is roughly 200 times larger than Saturn’s rings are today,” said Eric Mamajek, professor of physics and astronomy at the University of Rochester in New York. “You could think of it as kind of a super Saturn.”

The observations were made through the SuperWASP program, which uses ground-based telescopes to watch for the faint dimming of stars due to transiting exoplanets.

The first study of the eclipses and the likely presence of the ring system was published in 2012, led by Mamajek. Further analysis by the team estimates the number of main ring structures to be 37, with a large and clearly-defined gap located at about 0.4 AU (61 million km/37.9 million miles) out from the “super Saturn” that may harbor a satellite nearly as large as Earth, with an orbital period of two years.

Watch an animation of the team’s analysis of the J1407/J1407b eclipse below:

The entire expanse of J1407b’s surprisingly dense rings stretches for 180 million km (112 million miles), and could contain an Earth’s worth of mass.

“If we could replace Saturn’s rings with the rings around J1407b,” said Matthew Kenworthy from Leiden Observatory in the Netherlands and lead author of the new study, “they would be easily visible at night and be many times larger than the full Moon.”

Saturn's relatively thin main rings are about 250,000 km (156,000 miles) in diameter. (Image: NASA/JPL-Caltech/SSI/J. Major)
Saturn’s relatively thin main rings are about 250,000 km (156,000 miles) in diameter. (Image: NASA/JPL-Caltech/SSI/J. Major)

These observations could be akin to a look back in time to see what Saturn and Jupiter were like as their own system of moons were first forming.

“The planetary science community has theorized for decades that planets like Jupiter and Saturn would have had, at an early stage, disks around them that then led to the formation of satellites,” according to Mamajek. “However, until we discovered this object in 2012, no one had seen such a ring system. This is the first snapshot of satellite formation on million-kilometer scales around a substellar object.”

J1407b itself is estimated to contain 10-40 times the mass of Jupiter – technically, it might even be a brown dwarf.

Further observations will be required to observe another transit of J1407b and obtain more data on its rings and other physical characteristics as its orbit is about ten Earth-years long. (Luckily 2017 isn’t that far off!)

The team’s report has been accepted for publication in the Astrophysical Journal.

Source: University of Rochester. Image credit: Ron Miller.

Note: the originally published version of this article described J1407 at 116 light-years away. It’s actually 133 parsecs, which equates to about 434 light-years. Edited above. – JM

Rosetta Gets a Peek at Comet 67P’s “Underside”

Four-image mosaic of 67P/Churyumov-Gerasimenko acquired on Jan. 16, 2015 (ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0)

A particularly dramatic view of comet 67P/C-G due to the angle of solar illumination, this is a mosaic made from four images acquired by Rosetta’s NavCam on January 16, 2015, from a distance of 28.4 km (17.6 miles). The assembled image shows the larger “bottom” lobe of 67P, with a flat region called Imhotep along the left side and, on the lower right, the transition area stretching up to the comet’s smaller “head” lobe. Outgassing jets can be seen as faint streaks at the upper right, and ejected dust grains show up as bright specks above its surface.

Also in this view is one of 67P’s larger boulders, a somewhat pyramid-shaped rock dubbed “Cheops.” Can you spot it?

There it is!

Position of the Cheops boulder on 67P (ESA/Rosetta/Navcam)
Position of the Cheops boulder on 67P (ESA/Rosetta/Navcam)

One in a cluster of boulders on 67P’s “underside,” Cheops is about 45 meters wide and 25 meters high (148 x 82 feet).

When it was first observed in Rosetta images Cheops and the nearby cluster reminded scientists of the pyramids at Giza in Egypt, and so it was named for the largest of those pyramids, the Great Pyramid, a tomb for the pharaoh Cheops (the Hellenized name for Khufu) built around 2,550 BCE. (See another view of the Cheops cluster here.)

OSIRIS image of Cheops acquired on Sept. 19, 2014 (ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)
OSIRIS image of Cheops acquired on Sept. 19, 2014 (ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

Scientists are still working to determine the nature of 67P’s boulders. It’s not yet known what they are made of or how they came to be where they are observed today. Did they fall into their current positions? Or were they exposed upwards from below as a result of the comet’s activity? And why do they have alternating rough and smooth areas on their surfaces?

“It almost looks as if loose dust covering the surface of the comet has settled in the boulder’s cracks. But, of course, it is much too early to be sure,” said OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research (MPS) in Germany.

Also see: A Stunning Look at the Cliffs of Comet 67P/Churyumov-Gerasimenko

As comet 67P approaches perihelion over the course of the next six months we will get to see firsthand via Rosetta what sorts of changes occur to its surface features, including office-building-sized boulders like Cheops.

Also, for a quick look at some of 67P’s “vital stats” click here. (Added 1/22)

Source: ESA Rosetta blog

Here’s Dawn’s Best View of Ceres Yet

Animation of Ceres made from Dawn images acquired on Jan. 13, 2015 (Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI)

Just sit back and watch the world turn… or should I say, watch the dwarf planet turn in this fascinating animation from Dawn as the spacecraft continues on its ion-powered approach to Ceres!

The images were captured by Dawn’s framing camera over the course on an hour on Jan. 13 at a distance of 238,000 miles (383,000 km) from Ceres. At 590 miles (950 km) wide Ceres is the largest object in the main asteroid belt.

“Already, the [latest] images hint at first surface structures such as craters,” said Andreas Nathues, lead investigator for the framing camera team at the Max Planck Institute for Solar System Research in Gottingen, Germany. “We have identified all of the features seen by Hubble on the side of Ceres we have observed, and there are also suggestions of remarkable structures awaiting us as we move even closer.”

Although these latest 27-pixel images from Dawn aren’t quite yet better than Hubble’s images from Jan. 2004, very soon they will be.

Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart
Comparison of HST and Dawn FC images of Ceres taken nearly 11 years apart

“The team is very excited to examine the surface of Ceres in never-before-seen detail,” said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. “We look forward to the surprises this mysterious world may bring.”

Launched Sept. 27, 2007, Dawn previously spent over 13 months in orbit around the asteroid/protoplanet Vesta from 2011–12 and is now on final approach to Ceres. On March 6 Dawn will arrive at Ceres, becoming the first spacecraft to enter orbit around two different target worlds.

Read more: Find Out How “Crazy Engineering” is Getting Dawn to Ceres

Learn more at JPL’s Dawn mission site here, and find out where Dawn is right now here.

Also, read more from the Max Planck Institute for Solar System Research here.

Source: NASA/MPI

What Is This Empty Hole In Space?

The dark nebula LDN 483 imaged by ESO's La Silla Observatory in Chile (ESO)

What may appear at first glance to be an eerie, empty void in an otherwise star-filled scene is really a cloud of cold, dark dust and molecular gas, so dense and opaque that it obscures the distant stars that lie beyond it from our point of view.

Similar to the more well-known Barnard 68, “dark nebula” LDN 483 is seen above in an image taken by the MPG/ESO 2.2-meter telescope’s Wide Field Imager at the La Silla Observatory in Chile.

While it might seem like a cosmic no-man’s-land, no stars were harmed in the making of this image – on the contrary, dark nebulae like LDN 483 are veritable maternity wards for stars. As their cold gas and dust contracts and collapses new stars form inside them, remaining cool until they build up enough density and gravity to ignite fusion within their cores. Then, shining brightly, the young stars will gradually blast away the remaining material with their outpouring wind and radiation to reveal themselves to the galaxy.

The process may take several million years, but that’s just a brief flash in the age of the Universe. Until then, gestating stars within LDN 483 and many other clouds like it remain dim and hidden but keep growing strong.

Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)
Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)

Located fairly nearby, LDN 483 is about 700 light-years away from Earth in the constellation Serpens.

Source: ESO

Get a Change of View of Mercury’s North Pole

A forced perspective view of Profokiev crater near Mercury's north pole

It’s always good to get a little change of perspective, and with this image we achieve just that: it’s a view of Mercury’s north pole projected as it might be seen from above a slightly more southerly latitude. Thanks to the MESSENGER spacecraft, with which this image was originally acquired, as well as the Arecibo Observatory here on Earth, scientists now know that these polar craters contain large deposits of water ice – which may seem surprising on an airless and searing-hot planet located so close to the Sun but not when you realize that the interiors of these craters never actually receive sunlight.

The locations of ice deposits are shown in the image in yellow. See below for a full-sized version.

Perspective view of Mercury's north pole made from MESSENGER MDIS data.
Perspective view of Mercury’s north pole made from MESSENGER MDIS images and Arecibo Observatory data. (NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)

The five largest ice-filled craters in this view are (from front to back) the 112-km-wide Prokofiev and the smaller Kandinsky, Tolkien, Tryggvadottir, and Chesterton craters. A mosaic of many images acquired by MESSENGER’s Mercury Dual Imaging Sustem (MDIS) instrument during its time in orbit, you would never actually see a view of the planet’s pole illuminated like this in real life but orienting it this way helps put things into…well, perspective.

Radar observations from Arecibo showing bright areas on Mercury's north pole
Radar observations from Arecibo showing bright areas on Mercury’s north pole

Radar-bright regions in Mercury’s polar craters have been known about since 1992 when they were first imaged from the Arecibo Observatory in Puerto Rico. Located in areas of permanent shadow where sunlight never reaches (due to the fact that Mercury’s axial tilt is a mere 2.11º, unlike Earth’s much more pronounced 23.4º slant) they have since been confirmed by MESSENGER observations to contain frozen water and other volatile materials.

Read more: Ice Alert! Mercury’s Deposits Could Tell Us More About How Water Came To Earth

Similarly-shadowed craters on our Moon’s south pole have also been found to contain water ice, although those deposits appear different in composition, texture, and age. It’s suspected that some of Mercury’s frozen materials may have been delivered later than those found on the Moon, or are being restored via an ongoing process. Read more about these findings here.

Explore Mercury’s shadowed craters with the Water Ice Data Exploration (WIDE) app

In orbit around Mercury since 2011, MESSENGER is now nearing the end of its operational life. Engineers have figured out a way to extend its fuel use for an additional month, possibly delaying its inevitable descent until April, but even if this maneuver goes as planned the spacecraft will be meeting Mercury’s surface very soon.

Source: MESSENGER

NASA’s NuSTAR Scans the Sun with X-ray Vision

The west limb of the Sun imaged by NuSTAR and SDO shows areas of high-energy x-rays above particularly active regions (NASA/JPL-Caltech/GSFC)

What if you had x-ray vision like Superman? Or if those funny-looking glasses they advertised in comic books in the 60s actually worked?* Then with those our Sun might look something like this, lighting up with brilliant flares of high-energy x-rays as seen by NASA’s super-sensitive NuSTAR Space Telescope (with a little help from SDO.)

The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)
The NuStar Space Telescope launched aboard a Orbital Sciences Pegasus rocket, on June 13, 2012. (Credit: NASA/Caltech-JPL)

Of course NASA’s orbiting NuSTAR x-ray telescope is not like a typical medical imaging system. Instead of looking for broken bones, NuSTAR (short for Nuclear Spectroscopic Telescope Array) is made to detect high-energy particles blasting across the Universe from exotic objects like supermassive black holes, pulsars, and supernovae.

Read more: Stars Boil Before They Blow Up, Says NuSTAR

But astronomers suggested turning NuSTAR’s gaze upon our own Sun to see what sorts of x-ray activity may be going on there.

“At first I thought the whole idea was crazy,” said Fiona Harrison, a Professor of Physics and Astronomy at Caltech and PI for the NuSTAR mission. “Why would we have the most sensitive high energy X-ray telescope ever built, designed to peer deep into the universe, look at something in our own back yard?”

As it turns out NuSTAR was able to reveal some very interesting features on the Sun, showing where the corona is being heated to very high temperatures. The image above shows NuSTAR’s first observations, overlaid onto data acquired by NASA’s Solar Dynamics Observatory.

NuSTAR data is shown in green and blue, revealing high-energy emission around – but not exactly aligned with – active regions on the Sun where solar plasma is being heated to more than 3 million degrees. The red represents ultraviolet light captured by SDO and shows material in the solar atmosphere at a slightly cooler 1 million degrees.

The west limb of the Sun imaged by NuSTAR and SDO shows areas of high-energy x-rays near active regions and coronal loops (NASA/JPL-Caltech/GSFC)
The NuSTAR data overlaid on the full disk SDO image, rotated so north on the Sun is up. (NASA/JPL-Caltech/GSFC)

Because the Sun isn’t terribly intense in high energy x-ray output it’s safe to observe it with NuSTAR — it’s not likely to burn out the telescope’s sensors. But what NuSTAR can detect may help astronomers determine the exact mechanisms behind the intense coronal heating that occurs in and above the Sun’s chromosphere. If so-called “nanoflares” — miniature and as-yet-invisible versions of solar flares — are responsible, for instance, NuSTAR might be able to catch them in action for the first time.

Read more: Warm Coronal Loops May Hold the Key to Hot Solar Atmosphere

“NuSTAR will be exquisitely sensitive to the faintest X-ray activity happening in the solar atmosphere, and that includes possible nanoflares,” said David Smith, solar physicist and member of the NuSTAR team at the University of California, Santa Cruz.

In addition NuSTAR could potentially detect the presence of axions in the Sun’s core — hypothesized particles that may make up dark matter in the Universe.

NuSTAR may not be a “solar telescope” per se, but that won’t stop astronomers from using its unique abilities to learn more about the star we intimately share space with.

“NuSTAR will give us a unique look at the Sun, from the deepest to the highest parts of its atmosphere.”

– David Smith, solar physicist, University of California Santa Cruz

Read more in a JPL article here.

*I never did get my box of 100 army men, either. Then again, I may have ordered a few decades too late.

This Short Film is a Stunning Preview of Human Space Exploration

One day – and it really is only matter of time – humans will set foot on the surfaces of other far-flung worlds in our Solar System, leaving the Earth and Moon far behind to wander the valleys of Mars, trek across the ice of Europa, and perhaps even soar through the skies of Titan like winged creatures from ancient legends. But until then we must rely on the exploration of our robotic emissaries and our own boundless imagination and curiosity to picture what such voyages would be like. Here in “Wanderers,” video artist Erik Wernquist has used both resources in abundance to visualize fascinating off-world adventures yet to be undertaken by generations to come.
Continue reading “This Short Film is a Stunning Preview of Human Space Exploration”

Yuri Gagarin Memorialized in a Funky Music Video

Let's hope NASA designs its next suits with dancing in mind!

On April 12, 1961, Soviet cosmonaut Yuri Gagarin entered the “realm of myth and legend” when he became the first human in space and the first person to orbit the Earth. Now, over 53 years later, Gagarin is memorialized with (among many things) a superhero-esque statue in Moscow, yearly Yuri’s Night celebrations held around the world, a launch pad at Baikonur Cosmodrome…and this music video for a hip new tune titled “Gagarin.”

Oh kids these days.

Created by the two-person London-based band PUBLIC SERVICE BROADCASTING “Gagarin” is the first single released off their new album “The Race for Space.” The music and video, which uses newly-available footage from the Soviet space program, is a “brassy, funk-heavy superhero theme song for the most famous man in the world at the time” and “reveals a new side to the band – not least their considerable dancing skills.”

PSB creator J. Willgoose, Esq. explains the rationale behind the song:
“We didn’t want to be too literal in our interpretation of the material we were given – material that was full of heroic language and a sense of exuberance, with lines like ‘the hero who blazed the trail to the stars’, and ‘the whole world knew him and loved him’. It seemed more appropriate to try and re-create some of that triumphant air with a similarly upbeat song – and when it came to creating the video, the best way we could think of to communicate that sense of joy was to get our dancing shoes on.”

As a fan of Yuri, spaceflight, and brass-band breakdancers in astronaut suits, I give this video two Vostoks up.

You can pre-order PSB’s newest album here, and follow them on Twitter and Facebook, and YouTube.

Video © PUBLIC SERVICE BROADCASTING. HT to Xeni Jardin at BoingBoing.

Did a Galactic Smashup Kick Out a Supermassive Black Hole?

Near-infrared image of the dwarf galaxy Markarian 177 and what appears to be an ejected SMBH. Credit: W. M. Keck Observatory/M. Koss (ETH Zurich) et al.

Crazy things can happen when galaxies collide, as they sometimes do. Although individual stars rarely impact each other, the gravitational interactions between galaxies can pull enormous amounts of gas and dust into long streamers, spark the formation of new stars, and even kick objects out into intergalactic space altogether. This is what very well may have happened to SDSS1133, a suspected supermassive black hole found thousands of light-years away from its original home.

The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)
The two Keck 10-meter domes atop Mauna Kea. (Rick Peterson/WMKO)

Seen above in a near-infrared image acquired with the Keck II telescope in Hawaii, SDSS1133 is the 40-light-year-wide bright source observed 2,300 light-years out from the dwarf galaxy Markarian 177, located 90 million light-years away in the constellation Ursa Major (or, to use the more familiar asterism, inside the bowl of the Big Dipper.)

The two bright spots at the disturbed core of Markarian 177 are thought to indicate recent star formation, which could have occurred in the wake of a previous collision.

“We suspect we’re seeing the aftermath of a merger of two small galaxies and their central black holes,” said Laura Blecha, an Einstein Fellow in the University of Maryland’s Department of Astronomy and a co-author of an international study of SDSS1133. “Astronomers searching for recoiling black holes have been unable to confirm a detection, so finding even one of these sources would be a major discovery.”

Interactions between supermassive black holes during a galactic collision would also result in gravitational waves, elusive phenomena predicted by Einstein that are high on astronomers’ most-wanted list of confirmed detections.

Read more: “Spotter’s Guide” to Detecting Black Hole Collisions

Watch an animation of how the suspected collision and subsequent eviction may have happened:

But besides how it got to where it is, the true nature of SDSS1133 is a mystery as well.

The persistently bright near-infrared source has been detected in observations going back at least 60 years. Whether or not SDSS1133 is indeed a supermassive black hole has yet to be determined, but if it isn’t then it’s a very unusual type of extremely massive star known as an LBV, or Luminous Blue Variable. If that is the case though, it’s peculiar even for an LBV; SDSS1133 would have had to have been continuously pouring out energy in a for over half a century until it exploded as a supernova in 2001.

To help determine exactly what SDSS1133 is, continued observations with Hubble’s Cosmic Origins Spectrograph instrument are planned for Oct. 2015.

“We found in the Pan-STARRS1 imaging that SDSS1133 has been getting significantly brighter at visible wavelengths over the last six months and that bolstered the black hole interpretation and our case to study SDSS1133 now with HST,” said Yanxia Li, a UH Manoa graduate student involved in the research.

And, based on data from NASA’s Swift mission the UV emission of SDSS1133 hasn’t changed in ten years, “not something typically seen in a young supernova remnant” according to Michael Koss, who led the study and is now an astronomer at ETH Zurich.

Regardless of what SDSS1133 turns out to be, the idea of such a massive and energetic object soaring through intergalactic space is intriguing, to say the least.

The study will be published in the Nov. 21 edition of Monthly Notices of the Royal Astronomical Society.

Source: Keck Observatory

See What Astronauts See In This Stunning ISS Timelapse

My favorite part of the video is the Cygnus release. What's yours?


Yes, it’s another time-lapse video made from photos taken by astronauts aboard the ISS. Yes, it’s been digitally remastered, smoothed-over, and set to a dramatic technopop soundtrack. But no, it’s still not boring because our planet is beautiful and spaceflight is and always will be absolutely fascinating.

There. I said it.

The video above “Astronaut – a Journey to Space” is everything that I just mentioned and was compiled and edited by photographer and video artist Guillaume Juin. The original images were gathered from Johnson Space Center’s Gateway to Astronaut Photography of Earth site, and were captured during ISS missions from 2011 to 2014. Aforementioned dramatic technopop music is by Vincent Tone. Watch it above, or for maximum impact watch it full-screen. (I strongly advise the latter.) Enjoy!

HT to Sploid and fellow EFT-1 NASA Social participant Ailyn Marie for bringing this to my attention.