Kepler Discovers a Rare Triple Gem



It may be visible to the naked eye, but it took the unblinking gaze of NASA’s Kepler space telescope to reveal the true triple nature of this star system.

Animation of HD 181068 (click to play)

Unofficially dubbed “Trinity”, object HD 181068 is a multiple star system comprised of three stars: a red giant more than twelve times the diameter of the Sun and two red dwarf stars each slightly smaller than the Sun. The red dwarfs orbit each other in tight rotation around a central point, which in turn orbits the red giant. The smaller stars complete a full orbit around the giant every 45.5 days and, from our point of view, pass directly in front of and behind the huge star.

The orbital eclipse events of HD 181068 last about 2 days. What’s surprising is that during these eclipses the brightness of the system is not affected very much. This is because the surface brightnesses of the three stars are very similar. The current metaphor is a “white rabbit in a snowfall”, wherein the two red dwarfs effectively become invisible when they pass in front of the red giant. It wasn’t until the Kepler mission that we had an observational tool precise enough to detect the structure of this intriguing star system, located 800 light-years away from our own.

“The intriguing nature of this unique system remained unnoticed until now despite the fact that it is nearly bright enough to be visible to the naked eye. We really needed Kepler with its unprecedentedly precise and uninterrupted photometric monitoring to uncover such a rare gem.”

– Aliz Derekas, Eotvos University and Konkoly Observatory, Budapest, Hungary

Another unexpected feature of Trinity is its “quiet” nature. Astronomers have known that red giant stars exhibit seismic oscillations, as does our own Sun. But these oscillations are not present in Trinity’s red giant. Scientists speculate that the two red dwarfs may be creating some sort of gravitational offset, effectively negating the red giant’s vibrations. More research will be needed to determine if this is in fact the case.

Find out more about HD 181068 and other recent Kepler discoveries on NASA’s mission site or in the press release issued by the Ames Research Center, or read the published report on Science.

Image credit: NASA/KASC



Look Inside a Lunar Crater


The crater shown above is located in the lunar highlands and is filled with and surrounded by boulders of all sizes and shapes. It is approximately 550 meters (1800 feet) wide yet is still considered a small crater, and could have been caused by either a direct impact by a meteorite or by an ejected bit of material from another impact. Scientists studying the Moon attempt to figure out how small craters like this were formed by their shapes and the material seen around them…although sometimes the same results can be achieved by different events.

For example, when an object from space strikes the Moon, it is typically traveling around 20 km per second (12 miles/sec). If the impact site happens to have a very hard subsurface, it can make a crater with scattered bouldery chunks composed of the hard material around it. But, if a large piece of ejected material from another impact were to strike the lunar surface at a much slower speed, as ejecta typically do (since they travel slower than incoming space debris and the Moon’s escape velocity is fairly low, meaning any ejecta that does fall back to the surface must be traveling slower than 2.38 km/s,) then the ejected chunk could break apart on impact and scatter boulders of itself around the crater…regardless of subsurface composition.

Really the only way to tell for sure which scenario has taken place around a given crater – such as the one above – is to collect and return samples from the site so they can be tested. (Of course that’s much easier said than done!)

You can read more about this image on Arizona State University’s Lunar Reconnaissance Orbiter Camera site here.

And as an added treat, take a look deep into the shadows of the crater’s interior below…I tweaked the image curves in Photoshop to wrestle some of the details out of there!


Brightening the shadowed area reveals details of the crater floor...and even more boulders!

Image credit: NASA/GSFC/Arizona State University. (Edited by J. Major.)

P.S.: Want to see both image versions combined? Click here. (Thanks to Mike C. for the suggestion!)

A Varying Venusian Vortex

Animation of Venus' southern polar vortex made from VIRTIS thermal infrared images; white is cooler clouds at higher altitudes.

Our neighboring planet Venus really is a world of extremes; searing surface temperatures, crushing air pressure, sulfuric acid clouds…Venus pretty much pushes the envelope on every aspect of rocky-planet existence. And now here’s one more thing that made scientists do a double-take: a shape-shifting vortex swirling around Venus’ south pole!

The presence of a cyclonic storm around Venus’ poles – both north and south –  has been known since Mariner 10’s pass in 1974 and then afterwards during the Pioneer Venus mission when a downwardly-spiraling formation of clouds over the planet’s north pole was imaged in infrared. It wasn’t until ESA’s Venus Express orbiter arrived in 2006 that the cyclone at the south pole was directly observed via the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument…and it proved to be much stranger than anything previously expected. Continue reading “A Varying Venusian Vortex”