Waltz Around Saturn With This Beautiful Animation

Just one of the many images from Cassini used to make up "Around Saturn"

In honor of this today’s Wave at Saturn and The Day the Earth Smiled events, celebrating images to be taken of Earth from Saturn, here’s a wonderful movie showing highlights from Cassini’s exploration of the giant planet, its magnificent rings, and fascinating family of moons.

Assembled by Fabio Di Donato in memory of astrophysicist, author and activist Margherita Hack, who passed away June 29 at the age of 91, this video is an impressive tour of the Saturnian system — and a truly stunning tribute as well.

“She made me love the stars,” Fabio wrote.

This video shows a selection from more than 200,000 pictures taken by the Cassini spacecraft around Saturn’s rings in a period between 2005 and 2013. RAW images were processed to PNG thanks to the Vicar-to-PNG procedure provided by Jessica McKellar.

The music is Jazz Suite No.2: VI Waltz 2 by Shostakovich, performed by the Armonie Symphony Orchestra.

As always, you can see the latest images and news from the Cassini mission here, and find out how your photo is going to be taken from 900 million miles away (and also 60 million miles away from Mercury!) here.

Video: Fabio Di Donato. Original images: NASA/JPL-Caltech/SSI.

P.S.: Want to get a personalized certificate saying you “Waved at Saturn?” Click here.

Earth’s Gold Came From Colliding Stars

Collisions of neutron stars produce powerful gamma-ray bursts – and heavy elements like gold (Credit: Dana Berry, SkyWorks Digital, Inc.)

Are you wearing a gold ring? Or perhaps gold-plated earrings? Maybe you have some gold fillings in your teeth… for that matter, the human body itself naturally contains gold — 0.000014%, to be exact! But regardless of where and how much of the precious yellow metal you may have with you at this very moment, it all ultimately came from the same place.

And no, I don’t mean Fort Knox, the jewelry store, or even under the ground — all the gold on Earth likely originated from violent collisions between neutron stars, billions of years in the past.

Recent research by scientists at the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts has revealed that considerable amounts of gold — along with other heavy elements — are produced during impacts between neutron stars, the super-dense remains of stars originally 1.4 to 9 times the mass of our Sun.

The team’s investigation of a short-duration gamma-ray outburst that occurred in June (GRB 130603B) showed a surprising residual near-infrared glow, possibly from a cloud of material created during the stellar merger. This cloud is thought to contain a considerable amount of freshly-minted heavy elements, including gold.

“We estimate that the amount of gold produced and ejected during the merger of the two neutron stars may be as large as 10 moon masses – quite a lot of bling!” said lead author Edo Berger.

"With this remnant of a dead neutron star, I thee wed." (FreeDigitalPhotos.net/bigjom)
“With this remnant of a dead neutron star, I thee wed.” (FreeDigitalPhotos.net/bigjom)

The mass of the Moon is 7.347 x 1022 kg… about 1.2% the mass of Earth. The collision between these neutron stars then, 3.9 billion light-years away, produced 10 times that much gold based on the team’s estimates.

Quite a lot of bling, indeed.

Gamma-ray bursts come in two varieties – long and short – depending on the duration of the gamma-ray flash. GRB 130603B, detected by NASA’s Swift satellite on June 3rd, lasted for less than two-tenths of a second.

Although the gamma rays disappeared quickly, GRB 130603B also displayed a slowly fading glow dominated by infrared light. Its brightness and behavior didn’t match the typical “afterglow” created when a high-speed jet of particles slams into the surrounding environment.

Instead, the glow behaved like it came from exotic radioactive elements. The neutron-rich material ejected by colliding neutron stars can generate such elements, which then undergo radioactive decay, emitting a glow that’s dominated by infrared light – exactly what the team observed.

“We’ve been looking for a ‘smoking gun’ to link a short gamma-ray burst with a neutron star collision,” said Wen-fai Fong, a graduate student at CfA and a co-author of the paper. “The radioactive glow from GRB 130603B may be that smoking gun.”

The team calculates that about one-hundredth of a solar mass of material was ejected by the gamma-ray burst, some of which was gold. By combining the estimated gold produced by a single short GRB with the number of such explosions that have likely occurred over the entire age of the Universe, all the gold in the cosmos – and thus on Earth – may very well have come from such gamma-ray bursts.

Watch an animation of two colliding neutron stars along with the resulting GRB below (Credit: Dana Berry, SkyWorks Digital, Inc.):

How much gold is there on Earth, by the way? Since most of it lies deep inside Earth’s core and is thus unreachable, the total amount ever retrieved by humans over the course of history is surprisingly small: about 172,000 tonnes, or enough to make a cube 20.7 meters (68 feet) per side (based on the Thomson Reuters GFMS annual survey.) Some other estimates put this amount at slightly more or less, but the bottom line is that there really isn’t all that much gold available in Earth’s crust… which is partly what makes it (and other “precious” metals) so valuable.

And perhaps the knowledge that every single ounce of that gold was created by dead stars smashing together billions of years ago in some distant part of the Universe would add to that value.

“To paraphrase Carl Sagan, we are all star stuff, and our jewelry is colliding-star stuff,” Berger said.

The team’s findings were presented today in a press conference at the CfA in Cambridge. (See the paper here.)

Source: Harvard-Smithsonian CfA

Stars, Galaxies, and Comet ISON Grace a New Image from Hubble

Comet ISON seen against a background of stars and galaxies (Source: /hubblesite.org)

This image of the steadily-approaching Comet ISON, made from observations with the Hubble Space Telescope on April 30, show not only the comet itself but also a rich background of stars located within our own galaxy and even the distant spirals of entire galaxies much, much farther away — as Josh Sokol describes it on HubbleSite.org’s ISONblog it’s like the astronomy stickers you’d get for your kid’s bedroom, except you’d never get to see such a scene in real life “unless, of course, you had Hubble.”

Comet C/2012 S1 (ISON) is currently on its way into the inner Solar System on course for a close encounter with the Sun, zooming along at 77,250 km/h (48,000 miles per hour). It will make its closest pass by the Sun on November 28 (coming within just .012 AU) and will hopefully put on a pretty spectacular show in the night sky —  especially if it survives the trip.

The track of Comet ISON through the constellations Gemini, Cancer and Leo prior to perihelion. (Credit: NASA/GSFC/Axel Mellinger).
Comet ISON’s projected path through the night sky prior to perihelion. (Credit: NASA/GSFC/Axel Mellinger)

Watch: Comet ISON Timelapse Hubble Movie

The image above was created from multiple Hubble observations earlier this year, some geared toward capturing ISON and others calibrated more for distant, dimmer objects like galaxies and far-flung stars. By combining the results we get a view of a comet speeding through space with an almost too-perfect hyperrealism, courtesy of NASA’s hardest-working space telescope.

“The result is part science, part art. It’s a simulation of what our eyes, with their ability to dynamically adjust to brighter and fainter objects, would see if we could look up at the heavens with the resolution of Hubble. The result is a hodepodge of almost all the meat-and-potatoes subjects of astronomy – no glow-in-the-dark stickers required.”

– Josh Sokol, HubbleSite ISONblog

Learn about other ways NASA will be observing Comet ISON here.

Source: HubbleSite.org

A Heat Wave So Big You Can See It From Space

Image taken by NOAA's GOES East satellite at 12:45 p.m. EDT on July 15, 2013. (NOAA/NASA GOES Project)

Hot enough for ya? If you live anywhere on the eastern half of the United States (like me) you’ve probably been sweating it out over the past several days in what certainly feels like the warmest week yet for the season. The cause of the oppressive weather? A large mid-level ridge centered over the Ohio Valley — large enough to be easily visible from space.

The image above was taken by the GOES East satellite at 12:45 p.m. EDT on July 15. The clear area over Ohio shows the center of the system, which has been driving temperatures up into the 90s for much of the eastern U.S. and is expected to expand into the plains by mid-week. Along with increased humidity, heat index values will exceed 100 ºF and even approach 110 ºF on Friday.

From the NASA Image of the Day page:

A very anomalous weather pattern is in place over the U.S. for mid-July. Trapped between an upper level ridge centered over the Ohio Valley and the closed upper level low over the Texas/Oklahoma border, atypical hot, muggy air is stifling a broad swath of the eastern U.S. The closed low is expected to drift west toward New Mexico bringing heavy, localized rain to some areas and temperatures running 10-20 degrees below mid-July averages. Across the east, temperatures will warm well into the 90s and stay there through the week. (NOAA)

Rendering of a GOES satellite (NOAA)
Rendering of a GOES satellite (NOAA)

As of the time of this writing heat advisories are in place in many parts of Michigan, southern Minnesota, and southern New England, and excessive heat warnings are active in eastern Pennsylvania and west central New Jersey. (Source)

Click here for summer heat safety tips.

Meanwhile, a closed low — seen above as a large, moisture-laden spiraling cloud system — is moving west across Texas and New Mexico, and is expected to bring lower-than-average temperatures along with heavy rains and flash flooding.

Keep up to date with weather alerts for your area at the NOAA’s National Weather Service site here, and see the latest GOES satellite images here.

Image Credit: NOAA/NASA GOES Project

At an altitude of 22,336 miles, the geosynchronous GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings.

ALMA Spots a Nascent Stellar Monster

ALMA/Spitzer image of a monster star in the process of forming

Even though it comprises over 99% of the mass of the Solar System (with Jupiter taking up most of the rest) our Sun is, in terms of the entire Milky Way, a fairly average star. There are lots of less massive stars than the Sun out there in the galaxy, as well as some real stellar monsters… and based on new observations from the Atacama Large Millimeter/submillimeter Array, there’s about to be one more.

Early science observations with ALMA have provided astronomers with the best view yet of a monster star in the process of forming within a dark cloud of dust and gas. Located 11,000 light-years away, Spitzer Dark Cloud 335.579-0.292 is a stellar womb containing over 500 times the mass of the Sun — and it’s still growing. Inside this cloud is an embryonic star hungrily feeding on inwardly-flowing material, and when it’s born it’s expected to be at least 100 times the mass of our Sun… a true stellar monster.

The location of SDC 335.579-0.292 in the southern constellation of Norma (ESO, IAU and Sky & Telescope)
The location of SDC 335.579-0.292 in the southern constellation of Norma (ESO, IAU and Sky & Telescope)

The star-forming region is the largest ever found in our galaxy.

“The remarkable observations from ALMA allowed us to get the first really in-depth look at what was going on within this cloud,” said Nicolas Peretto of CEA/AIM Paris-Saclay, France, and Cardiff University, UK. “We wanted to see how monster stars form and grow, and we certainly achieved our aim! One of the sources we have found is an absolute giant — the largest protostellar core ever spotted in the Milky Way.”

Watch: What’s the Biggest Star in the Universe?

SDC 335.579-0.292 had already been identified with NASA’s Spitzer and ESA’s Herschel space telescopes, but it took the unique sensitivity of ALMA to observe in detail both the amount of dust present and the motion of the gas within the dark cloud, revealing the massive embryonic star inside.

“Not only are these stars rare, but their birth is extremely rapid and their childhood is short, so finding such a massive object so early in its evolution is a spectacular result.”

– Team member Gary Fuller, University of Manchester, UK

The image above, a combination of data acquired by both Spitzer and ALMA (see below for separate images) shows tendrils of infalling material flowing toward a bright center where the huge protostar is located. These observations show how such massive stars form — through a steady collapse of the entire cloud, rather than through fragmented clustering.

SDC 335.579-0.292 seen in different wavelengths of light.
SDC 335.579-0.292 seen in different wavelengths of light.

“Even though we already believed that the region was a good candidate for being a massive star-forming cloud, we were not expecting to find such a massive embryonic star at its center,” said Peretto. “This object is expected to form a star that is up to 100 times more massive than the Sun. Only about one in ten thousand of all the stars in the Milky Way reach that kind of mass!”

(Although, with at least 200 billion stars in the galaxy, that means there are still 20 million such giants roaming around out there!)

Read more on the ESO news release here.

Image credits: ALMA (ESO/NAOJ/NRAO)/NASA/JPL-Caltech/GLIMPSE

New Desktop Image Alert: The Moon Over Earth

hgdfhfhghdhhfhd

If you’re like me, you don’t change your computer’s desktop background nearly often enough… especially not considering all the fantastic space images that get released on an almost daily basis. But this picture, shared a couple of weeks ago by NASA’s Marshall Space Flight Center on their Flickr stream, really should inspire you to fix that. (I know it did for me!)

Captured by an Expedition 28 crew member aboard the International Space Station, this beautiful image shows a crescent-lit Moon seen through the upper layers of Earth’s atmosphere.

As it circles the globe, the ISS travels an equivalent distance to the Moon and back in about a day, making an excellent platform for viewing the Earth and its atmosphere. This photo shows the limb of Earth near the bottom transitioning into the orange-colored troposphere, the lowest and most dense portion of the Earth’s atmosphere. The troposphere ends abruptly at the tropopause, which appears in the image as the sharp boundary between the orange- and blue- colored atmosphere. Silvery-blue noctilucent clouds extend far above the Earth’s troposphere.

Expedition 28 began on May 23, 2011, with a crew consisting of Andrey Borisenko, Ron Garan, Alexander Samokutyaev, Sergei Volkov, Mike Fossum, and Satoshi Furukawa.

Image credit: NASA (Source)

 

A Galaxy Grows Fat on Nearby Gas

An artist’s impression showing a galaxy in the process of pulling in cool gas from its surroundings. (ESO/L. Calçada/ESA/AOES Medialab)

If you live in the U.S. you may be enjoying a sultry summer day off in honor of Independence Day, or at least have plans to get together with friends and family at some point to partake in some barbecued goodies and a favorite beverage (or three). And as you saunter around the picnic table scooping up platefuls of potato salad, cole slaw, and deviled eggs, you can also draw a correlation between your own steady accumulation of mayonnaise-marinated mass and a distant hungry galaxy located over 11 billion light-years away.

Astronomers have always suspected that galaxies grow by pulling in material from their surroundings, but this process has proved very difficult to observe directly. Now, ESO’s Very Large Telescope has been used to study a very rare alignment between a distant galaxy and an even more distant quasar — the extremely bright center of a galaxy powered by a supermassive black hole. The light from the quasar passes through the material around the foreground galaxy before reaching Earth, making it possible to explore in detail the properties of the in-falling gas and giving the best view so far of a galaxy in the act of feeding.

“This kind of alignment is very rare and it has allowed us to make unique observations,” said Nicolas Bouché of the Research Institute in Astrophysics and Planetology (IRAP) in Toulouse, France, lead author of the new paper. “We were able to use ESO’s Very Large Telescope to peer at both the galaxy itself and its surrounding gas. This meant we could attack an important problem in galaxy formation: how do galaxies grow and feed star formation?”

A beam from the Laser Star Guide on one of the VLT's four Unit Telescopes helps to correct the blurring effect of Earth's atmosphere before making observations (ESO/Y. Beletsky)
A beam from the Laser Star Guide on one of the VLT’s four Unit Telescopes helps to correct the blurring effect of Earth’s atmosphere before making observations (ESO/Y. Beletsky)

Galaxies quickly deplete their reservoirs of gas as they create new stars and so must somehow be continuously replenished with fresh gas to keep going. Astronomers suspected that the answer to this problem lay in the collection of cool gas from the surroundings by the gravitational pull of the galaxy. In this scenario, a galaxy drags gas inwards which then circles around it, rotating with it before falling in.

Although some evidence of such accretion had been observed in galaxies before, the motion of the gas and its other properties had not been fully explored up to now.

Astronomers have already found evidence of material around galaxies in the early Universe, but this is the first time that they have been able to show clearly that the material is moving inwards rather than outwards, and also to determine the composition of this fresh fuel for future generations of stars. And in this particular instance, without the quasar’s light to act as a probe the surrounding gas would be undetectable.

“In this case we were lucky that the quasar happened to be in just the right place for its light to pass through the infalling gas. The next generation of extremely large telescopes will enable studies with multiple sightlines per galaxy and provide a much more complete view,” concluded co-author Crystal Martin of the University of California Santa Barbara.

This research was presented in a paper entitled “Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3”, to appear in the July 5, 2013 issue of the journal Science.

Source: ESO news release

Russian Rocket Fails During Launch, Explodes After Liftoff

Explosion of a Progress-M rocket on July 2, 2013

At 2:38 UTC Tuesday morning (local time) a Russian Proton-M heavy lift rocket carrying three GLONASS navigation/positioning satellites exploded shortly after lifting off from the pad at Baikonur Cosmodrome. The event was captured on a live Russian news feed, seen above.

No word yet on whether there were any injuries or not according to NASASpaceflight.com, no casualties have been reported but the Proton rocket debris may have landed near another pad used by ILS (International Launch Services) — a U.S./Russian joint venture for commercial launches.

According to Anatoly Zak at  RussianSpaceWeb.com, “since the emergency cutoff of the first stage engines is blocked during the first 42 seconds of the flight to ensure that the rocket clears the launch complex, the vehicle continued flying with its propulsion system firing practically until the impact on the ground.”

Reminder: space travel is (still) hard.

Update: Watch another view of the failed launch below:

The shockwave at 1:01… yikes.

It’s Cassini in Motion: Watch the First Teaser for “In Saturn’s Rings”

Saturn's rings. Credit: NASA/JPL/Space Science Institute.
Saturn's rings. Credit: NASA/JPL/Space Science Institute.

It’s been 9 years (to the day, in fact) since the Cassini spacecraft first entered orbit around Saturn and ever since it has been sending a steady stream of incredible images from the ringed planet back to Earth, bridging the 900-million-mile distance with countless wonders and groundbreaking discoveries. The views Cassini has provided us of Saturn and its family of moons are unparalleled and unprecedented, but something one could remain in want of is the element of motion: Cassini’s cameras are designed to capture still images, not true video, and thus most of our best views of Saturn are static shots.

That’s where filmmaker Stephen van Vuuren and his current project, “In Saturn’s Rings,” comes in.

An award-winning filmmaker, musician, and photographer (and self-confessed übergeek) from South Africa, Stephen van Vuuren has spent the last several years compiling hundreds of thousands of images acquired by Cassini — as well as other exploration spacecraft — into a single high-definition feature film, one that will allow viewers to experience the beauty, grandeur, and reality of the Solar System like never before.

“In Saturn’s Rings” (formerly “Outside In”) is slated for release in IMAX theaters, planetariums, and museums in the spring of 2014 — and the first official teaser trailer is below, released today. Check it out (or visit the YouTube page to watch in original, eye-melting 4k high-resolution):

“‘In Saturn’s Rings’ is a film that’s both personal and universal, experimental and sincere, science and spirit , non-narrative and documentary. The goal is to use large screen imagery, synchronized to powerful but moving music, to create an experience for those who see it, hear it and feel it.”

– “In Saturn’s Rings” official website

This is one film that I’ll be eagerly looking forward to over the next few months, without a doubt!

Read more on van Vuuren’s official film site here, and check out a full minute of film footage (originally released in 2011) on Vimeo here. Also, you can keep up with updates on the movie’s Twitter and Facebook pages.

Zodiacal Light Over ESO’s La Silla Observatory

Moonlight and zodiacal light lights up the skies over ESO's La Silla observatory. (Credit: Alan Fitzsimmons/ESO)

We don’t put much stock in astrology or horoscopes here at Universe Today, but there’s one thing related to the zodiac that’s all science and no superstition: zodiacal light, captured here in a gorgeous photo by astronomer Alan Fitzsimmons above ESO’s La Silla Observatory.

Created by sunlight reflected off fine particles of dust concentrated inside the plane of the Solar System, zodiacal light appears as a diffuse, hazy band of light visible in dark skies stretching away from a recently-set Sun (or before the Sun is about to rise).

The Moon is located just outside the frame of this picture, bathing the observatory in an eerie light that is reflected off the clouds below.

The La Silla Observatory is located at the outskirts of the Chilean Atacama Desert at an altitude of 2400 meters (7,900 feet). Like other observatories in this area, La Silla is located far from sources of light pollution and, like ESO’s Paranal Observatory, it has some of the darkest night skies on the Earth.

The dome in the foreground, just to the right, is the Swiss 1.2-metre Leonhard Euler Telescope named in honor of the famous Swiss mathematician Leonhard Euler (1707–83).

Image credit: A. Fitzsimmons/ESO