Solar Cycle #24: On Track to be the Weakest in 100 Years

Projected vs observed sunspot numbers for solar cycles #23 & #24. (Credit: Hathaway/NASA/MSFC).

Our nearest star has exhibited some schizophrenic behavior thus far for 2013.

By all rights, we should be in the throes of a solar maximum, an 11-year peak where the Sun is at its most active and dappled with sunspots.

Thus far though, Solar Cycle #24 has been off to a sputtering start, and researchers that attended the meeting of the American Astronomical Society’s Solar Physics Division earlier this month are divided as to why.“Not only is this the smallest cycle we’ve seen in the space age, it’s the smallest cycle in 100 years,” NASA/Marshall Space Flight Center research scientist David Hathaway said during a recent press teleconference conducted by the Marshall Space Flight Center.

Cycle #23 gave way to a profound minimum that saw a spotless Sol on 260 out of 365 days (71%!) in 2009. Then, #Cycle 24 got off to a late start, about a full year overdue — we should have seen a solar maximum in 2012, and now that’s on track for the late 2013 to early 2014 time frame. For solar observers, both amateur, professional and automated, it seems as if the Sun exhibits a “split-personality” this year, displaying its active Cycle #24-self one week, only to sink back into a blank despondency the next.

This new cycle has also been asymmetrical as well. One hallmark heralding the start of a new cycle is the appearance of sunspots at higher solar latitudes on the disk of the Sun. These move progressively toward the Sun’s equatorial regions as the cycle progresses, and can be mapped out in what’s known as a Spörer’s Law.

The sunspot number "butterfly" graph, illustrating Spörer's Law that susnpots gradually migrate towards the equator of the Sun as the solar cycle progresses. (Credit: NASA/MSFC).
The sunspot number “butterfly” graph, illustrating Spörer’s Law that susnpots gradually migrate towards the equator of the Sun as the solar cycle progresses. (Credit: NASA/MSFC).

But the northern hemisphere of the Sun has been much more active since 2006, with the southern hemisphere experiencing a lag in activity. “Usually this asymmetry lasts a year or so, and then the hemispheres synchronize,” said Giuliana de Toma of the High Altitude Observatory.

So far, several theories have been put forth as to why our tempestuous star seems to be straying from its usual self. Along with the standard 11-year cycle, it’s thought that there may be a longer, 100 year trend of activity and subsidence known as the Gleissberg Cycle.

The Sun is a giant ball of gas, rotating faster (25 days) at the equator than at the poles, which rotate once every 34.5 days. This dissonance sets up a massive amount of torsion, causing the magnetic field lines to stretch and snap, releasing massive amounts of energy. The Sun also changes polarity with every sunspot cycle, another indication that a new cycle is underway.

But predictions have run the gamut for Cycle #24. Recently, solar scientists have projected a twin peaked solar maximum for later this year, and thus far, Sol seems to be following this modified trend.  Initial predictions by scientists at the start of Cycle #24 was for the sunspot number to have reached 90 by August 2013; but here it is the end of July, and we’re sitting at 68, and it seems that we’ll round out the northern hemisphere Summer at a sunspot number of 70 or so.

Some researchers predict that the following sunspot Cycle #25 may even be absent all together.

“If this trend continues, there will be almost no spots in Cycle 25,” Noted Matthew Penn of the National Solar Observatory, hinting that we may be on the edge of another Maunder Minimum.

Looking back over solar cycles for the past 500 years. (Credit: D. Hathaway/NASA/MSFC).
Looking back over solar cycles for the past 500 years. (Credit: D. Hathaway/NASA/MSFC).

The Maunder Minimum was a period from 1645 to 1715 where almost no sunspots were seen. This span of time corresponded to a medieval period known as the Little Ice Age. During this era, the Thames River in London froze, making Christmas “Frost Fairs” possible on the ice covered river. Several villages in the Swiss Alps were also consumed by encroaching glaciers, and the Viking colony established in Greenland perished. The name for the period comes from Edward Maunder, who first noted the minimum in papers published in the 1890s. The term came into modern vogue after John Eddy published a paper on the subject in the journal of Science in 1976. Keep in mind, the data from the period covered by the Maunder Minimum is far from complete— Galileo had only started sketching sunspots via projection only a few decades prior to the start of the Maunder Minimum. But tellingly, there was a span of time in the early 18th century when many researchers supposed that sunspots were a myth! They were really THAT infrequent…

Just what role a pause in the solar cycle might play in the climate change debate remains to be seen. Perhaps, humanity is getting a brief (and lucky) reprieve, a chance to get serious about controlling our own destiny and doing something about anthropogenic climate-forcing. On a more ominous note, however, an extended cooling phase may give us reason to stall on preparing for the inevitable while giving ammunition to deniers, who like to cite natural trends exclusively.

Down but not out? Sol looking more like its solar max-self earlier this month on July 8th. (Photo by author).
Down but not out? Sol looking more like its solar max-self earlier this month on July 8th. (Photo by author).

Whatever occurs, we now have an unprecedented fleet of solar monitoring spacecraft on hand to watch the solar drama unfold. STEREO A & B afford us a 360 degree view of the Sun. SOHO has now monitored the Sun for the equivalent of more than one solar cycle, and NASA’s Solar Dynamics Observatory has joined it in its scrutiny. NASA’s Interface Region Imaging Spectrograph (IRIS)  just launched earlier this year, and has already begun returning views of the solar atmosphere in unprecedented detail. Even spacecraft such as MESSENGER orbiting Mercury can give us vital data from other vantage points in the solar system.

Cycle #24 may be a lackluster performer, but I’ll bet the Sun has a few surprises in store. You can always get a freak cloud burst, even in the middle of a drought. Plus, we’re headed towards northern hemisphere Fall, a time when aurora activity traditionally picks up.

Be sure to keep a (safely filtered) eye on ol’ Sol— it may be the case over these next few years that “no news is big news!”

 

 

A Weird West Tale and the Hunt for Planet Vulcan

A hypothetical Vulcanoid asteroid in orbit about the Sun. ( Artist's impression in the Public Domain).

One of the most fascinating stories in modern astronomy involves the pursuit of a world that never was.

Tomorrow marks the 135th anniversary of the total solar eclipse of July 29th, 1878. With a maximum totality of 3 minutes 11 seconds, this eclipse traced a path across western Canada and the United States from the territory of Montana to Louisiana.

A curious band of astronomers also lay in wait along the path of totality, searching for an elusive world known as Vulcan.

Long before Star Trek or Mr. Spock, Vulcan was a hypothetical world thought to inhabit the region between the planet Mercury and the Sun.

The tale of Vulcan is the story of the birth of modern predictive astronomy. Vulcan was a reality to 18th century astronomers- it can be seen and the astronomy textbooks and contemporary art and culture of the day. Urbain J.J. Le Verrier proposed the existence of the planet in 1859 to explain the anomalous precession of the perihelion of the planet Mercury. Le Verrier was a voice to be taken seriously — he had performed a similar feat of calculation to lead observers to the discovery of the planet Neptune from the Berlin Observatory on the night of September 23, 1846. Almost overnight, Le Verrier had single-handedly boosted astronomy into the realm of a science with real predictive power.

An 1863 photograph of Lescarbault's country house observatory. (Wikimedia Commons image in the public domain).
An 1863 photograph of Lescarbault’s country house observatory. (Wikimedia Commons image in the public domain).

The idea of Vulcan gained traction when a French doctor and amateur astronomer Edmond Lescarbault claimed to have seen the tiny world transit the Sun while viewing it through his 95 millimetre refractor on the sunny afternoon of March 26th, 1859. Keep in mind, this was an era when solar observations were carried out via the hazardous method of viewing the Sun through a smoked or oil-filled filter, or the via safer technique of projecting the disk and sketching it onto a piece of paper.

A early right-angle solar viewer from the South Carolina State Museum in Columbia, South Carolina. Note the vent holes in the back to disappate heat and word SUN stenciled on the side! (Photo by author).
A early right-angle solar viewer from Robert Ariail collection at the South Carolina State Museum in Columbia, South Carolina. Note the vent holes in the back to dissipate heat, and word SUN stenciled on the side! (Photo by author).

A visiting Le Verrier was sufficiently impressed by Lescarbault’s observation, and went as far as to calculate and publish orbital tables for Vulcan. Soon, astronomers everywhere were “seeing dots” pass in front of the Sun. Astronomer F. A. R. Russell spotted an object transiting the Sun from London on January, 29th, 1860. Sightings continued over the decades, including a claim by an observer based near Peckeloh Germany to have witnessed a transit of Vulcan on April 4th, 1876.

Incidentally, we are not immune to this effect of “contagious observations” even today — for example, when Comet Holmes brightened to naked eye visibility in October 2007, spurious reports of other comets brightening flooded message boards, and a similar psychological phenomena occurred after amateur astronomer Anthony Wesley recorded an impact on Jupiter in 2010. Though the event that triggered the initial observation was real, the claims of impacts on other bodies in the solar system that soon followed turned out to be bogus.

Possible "target zone" for the existence of Vulcan, and later Vulcanoid asteroids.
Possible “target zone” for the existence of Vulcan, and later Vulcanoid asteroids. (Graphic in the public domain).

Still, reports of the planet Vulcan were substantial enough for astronomers to mount an expedition to the territory of Wyoming in an attempt to catch dim Vulcan near the Sun during the brief moments of totality. Participants include Simon Newcomb of the Naval Observatory, James Craig Watson and Lewis Swift. Inventor Thomas Edison was also on hand, stationed at Rawlins, Wyoming hoping to test his new-fangled invention known as a tasimeter to measure the heat of the solar corona.

Conditions were austere, to say the least. Although the teams endured dust storms that nearly threatened to cut their expeditions short, the morning of the 29th dawned, as one newspaper reported, “as slick and clean as a Cheyenne free-lunch table.” Totality began just after 4 PM local, as observers near the tiny town of Separation, Wyoming swung their instruments into action.

Such a quest is difficult under the best of circumstances. Observers had to sweep the area within 3 degrees of the Sun (six times the diameter of a Full Moon) quickly during the fleeting moments of totality with their narrow field refractors, looking for a +4th magnitude star or fainter among the established star fields.

Map of the path of the total solar eclipse of July 29th, 1878. (Credit: Fred Espenak/NASA/GSFC).
Map of the path of the total solar eclipse of July 29th, 1878. (Credit: Fred Espenak/NASA/GSFC).

In the end, the expedition was both a success and a failure. Watson & Swift both claimed to have identified a +5th magnitude object similar in brightness to the nearby star Theta Cancri. Astronomer Christian Heinrich Friedrich Peters later cast doubt on the sighting and the whole Vulcan affair, claiming  that “I refuse to go on a wild goose chase after Le Verrier’s mythical birds!”

And speaking of birds, Edison ran into another eclipse phenomenon while testing his device, when chickens, fooled by the approaching false dusk came home to roost at the onset of totality!

Vulcan search map for the Smithsonian Obervatory's 1900 eclipse expedition. (From the collection of Michael Zeiler @EclipseMaps, used with permission).
Vulcan search map for the Smithsonian Observatory’s 1900 eclipse expedition. (From the collection of Michael Zeiler @EclipseMaps, used with permission).

But such is the life of an eclipse-chaser. Albert Einstein’s general theory of relativity explained the precession of Mercury’s orbit in 1916 and did away with a need for Vulcan entirely.

But is the idea of intra-Mercurial worldlets down for the count?

The search strategy for NASA's high-altitude mission to hunt for Vulcanoids in 2002. (Credit: NASA/Dryden).
The search strategy for NASA’s high-altitude mission to hunt for Vulcanoids in 2002. (Credit: NASA/Dryden).

Amazingly, the quest for objects inside Mercury’s orbit goes on today, and the jury is still out. Dubbed Vulcanoids, modern day hunters still probe the inner solar system for tiny asteroids that may inhabit the region close to the Sun. In 2002, NASA conducted a series of high altitude flights out of the Dryden Flight Research Center at Edwards Air Force Base, California, sweeping the sky near the Sun for Vulcanoids at dawn and dusk. Now, there’s a job to be envious of — an F-18 flying astronomer!

One of NASA's fleet of high-performance F-18 aircraft. (Credit: NASA).
One of NASA’s fleet of high-performance F-18 aircraft. (Credit: NASA).

NASA’s MESSENGER spacecraft was also on the lookout for Vulcanoids on its six year trek through the inner solar system prior to orbital insertion on March 18th, 2011.

Thus far, these hunts have turned up naught. But one of the most fascinating quests is still ongoing and being carried out by veteran eclipse-chaser Landon Curt Noll.

Mr. Noll last conducted a sweep for Vulcanoids during total phases of the long duration total solar eclipse of July 22nd, 2009 across the Far East. He uses a deep sky imaging system, taking pictures in the near-IR to accomplish this search. Using this near-IR imaging technique during a total solar eclipse requires a stable platform, and thus performing this feat at sea or via an airborne platform is out. Such a rig has been successful in catching the extremely thin crescent Moon at the moment it reaches New phase.

Libya
Mr. Noll explains the aspects of an eclipse during a 2006 expedition to Libya. (Coutesy of Landon Curt Noll, used with permission).

To date, no convincing Vulcanoid candidates have been found.  Mr. Noll also notes  that the European Space Agency/NASA’s joint Solar Heliospheric Observatory (SOHO) spacecraft has, for all intents and purposes, eliminated the possibility of Vulcanoids brighter than +8th magnitude near the Sun. Modern searches during eclipses conducted in this fashion scan the sky between wavelengths of 780 to 1100 nanometres down to magnitude +13.5. Mr. Noll told Universe Today that “Our improved orbital models show that objects as small as 50m in diameter could reside in a zone 0.08 A.U. to 0.18 AU (1.2 to 2.7 million kilometers) from the Sun.” He also stated that, “there is plenty of ‘room’ for (Vulcanoids) in the 50 metre to 20 kilometre range.”

Vulcanoid search diagram
The modern day Vulcanoid search strategy. (Diagram courtesy of Landon Curt Noll, used with permission).

Mr. Noll plans to resume his hunt during the August 21st, 2017 total solar eclipse spanning the continental United States. Totality for this eclipse will have a maximum duration of 2 minutes and 40 seconds. Circumstances during the next solar eclipse (a hybrid annular-total crossing central Africa on November 3rd, 2013) will be much more difficult, with a max totality located out to sea of only 1 minute and 40 seconds.

Libyan 2
Mr. Noll talks with a local reporter during the 2006 total solar eclipse expedition to Libya. (Photograph courtesy of Landon Curt Noll, used with permission).

Still, we think it’s amazing that the quest for Vulcan (or at least Vulcanoids) is alive and well and being spearheaded by adventurous and innovative amateur astronomers. In the words of Vulcan’s native fictional son, may it “Live Long & Prosper!”

–          Read more about Edison vs. the Chickens & the eclipse of 1878 here.

–          For a fascinating read on the subject, check out In Search for planet Vulcan.

–          Read more of Mr. Noll’s fascinating search for Vulcanoids here.

Watch for the Delta Aquarid Meteors This Weekend

The Southern Delta Aquarid radiant, looking southeast at 2AM local from latitude 30 degrees north on the morning of July 30th. (Created by the author in Starry Night).

The meteor shower drought ends this weekend.

The northern summer hemisphere meteor season is almost upon us. In a few weeks’ time, the Perseids — the “Old Faithful” of meteor showers — will be gracing night skies worldwide.

But the Perseids have an “opening act”- a meteor shower optimized for southern hemisphere skies known as the Delta Aquarids.

This year offers a mixed bag for this shower. The Delta Aquarids are expected to peak on July 30th and we should start seeing some action from this shower starting this weekend.

The Moon, however, also reaches Last Quarter phase the day before the expected peak of the Delta Aquarids this year on July 29th at 1:43PM EDT/17:43 Universal Time (UT). This will diminish the visibility of all but the brightest meteors in the early morning hours of July 30th.

A cluster of meteor shower radiants also lies nearby. The Eta Aquarids emanate from a point near the asterism known as the “Water Jar” in the constellation Aquarius around May 5th. Another nearby but weaker shower known as the Alpha Capricornids are also currently active, with a zenithal hourly rate (ZHR) approaching the average hourly sporadic rate of 5. And speaking of which, the antihelion point, another source of sporadic meteors, is nearby in late July as well in eastern Capricornus.

The Delta Aquarids are caused by remnants of Comet 96P/Machholz colliding with Earth’s atmosphere. The short period comet was only discovered in 1986 by amateur astronomer Donald Machholz. Prior to this, the source of the Delta Aquarids was a mystery.

The Delta Aquarids have a moderate atmospheric entry velocity (for a meteor shower, that is) around an average of 41 kilometres a second. They also have one of the lowest r values of a major shower at 3.2, meaning that they produce a disproportionately higher number of fainter meteors, although occasional brighter fireballs are also associated with this shower.

Image of an early confirmed Delta Aquarid captured by the UK Fireball Network (@ on Twitter) captured by their Ash Vale North camera.
Image of an early confirmed Delta Aquarid by the UK Meteor Network (@UKMeteorNetwork on Twitter) captured by their Ash Vale North camera on July 17th, 2013. (Credit: Richard Kacerek & United Kingdom Meteor Observation Network, used with permission).

The Delta Aquarids are also one the very few showers with a southern hemisphere radiant. It’s somewhat of a mystery as to why meteor showers seem to favor the northern hemisphere. Of the 18 major annual meteor showers, only four occur below the ecliptic plane and three (the Alpha Capricornids, and the Eta and Delta Aquarids) approach the Earth from south of the equator. A statistical fluke, or just the product of the current epoch?

In fact, the Delta Aquarids have the most southern radiant of any major shower, with a radiant located just north of the bright star Fomalhaut in the constellation Piscis Austrinus near Right Ascension 339 degrees and Declination -17 degrees.  Researchers have even broken this shower down into two distinct northern and southern radiants, although it’s the southern radiant that is the more active during the July season.

Together, this loose grouping of meteor shower radiants in the vicinity is known as the Aquarid-Capricornid complex.  The Delta Aquarids are active from July 14th to August 18th, and unlike most showers, have a very broad peak. This is why you’ll see sites often quote the maximum for the shower at anywhere from July 28th to the 31st. In fact, you may just catch a stray Delta Aquarid while on vigil for the Perseids in a few weeks!

The shower was first identified by astronomer G.L. Tupman, who plotted 65 meteors associated with the stream in 1870. Observations of the Delta Aquarids were an off-and-on affair throughout the early 20th century, with many charts erroneously listing them as the “Beta Piscids”. The separate northern and southern radiants weren’t even untangled until 1950. The advent of radio astronomy made more refined observations of the Delta Aquarids possible. In 1949, Canadian astronomer D.W.R. McKinley based out of Ottawa, Canada identified both streams and pinned down the 41 km per second velocity that’s still quoted for the shower today.

Further radio studies of the shower were carried out at Jodrell Bank in the early 1950’s, and the shower gave strong returns in the early 1970’s for southern hemisphere observers even with the Moon above the horizon, with ZHRs approaching 40. The best return for the Southern Delta Aquarids in recent times is listed by the International Meteor Organization as a ZHR of about 40 on the morning of July 28th, 2009.

A study of the Delta Aquarids in 1963 by Fred Whipple and S.E. Hamid reveal striking similarities between the Delta Aquarids and the January Quadrantids & daytime Arietid stream active in June. They note that the orbital parameters of the streams were similar about 1,400 years ago, and the paths are thought to have diverged due to perturbations from the planet Jupiter.

Observing the Delta Aquarids can serve as a great “dry run” for the Perseids in a few weeks. You don’t need any specialized gear, simply find a dark site, block the Moon behind a building or hill, and watch.

Photographing meteors is similar to doing long exposures of star trails. Simply aim your tripod mounted DSLR camera at a section of sky and take a series of time exposures about 1-3 minutes long to reveal meteor streaks. Images of Delta Aquarids seem elusive, almost to the point of being mythical. An internet search turns up more blurry pictures of guys in ape suits purporting to be Bigfoot than Delta Aquarid images… perhaps we can document the “legendary Delta Aquarids” this year?

– Read more of the fascinating history of the Delta Aquarids here.

– Seen a meteor? Be sure to tweet it to #Meteorwatch.

– The IMO wants your meteor counts and observations!

 

Near-Earth Asteroid 2003 DZ15 to Pass Earth Monday Night

The currnet orbital position of asteroid 2003 DZ15. (Created by the author using JPL's Small-Body Database Browser).

The Earth will get another close shave Monday, when the 152 metre asteroid 2003 DZ15 makes a pass by our fair planet on the night of July 29th/30th at 3.5 million kilometres distant.  This is over 9 times the Earth-Moon distance and poses no threat to our world.

This is much smaller than 2.75 kilometre 1998 QE2, which sailed by (bad pun intended) our fair world at 5.8 million kilometres distant on May 31st, 2013. The Virtual Telescope Project will be presenting a free online event to monitor the passage of NEA 2003 DZ15 starting Monday night July 29th at 22:00 UT/6:00 PM EDT.

As of this writing, no efforts are currently known of by professional observatories to monitor its passage via radar, though Arecibo may attempt to ping 2003 DZ15 on Thursday.

An Apollo asteroid, 2003 DZ15 was confirmed by the Lowell Observatory and NEAT’s Mount Palomar telescope upon discovery in February 2003. This is its closest approach to the Earth for this century, although it will make a pass nearly as close to the Earth in 2057 on February 12th.

With a perihelion (closest approach to the Sun of) 0.63 A.U.s, 2003 DZ15 can also make close passes by the planet Venus as well, which it last did in 1988 and will do again on 2056.

Closest approach of 2003 DZ15 is set for 00:37 UT July 30th, or 8:37 PM EDT the evening of Monday, July 29th. Although it will only reach about +14th magnitude (based on an absolute magnitude of +22.2), and hence be out of range to all but the very largest Earthbound backyard telescopes, it’ll be fun to watch as it slowly drifts across the starry background live on the internet. Our own, “is worth tracking down from our own backyard” limit is an asteroid passing closer than our Moon, or is farther, but is brighter than +10th magnitude… such are the limitations of humid Florida skies!

Of course, an asteroid the size of 2003 DZ15 would spell a bad day for the Earth, were it headed our way. At an estimated 152 metres in size, 2003 DZ is over seven times the size of the Chelyabinsk meteor that exploded over Russia the day after Valentine ’s on February 15th of this year. While not in the class of an Extinction Level event, 2003 DZ15 would be in 60 to 190 metre size of range of the Tunguska impactor that struck Siberia in 1908.

All enough for us to take notice as 2003 DZ15 whizzes by, at a safe distance this time. NASA plans to launch a crewed mission sometime over the next decade to study an asteroid, and  perhaps retrieve a small NEA and place it in orbit about Earth’s Moon. Such efforts may go a long way in understanding and dealing with such potentially hazardous space rocks, when and if the “big one” is discovered heading our way. We’re the Earth’s first line of defense- and unlike the ill-fated dinosaurs, WE’VE got a space program and can do something about it!

Space Debris: A Tale of Two Satellites

Artist's concept of a GOES spacecraft in orbit. (Credit: NOAA.gov).

It’s sometimes tough being a satellite in Earth orbit these days.

An interesting commentary came our way recently via NASA’s Orbital Debris Program Office’s Orbital Debris Quarterly News. The article, entitled High-Speed Particle Impacts Suspected in Two Spacecraft Anomalies, highlights a growing trend in the local space environment.

The tale begins with GOES 13 located in geostationary orbit over longitude 75° West. Launched on May 24th, 2006 atop a Delta IV rocket, GOES 13 is an integral part of the U.S. National Oceanic and Atmospheric Administration (NOAA’s) Geostationary Operational Environmental Satellite network.

The problems began when GOES-13 began to suffer an “attitude disturbance of unknown origin” on May 22nd of this year, causing it to drift about two degrees per hour off of its required nadir (the opposite of zenith) pointing.

The anomaly was similar to a problem encountered by the NOAA 17 spacecraft on November 20th, 2005. At the time, the anomaly was suspected to be due to a micrometeoroid impact. The Leonid meteors, which peak right around the middle of November, were a chief suspect. However, NOAA 17 suffered a second failure 18 days later, which was later traced down to a hydrazine leak from its errant thrusters.

GOES-13 has weathered hard times before.  Back in December of 2006, GOES-13’s Solar X-Ray Imager suffered damage after being struck by a solar flare shortly after initial deployment.   GOES-13 also began returning degraded imagery in September 2012, forcing it into backup status for Hurricane Sandy.

GOES-13 was restored to functionality last month. Current thinking is that the satellite was struck by a micrometeorite. No major meteor showers were active at the time.

Loss of a GOES satellite would place a definite strain on our weather monitoring and Earth observing capability. Begun with the launch of GOES-1 in 1975, currently six GOES satellites are in operation, including one used to relay data for PeaceSat (GOES-7) and one used as a communications relay for the South Pole research station (GOES-3).

The GOES program cost NOAA billions in cost overruns to execute. The next GOES launch is GOES-R scheduled in 2015.

But the universe seems to love coincidences.

NEE-01 Pegaso before deployment. (Credit:
NEE-01 Pegaso before deployment. (Credit: Wikimedia Commons image in the Public Domain).

Less than 26 hours after the GOES 13 anomaly, Ecuador’s first satellite, NEE-01 Pegaso began to have difficulties keeping a stable attitude. The event happened shortly after passage near an old Soviet rocket booster (NORAD designation 1986-058B) which launched Kosmos 1768 on August 2nd, 1986. The U.S. Joint Space Operations Center had warned the fledgling Ecuadorian Space Agency that conjunction was imminent, but of course, there’s not much that could’ve been done to save the tiny CubeSat.

Although the main mass passed Pegaso at a safe distance, current thinking is that the discarded booster may have left a cloud of debris in its wake. Researchers have tracked small “debris clouds” around objects it orbit before- the collision of Iridium 33 and the defunct Kosmos 2251 on February 10th, 2009 left a ring of debris in its wake, and the Chinese anti-satellite test carried out on January 11th, 2007 showered low-Earth orbit with debris for years to come.

The loss represents a blow to Ecuador and their first bid to become a space-faring nation. Launched less than a month prior atop a Long March 2D rocket, Pegaso was a small 10 centimetre nanosatellite equipped with solar panels and dual infrared and visible Earth imaging systems.

A translation from the Ecuadorian Space Agencies site states that;

 “The NEE-01 survived the crash and remains in orbit; however it has entered uncontrolled rotation due to the event.

 Due to this rotation, (the satellite) cannot point its antenna correctly and stably to the Earth station and although still transmitting and running, the signal cannot be decoded. The Ecuadorian Civilian Space Agency is working tirelessly to stabilize the NEE-01 and recover the use of their signal.

The PEGASUS aired for 7 days your signal to the world via EarthCam, millions could see the Earth seen from space in real time, many for the first time, the files in those 7 days have been published after transmission.”

Ecuador plans to launch another CubeSat, NEE 02 Krysaor later in 2013. A carrier has not yet been named.

While both events suffered by the GOES-13 and NEE-01 Pegaso satellites were unrelated, they underscore problems with space junk and space environmental hazards that are occurring with a higher frequency.

Gabbard diagram displaying a sample disintegration of a Long March 4 booster in 2000. (Credit: the NASA Orbital Debris Office).
Gabbard diagram displaying a sample disintegration of a Long March 4 booster in 2000. (Credit: the NASA Orbital Debris Office).

Such is the modern hazardous environment of low Earth orbit that new satellites must face. With a growing amount of debris, impact threats are becoming more common. The International Space Station must perform frequent debris avoidance maneuvers to avoid hazards, and more than once, the crew has waited out a pass in their Soyuz escape modules should immediate evacuation become necessary.  Punctures from micro-meteoroids or space junk have even been seen recently on the ISS solar panel arrays.

Plans are on the drawing board to deal with space junk, involving everything from “space nets” to lasers and even more exotic ideas. Probably the most immediate solution that can be implemented is to assure new payloads have a way to “self-terminate” via de-orbit at the end of their life span.  Solar sail technologies, such as NanoSailD2 launched in 2010 have already demonstrated this capability.

Expect reentries also pick up as we approach the peak of solar cycle #24 at the end of 2013 and the beginning of 2014. Increased solar activity energizes the upper atmosphere and creates increased drag on low Earth satellites.

It’s a brave new world “up there,” and hazards, both natural and man-made, are something that space faring nations will have to come to terms with.

-Read and subscribe to the latest edition of NASA’s Orbital Debris Quarterly News for free here.

 

Super-Moon Monday: The 3rd (& Final?) Act

The gibbous Moon rising rising over the Andes Mountains in Chile. (Credit: @WladimirPulgarG/Flickr).

“Once more into the breach, my dear friends…”

Such a quip may be deemed appropriate as we endured the media onslaught this past weekend for the third and final perigee Full Moon of 2013.

Tonight, on Monday, July 22nd, the Moon reaches Full at 18:15 Universal Time (UT)/4:15 PM EDT. This is only 21.9 hours after reaching perigee, or the closest point in its orbit at 358,401 kilometres from the Earth on the Sunday evening at 20:28 UT. Continue reading “Super-Moon Monday: The 3rd (& Final?) Act”

Remembering the Great Meteor Procession of 1860

Painting of The Meteor of 1860 by Hudson River School artist Frederic Church. (Credit: Frederic Church courtesy of Judith Filenbaum Hernstadt).

“Year of meteors! Brooding year!”

 -Walt Whitman

July 20th is a red letter date in space history. Apollo 11, the first crewed landing on the Moon, took place on this day in 1969. Viking 1 also made the first successful landing on Mars, seven years later to the day in 1976.

A remarkable astronomical event also occurred over the northeastern United States 153 years ago today on the night of July 20th, known as the Great Meteor Procession of 1860. And with it came a mystery of poetry, art and astronomy that was only recently solved in 2010.

A meteor procession occurs when an incoming meteor breaks up upon reentry into our atmosphere at an oblique angle. The result can be a spectacular display, leaving a brilliant glowing train in its wake. Unlike early morning meteors that are more frequent and run into the Earth head-on as it plows along in its orbit, evening meteors are rarer and have to approach the Earth from behind. In contrast, these often leave slow and stately trains as they move across the evening sky, struggling to keep up with the Earth.

The Great Meteor Procession of 1860 also became the key to unlock a 19th century puzzle as well. In 2010, researchers from Texas University San Marcos linked the event to the writings of one of the greatest American poets of the day.

Whitman...
Photograph of Walt Whitman taken by Mathew Brady circa 1860 (Library of Congress image in the Public Domain)..

Walt Whitman described a “strange, huge meteor-procession” in a poem entitled “Year of Meteors (1859-60)” published in his landmark work Leaves of Grass.

English professor Marilynn S. Olson and student Ava G. Pope teamed up with Texas state physics professors Russell Doescher & Donald Olsen to publish their findings in the July 2010 issue of Sky & Telescope.

As a seasoned observer, Whitman had touched on the astronomical in his writings before.

The event had previously been attributed over the years to the Great Leonid Storm of 1833, which a young Whitman would’ve witnessed as a teenager working in Brooklyn, New York as a printer’s apprentice.

Researchers noted, however, some problems with this assertion.

The stanza of contention reads;

Nor forget I sing of the wonder, the ship as she swam up my bay,

Well-shaped and stately, the Great Eastern swam up my bay, she was 600 feet long,

Her moving swiftly surrounded by myriads of small craft I forget not to sing;

Nor the comet that came unannounced out of the north flaring in heaven,

Nor the strange huge meteor-procession dazzling and clear shooting over our heads.

(A moment, a moment long, it sail’d its balls of earthly light over our heads,

Then departed, dropt in the night, and was gone.)

In the poem, the sage refers to the arrival of the Prince of Wales in New York City on October 1860. The election of Abraham Lincoln in November of that same year is also referred to earlier in the work.  Whitman almost seems to be making a cosmic connection similar to Shakespeare’s along the lines of “When beggars die, no comets are seen…

Path of the Meteor Procession of 1860 as depicted in the newspapers of the day. (From the collection of Don Olson).
Path of the Meteor Procession of 1860 as depicted in the newspapers of the day. (From the collection of Don Olson).

The “comet that came unannounced” is easily identified as the Great Comet of 1860. Also referred to as Comet 1860 III, this comet was discovered on June 18th of that year and reached +1st magnitude that summer as it headed southward. The late 19th century was rife with “great comets,” and northern hemisphere observers could look forward to another great cometary showing on the very next year in 1861.

The Great Comet of 1861 as drawn by G. Williams on June 30th, 1861. (From Descriptive Astronomy by George Chambers, 1877)
The Great Comet of 1861 as drawn by G. Williams on June 30th, 1861. (From Descriptive Astronomy by George Chambers, 1877)

There are some problems, however with the tenuous connection between the stanza and the Leonids.

The 1833 Leonids were one of the most phenomenal astronomical events ever witnessed, with estimates of thousands of meteors per second being seen up and down the U.S. Eastern Seaboard the morning of November 13th. Whitman himself described the event as producing;

“…myriads in all directions, some with long shining white trains, some falling over each other like falling water…”

Keep in mind, many startled townsfolk assumed their village was on fire on that terrifying morning in 1833, as Leonid bolides cast moving shadows into pre-dawn bedrooms. Churches filled up, as many thought that Judgment Day was nigh. The 1833 Leonids may have even played a factor in sparking many of the religious fundamentalist movements of the 1830s. We witnessed the 1998 Leonids from Kuwait, and can agree that this meteor shower can be a stunning sight at its peak.

But Whitman’s poem describes a singular event, a “meteor-procession” very different from a meteor shower.

Various sources have tried over the years to link the stanza to a return of the Leonids in 1858. A note from Whitman mentions a “meteor-shower, wondrous and dazzling (on the) 12th-13th, 11th month, year 58 of the States…” but keep in mind, “year 1” by this reckoning is 1776.

A lucky break came for researchers via the discovery of a painting by Frederic Church entitled “The Meteor of 1860.” This painting and several newspaper articles of the day, including an entry in the Harpers Weekly, collaborate a bright meteor procession seen across the northeastern U.S. from New York and Pennsylvania across to Wisconsin.

Such a bright meteor entered the atmosphere at a shallow angle, fragmented, and most likely skipped back out into space. Similar meteor processions have been observed over the years over the English Channel on August 18th, 1783 & across the U.S. Eastern Seaboard and Canada on February 9th, 1913.

On August 10th, 1972, a similar bright daylight fireball was recorded over the Grand Tetons in the western United States. Had the Great Meteor Procession of 1860 come in at a slightly sharper angle, it may have triggered a powerful airburst such as witnessed earlier this year over Chelyabinsk, Russia the day after Valentine’s Day.

The 1860 Meteor Procession is a great tale of art, astronomy, and mystery. Kudos to the team of researchers who sleuthed out this astronomical mystery… I wonder how many other unknown stories of historical astronomy are out there, waiting to be told?

Water-Trapped Worlds Possible Around Red Dwarf Stars?

An artist's concept of a rocky world orbiting a red dwarf star. (Credit: NASA/D. Aguilar/Harvard-Smithsonian center for Astrophysics).

Hunters of alien life may have a new and unsuspected niche to scout out.

A recent paper submitted by Associate Professor of Astronomy at Columbia University Kristen Menou to the Astrophysical Journal suggests that tidally-locked planets in close orbits to M-class red dwarf stars may host a very unique hydrological cycle. And in some extreme cases, that cycle may cause a curious dichotomy, with ice collecting on the farside hemisphere of the world, leaving a parched sunward side. Life sprouting up in such conditions would be a challenge, experts say, but it is — enticingly — conceivable.

The possibility of life around red dwarf stars has tantalized researchers before. M-type dwarfs are only 0.075 to 0.6 times as massive as our Sun, and are much more common in the universe. The life span of these miserly stars can be measured in the trillions of years for the low end of the mass scale. For comparison, the Universe has only been around for 13.8 billion years. This is another plus in the game of giving biological life a chance to get underway. And while the habitable zone, or the “Goldilocks” region where water would remain liquid is closer in to a host star for a planet orbiting a red dwarf, it is also more extensive than what we inhabit in our own solar system.

Gliese 581- an example of a potential habitable zone around a red dwarf star contrasted with our own solar system. (Credit: ESO/Henrykus under a Wikimedia Creative Commons Attribution 3.0 Unported license).
Gliese 581- an example of a potential habitable zone around a red dwarf star contrasted with our own solar system. (Credit: ESO/Henrykus under a Wikimedia Creative Commons Attribution 3.0 Unported license).

But such a scenario isn’t without its drawbacks. Red dwarfs are turbulent stars, unleashing radiation storms that would render any nearby planets sterile for life as we know it.

But the model Professor Menou proposes paints a unique and compelling picture. While water on the permanent daytime side of a terrestrial-sized world tidally locked in orbit around an M-dwarf star would quickly evaporate, it would be transported by atmospheric convection and freeze out and accumulate on the permanent nighttime side. This ice would only slowly migrate back to the scorching daytime side and the process would continue.

Could these types of “water-locked worlds” be more common than our own?

The type of tidal locking referred to is the same as has occurred between the Earth and its Moon. The Moon keeps one face eternally turned towards the Earth, completing one revolution every 29.5 day synodic period. We also see this same phenomenon in the satellites for Jupiter and Saturn, and such behavior is most likely common in the realm of exoplanets closely orbiting their host stars.

The study used a dynamical model known as PlanetSimulator created at the University of Hamburg in Germany. The worlds modeled by the author suggest that planets with less than a quarter of the water present in the Earth’s oceans and subject to a similar insolation as Earth from its host star would eventually trap most of their water as ice on the planet’s night side.

Kepler data results suggest that planets in close orbits around M-dwarf stars may be relatively common. The author also notes that such an ice-trap on a water-deficient world orbiting an M-dwarf star would have a profound effect of the climate, dependent on the amount of volatiles available. This includes the possibility of impacts on the process of erosion, weathering, and CO2 cycling which are also crucial to life as we know it on Earth.

Thus far, there is yet to be a true “short list” of discovered exoplanets that may fit the bill. “Any planet in the habitable zone of an M-dwarf star is a potential water-trapped world, though probably not if we know the planet possesses a thick atmosphere.” Professor Menou told Universe Today. “But as more such planets are discovered, there should be many more potential candidates.”

Hard times in harsh climes-an artist's conception of the daytime side of a world orbiting a red dwarf star.
Hard times in harsh climes-an artist’s conception of the daytime side of a world orbiting a red dwarf star. (Credit: NASA/JPL-Caltech).

Being that red dwarf stars are relatively common, could this ice-trap scenario be widespread as well?

“In short, yes,” Professor Menou said to Universe Today. “It also depends on the frequency of planets around such stars (indications suggest it is high) and on the total amount of water at the surface of the planet, which some formation models suggest should indeed be small, which would make this scenario more likely/relevant. It could, in principle, be the norm rather than the exception, although it remains to be seen.”

Of course, life under such conditions would face the unique challenges. The daytime side of the world would be subject to the tempestuous whims of its red dwarf host sun in the form of frequent radiation storms. The cold nighttime side would offer some respite from this, but finding a reliable source of energy on the permanently shrouded night side of such as world would be difficult, perhaps relying on chemosynthesis instead of solar-powered photosynthesis.

On Earth, life situated near “black smokers” or volcanic vents deep on the ocean floor where the Sun never shines do just that. One could also perhaps imagine life that finds a niche in the twilight regions of such a world, feeding on the detritus that circulates by.

Some of the closest red dwarf stars to our own solar system include Promixa Centauri, Barnard’s Star and Luyten’s Flare Star. Barnard’s star has been the target of searches for exoplanets for over a century due to its high proper motion, which have so far turned up naught.

The closest M-dwarf star with exoplanets discovered thus far is Gliese 674, at 14.8 light years distant. The current tally of extrasolar worlds as per the Extrasolar Planet Encyclopedia stands at 919.

This hunt will also provide a challenge for TESS, the Transiting Exoplanet Survey Satellite and the successor to Kepler due to launch in 2017.

Searching for and identifying ice-trapped worlds may prove to be a challenge. Such planets would exhibit a contrast in albedo, or brightness from one hemisphere to the other, but we would always see the ice-covered nighttime side in darkness. Still, exoplanet-hunting scientists have been able to tease out an amazing amount of information from the data available before- perhaps we’ll soon know if such planetary oases exist far inside the “snowline” orbiting around red dwarf stars.

Read the paper on Water-Trapped Worlds at the following link.

Seeing Red: Hunting Herschel’s Garnet Star

Mu Cephei (arrowed) in the constellation Cepheus the King. (Photo & graphic by author).

Quick, what’s the reddest star visible to the naked eye?

Depending on your sky conditions, your answer may well be this week’s astronomical highlight.

Mu Cephei, also known as Herschel’s Garnet Star, is a ruddy gem in the constellation Cepheus near the Cygnus/Lacerta border. A variable star ranging in brightness by a factor of about three-fold from magnitudes 5.0 to 3.7, Mu Cephei is low to the northeast for mid-northern latitude observers in July at dusk, and will be progressively higher as summer wears on. Continue reading “Seeing Red: Hunting Herschel’s Garnet Star”

How to Spot and Track Satellites

A 10 second exposure of a bright pass of the International Space Station. (Photo by Author).

It’s a question we get all the time.

Watch the sky closely in the dawn or dusk hours, and you’ll likely see a moving “star” or two sliding by. These are satellites, or  “artificial moons” placed in low Earth orbit. These shine via reflected sunlight as they pass hundreds of kilometres overhead.

Many folks are unaware that you can see satellites with the naked eye. I always make an effort  to watch for these during public star parties and point them out. A bright pass of the International Space Station if often as memorable as anything that can be seen through the eyepiece. But after this revelation, “the question” soon follows- “What satellite is that?”

Welcome to the wonderful and highly addictive world of satellite tracking. Ground observers have been watching the skies since Sputnik 1 and the first satellite launch in October 1957. Armies of dedicated volunteers even participated in tracking the early launches of the Space Age with Operation Moonwatch.

Depiction of the apparent motion of a typical satellite overhead with respect to the observer. (Graphic created by author).
Depiction of the apparent motion of a typical satellite overhead with respect to the observer. (Graphic created by author).

The Internet has offered a wealth of information for satellite hunters. Every time I write about “how to spot the ISS,” someone amazes me with yet another new tracker App that I hadn’t heard of. One of my favorites is still Heavens-Above. It’s strange to think that we’ve been visiting this outstanding website daily for a decade and a half now. Heavens-Above specializes in satellites, and will show you a quick listing of passes for brighter satellites once configured with your location. A nifty “quick check” for possibly resolving a mystery satellite is their link for “Daily Predictions for brighter satellites” Which will generate a list of visible passes by time.

Screenshot of a typical list of bright satellite passes from Heavens-Above.
Screenshot of a typical list of bright satellite passes from Heavens-Above filtered by brightness, time and location .

Looking at the time, direction, and brightness of a pass is crucial to satellite identification. No equipment is needed to start the hunt for satellites tonight, just a working set of eyes and information. We sometimes use a set of Canon image-stabilized 15x 45 binoculars to hunt for satellites too faint to see with the naked eye. We’ve seen the “Tool Bag” lost during an ISS EVA a few years back, as well as such “living relics” of the early Space Age as Canada’s first satellite Alloutte-1, and the Vanguards (Yes, they’re STILL up there!) using binocs.

A comparision of typical satellite orbits. (Credit
A comparison of typical satellite orbits. (Credit: Cmglee, Geo Swan graphic under a Creative Commons Attribution -Share Alike 3.0 unported license).

The trick to catching fainter satellites such as these is to “ambush” them. You’ll need to note the precise time that the selected satellite is going to pass near a bright star. Clicking on a selected satellite pass in Heavens-Above will give you a local sky chart with a time-marked path. I use a short wave portable AM radio tuned to WWV out of Fort Collins, Colorado for an accurate audible time signal. Just sit back, listen to the radio call out the time, and watch for the satellite to pass through the field of view near the target star.

Another great site for more advanced trackers is CALSky. Like Heavens-Above, CALSky will give you a customized list for satellite passes over your location. One cool extra feature on CALSky is the ability to set alerts for passes of the ISS near bright planets or transiting the Sun or Moon. These are difficult events to capture, but worth it!

The International Space Station transiting the Moon as captured by Mike Weasner from Cassiopeia Observatory in Arizona.
The International Space Station transiting the Moon as captured by Mike Weasner from Cassiopeia Observatory in Arizona.

A great deal of what’s up there is space junk in the form of discarded hardware. Many satellites are on looping elliptical orbits, only visible to the naked eye when they are near perigee. Many satellites are located out at geosynchronous or geostationary orbits 35,786 kilometres distant and are invisible to the naked eye all together. These will often show up as streaks in astrophotos. An area notorious for geosynchronous satellites exists near the direction of M42 or Orion Nebula. During certain times of year, satellites can be seen nearby, nodding slowly north to south and back again. Around the March and September equinox seasons, geostationary satellites can be eclipsed by the shadow of the Earth. This can also cause communications difficulties, as many geo-sats also lie sunward as seen from the Earth around these times of year.

Probably one of the simplest satellite trackers for casual users is Space Weather’s Satellite Flybys page. North American users simply need to enter a postal code (worldwide users can track satellites via entering “country-state-city”) and a list of passes for your location is generated.

It’s a basic truism of satellite tracking that “aircraft blink; satellites don’t”. Know, we’re going to present an exception to this rule.

Some satellites will flash rhythmically due to a tumbling motion. This can be pretty dramatic to see. What you’re seeing is an expended booster, a cylinder tumbling due to atmospheric drag end-over-end. Some satellites can flash or flare briefly due to sunlight glinting off of reflective surfaces just right. Hubble, the ISS and the late NanoSail D2 can flare if conditions are just right.

The most dramatic of these are Iridium flares. The Iridium constellation consists of 66 active satellites used for satellite phone coverage in low-Earth orbit. When one of their three refrigerator-sized  antennas catch the Sun just right, they can flare up to magnitude -8, or 40 times brighter than Venus. CALSky and Heavens-Above will also predict these events for your location.

Didn’t see a predicted satellite pass? Light pollution or bright twilight skies might be to blame. Keep in mind, passes lower to the horizon also fall prey to atmospheric extinction, as you’re looking through a thicker layer of the air than straight overhead.  Some satellites such as the ISS or the USAF’s X-37B spy space plane even periodically boost or modify their orbits, throwing online prediction platforms off for a time.

More advanced satellite trackers will want to check out Celestrak and SAT-Flare Tracker 3D.

A screenshot example of TLE's for the ISS & Tiangong-1 from Celestrak.
A screenshot example of TLE’s for the ISS & Tiangong-1 from Celestrak.

I use a free tracking platform created by Sebastian Stoff known as Orbitron. Orbitron lets you set your observing location and tailor your view for what’s currently over head. You can run simulations and even filter for “visual only” passes, another plus. I also like Orbitron’s ability to run as a stand-alone system in the field, sans Internet connection. Just remember, for it to work properly, you’ll need to periodically update the .txt file containing the Two-Line Element (TLE) sets. TLE’s are data element sets that describe the orbital elements of a satellite. Cut and paste TLEs are available from Heavens-Above and Celestrak.

Orbitron screenshot for visible satellites using 'radar' mode... there's lots up there! (Credit: Orbitron).
Orbitron screenshot for visible satellites using ‘radar’ mode… there’s lots up there! (Credit: Orbitron).

For serious users, NORAD’s Space-Track is the best site for up-to-date TLEs.  Space-Track requires a login and user agreement to access, but is available to satellite spotters and educators as a valuable resource. Space-Track also hosts a table of upcoming reentries, as does the Aerospace Corporation’s Center for Orbital & Reentry Debris Studies.

The SeeSat-L mailing list is also an excellent source of discussion among satellite trackers worldwide. Increasingly, this discussion is also moving over to Twitter, which is ideal for following swiftly evolving  action in orbit. @Twisst, created by Jaap Meijers,will even Tweet you prior to an ISS pass!

And there’s always something new or strange in the sky for the observant. Satellites such as those used in the Naval Ocean Surveillance System (NOSS) were launched in groups, and are eerie to watch as they move in formations of 2 or 3 across the sky. These are difficult to catch, and all three of our sightings thus far of a NOSS pair have been surreptitious. And we’ve only had the camera ready to swing into action once to nab a NOSS pair;

A NOSS pair captured by the author. The multi-colored trail bisecting the path is an aircraft. Note a bit of "jitter" at the beginning of the exposure- I had to swing the camera into action quickly!
A NOSS pair captured by the author. The multi-colored trail to the left of the path is an aircraft. Note a bit of “jitter” at the beginning of the exposure- I had to swing the camera into action quickly!

Another bizarre satellite to catch in action is known as the Cloud-Aerosol LiDAR & Infrared Pathfinder Satellite for Observations, or CALIPSO. Part of the “afternoon A-Train” of sun-synchronous Earth observing satellites, you can catch the green LiDAR flashes of CALIPSO from the ground with careful planning, just as Gregg Hendry did in 2008-2009:

A CALIPSO LIDAR pass imaged by Gregg Hendry in 2008. My Hendry mentions that, "The hollow nature of the spots is likely due to some spherical aberration in the camera lens coupled with imperfect focus and is not representative of the laser beam's optical quality."
A CALIPSO LiDAR pass imaged by Gregg Hendry in 2008. My Hendry mentions that, “The hollow nature of the spots is likely due to some spherical aberration in the camera lens coupled with imperfect focus, and is not representative of the laser beam’s optical quality.” (Credit: Gregg Hendry, used with permission).

NASA even publishes a prediction table for CALIPSO lidar passes. I wonder how many UFO sightings CALIPSO has generated?

Artist's depiction of the A-Train constellation of Earth-Observing satellites. (Credit: NASA).
Artist’s depiction of the A-Train constellation of Earth-Observing satellites. (Credit: NASA).

And speaking of photography, it’s easy to catch a bright pass such as the ISS on camera. Shooting a satellite pass with a wide field is similar to shooting star trails; just leave the shutter open for 10-60 seconds with a tripod mounted camera. Modern DSLRs allow you to do several test exposures prior to the pass, to get the ISO, f/stop, and shutter speed calibrated to local sky conditions.

You can even image the ISS through a telescope. Several sophisticated rigs exist to accurately track and image the space station through a scope, or you could use our decidedly low-tech but effective hand-guided method;

And that’s a brief overview of the exciting world of sat-spotting… let us know of your tales of triumph and tragedy as you sleuth out what’s going on overhead!