Astronomers Discover the Second-Lightest “Cotton Candy” Exoplanet to Date.

A NASA illustration of the giant planet WASP-193b and its star. Credit: NASA/ESA/CSA)

The hunt for extrasolar planets has revealed some truly interesting candidates, not the least of which are planets known as “Hot Jupiters.” This refers to a particular class of gas giants comparable in size to Jupiter but which orbit very closely to their suns. Strangely, there are some gas giants out there that have very low densities, raising questions about their formation and evolution. This is certainly true of the Kepler 51 system, which contains no less than three “super puff” planets similar in size to Jupiter but is about one hundred times less dense.

These planets also go by the moniker “cotton candy” giants because their density is comparable to this staple confection. In a recent study, an international team of astronomers spotted another massive planet, WASP-193b, a fluffy gas giant orbiting a Sun-like star 1,232 light-years away. While this planet is roughly one and a half times the size of Jupiter, it is only about 14% as massive. This makes WASP-193b the second-lightest exoplanet observed to date. Studying this and other “cotton candy” exoplanets could provide valuable insight into how these mysterious giants form.

Continue reading “Astronomers Discover the Second-Lightest “Cotton Candy” Exoplanet to Date.”

The Rings of Uranus Shine Bright in Stunning New JWST Image

This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) Feb. 6, 2023, reveals stunning views of the planet’s rings. Credit: NASA, ESA, CSA, STScI IMAGE PROCESSING: Joseph DePasquale (STScI).

The James Webb Space Telescope has taken a stunning new image of the ice giant world Uranus. But what stands out most is the dramatic new view of the planet’s rings, which show up as never before with JWST’s infrared eyes.

Instead of being faint and wispy, the rings show up brilliantly. Additionally, bright, luminous features in the planet’s atmosphere show how an extensive storm system at the north pole of this planet getting larger and brighter.

But you’ll also want to see the full-frame image view, which also shows the six largest of Uranus’ 27 known moons. And, as we’ve become accustomed to seeing in JWST images, several distant background galaxies. Yes, every JWST image is a Deep Field!

Continue reading “The Rings of Uranus Shine Bright in Stunning New JWST Image”

It's Time For Your Annual Weather Update for the Outer Solar System

Jupiter, as seen by the Hubble Space Telescope in November 2022 and January 2023. Credits: NASA, ESA, STScI, Amy Simon (NASA-GSFC), and Michael H. Wong (UC Berkeley); Image Processing: Joseph DePasquale (STScI).

A couple times a year, the Hubble Space Telescope turns its powerful gaze on the giant planets in the outer Solar System, studying their cloudtops and weather systems. With the Outer Planet Atmospheres Legacy (OPAL) Program, Hubble provides us with these views and also delivers weather reports on what’s happening. Here’s an updated report and some new images of the stormy surfaces of Jupiter and Uranus.  

Continue reading “It's Time For Your Annual Weather Update for the Outer Solar System”

Astronomers Find a “Marshmallow World”: the Lowest Density Gas Giant Ever Discovered

a gas giant orbiting a red dwarf star
A gas giant exoplanet [right] with the density of a marshmallow has been detected in orbit around a cool red dwarf star [left] by the NASA-funded NEID radial-velocity instrument on the 3.5-meter WIYN Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. The planet, named TOI-3757 b, is the fluffiest gas giant planet ever discovered around this type of star.

Exoplanet discovery space hosts all kinds of interesting “super” worlds. There are super-Earths, super-Neptunes, and, of course, Super-Jupiters. Recently, the WIYN telescope on Kitt Peak in Arizona did a follow-up observation of a gas giant discovered by TESS (the Transiting Exoplanet Survey Satellite). The world is fluffy and weird and it’s orbiting a red giant star. Oddly enough, it shouldn’t even exist. Yet, there it is happily orbiting a star some 580 light-years from Earth.

Continue reading “Astronomers Find a “Marshmallow World”: the Lowest Density Gas Giant Ever Discovered”

Astronomers Measure the Layers of an Exoplanet's Atmosphere

An artist's conception of the hot Jupiter WASP-79b. (Image credit: NASA)

The number of planets discovered beyond our Solar System has grown exponentially in the past twenty years, with 4,919 confirmed exoplanets (and another 8,493 awaiting confirmation)! Combined with improved instruments and data analysis, the field of study is entering into an exciting new phase. In short, the focus is shifting from discovery to characterization, where astronomers can place greater constraints on potential habitability.

In particular, the characterization of exoplanet atmospheres will allow astronomers to determine their chemical makeup and whether they have the right characteristics to support life. In a new study led by the University of Lund, an international team of researchers characterized the atmosphere of one of the most extreme exoplanets yet discovered. This included discerning what could be several distinct layers that have particular characteristics.

Continue reading “Astronomers Measure the Layers of an Exoplanet's Atmosphere”

An Exoplanet So Hot There Are 7 Different Kinds of Gaseous Metals in its Atmosphere

This artist's illustration shows an alien world that is losing magnesium and iron gas from its atmosphere. The observations represent the first time that so-called "heavy metals"—elements more massive than hydrogen and helium—have been detected escaping from a hot Jupiter, a large gaseous exoplanet orbiting very close to its star. The planet, known as WASP-121b, orbits a star brighter and hotter than the Sun. Image Credit: NASA, ESA, and J. Olmsted (STScI)

The search for exoplanets has revealed types of planets that are nothing like the worlds in our own Solar System. One such type is the hot-Jupiter. They’re gas giants like Jupiter that orbit their host star very closely. That proximity raises their temperatures to extreme heights.

Hot-Jupiters can be hot enough to vaporize metals, making their atmospheres un-Earthlike. A team of astronomers examining one exoplanet has found 7 different gaseous metals in its atmosphere.

Continue reading “An Exoplanet So Hot There Are 7 Different Kinds of Gaseous Metals in its Atmosphere”

Hubble Shows Saturn in the Middle of its Summer

Hubble Space Telescope view of Saturn on July 4, 2020. Credit: NASA, ESA, A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team.

If you want an iconic picture of the planet Saturn, it doesn’t get any better than this. The latest picture from the Hubble Space Telescope shows a spectacular view of the ringed giant, taken on July 4, 2020. This shows a “summertime” view of Saturn’s northern hemisphere.

Continue reading “Hubble Shows Saturn in the Middle of its Summer”

Exoplanet Orbits its Star Every 18 Hours. The Quickest Hot-Jupiter Ever Found

Using data obtained by Kepler and numerous observatories around the world, an international team has found a Super-Earth that orbits its orange dwarf star in just 14 hours. Credit: M. Weiss/CfA

In the past decade, thousands of planets have been discovered beyond our Solar System. These planets have provided astronomers with the opportunity to study planetary systems that have defied our preconcieved notions. This includes particularly massive gas giants that are many times the size of Jupiter (aka. “super-Jupiters”). And then there are those that orbit particularly close to their suns, otherwise known as “hot-Jupiters”.

Conventional wisdom indicates that gas giants should exist far from their suns and have long orbital periods that can last for a decade or longer. However, in a recent study, an international team of astronomers announced the detection of a “hot-Jupiter” with the shortest orbital period to date. Located 1,060 light-years away from Earth, this planet (NGTS-10b) takes just 18 hours to complete a full orbit of its sun.

Continue reading “Exoplanet Orbits its Star Every 18 Hours. The Quickest Hot-Jupiter Ever Found”

Uranus’ Rings are Surprisingly Bright in Thermal Emissions

Composite image of Uranus’s atmosphere and rings at radio wavelengths, taken with the ALMA array in December 2017. The image shows thermal emission, or heat, from the rings of Uranus for the first time, enabling scientists to determine their temperature: a frigid 77 Kelvin (-320 F). Dark bands in Uranus’s atmosphere at these wavelengths show the presence of molecules that absorb radio waves, in particular hydrogen sulfide gas. Bright regions like the north polar spot (yellow spot at right, because Uranus is tipped on its side) contain very few of these molecules. (UC Berkeley image by Edward Molter and Imke de Pater)

During the late 1970s, scientists made a rather interesting discovery about the gas giants of the Solar System. Thanks to ongoing observations using improved optics, it was revealed that gas giants like Uranus – and not just Saturn – have ring systems about them. The main difference is, these ring systems are not easily visible from a distance using conventional optics and require exceptional timing to see light being reflected off of them.

Another way to study them is to observe their planet in infrared or radio wavelengths. This was recently demonstrated by a team of astronomers who conducted observations of Uranus using the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Telescope (VLT). In addition to obtaining temperature readings from the rings, they confirmed what many scientists have suspected about them for some time.

Continue reading “Uranus’ Rings are Surprisingly Bright in Thermal Emissions”

Where’s the Line Between Massive Planet and Brown Dwarf Star?

This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026, observed by NASA's Hubble and Spitzer space telescopes. Brown dwarfs are more massive and hotter than planets but lack the mass required to become stars. Image credit: NASA
This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026, observed by NASA's Hubble and Spitzer space telescopes. Brown dwarfs are more massive and hotter than planets but lack the mass required to become stars. Image credit: NASA

When is a Brown Dwarf star not a star at all, but only a mere Gas Giant? And when is a Gas Giant not a planet, but a celestial object more akin to a Brown Dwarf? These questions have bugged astronomers for years, and they go to the heart of a new definition for the large celestial bodies that populate solar systems.

An astronomer at Johns Hopkins University thinks he has a better way of classifying these objects, and it’s not based only on mass, but on the company the objects keep, and how the objects formed. In a paper published in the Astrophysical Journal, Kevin Schlaufman made his case for a new system of classification that could helps us all get past some of the arguments about which object is a gas giant planet or a brown dwarf. Mass is the easy-to-understand part of this new definition, but it’s not the only factor. How the object formed is also key.

In general, the less massive a star, the cooler it is. Though stars smaller than our Sun can still sustain heat-producing fusion reactions, protostars that are too small cannot. These “failed” stars are commonly known as brown dwarfs, and a new definition puts their range from between 10-75 times the mass of Jupiter. This artist’s concept compares the size of a brown dwarf to that of Earth, Jupiter, a low-mass star, and the Sun. (Credit: NASA/JPL-Caltech/UCB).
In general, the less massive a star, the cooler it is. Though stars smaller than our Sun can still sustain heat-producing fusion reactions, protostars that are too small cannot. These “failed” stars are commonly known as brown dwarfs, and a new definition puts their range from between 10-75 times the mass of Jupiter. This artist’s concept compares the size of a brown dwarf to that of Earth, Jupiter, a low-mass star, and the Sun. (Credit: NASA/JPL-Caltech/UCB).

Schlaufman is an assistant professor in the Johns Hopkins Department of Physics and Astronomy. He has set a limit for what we should call a planet, and that limit is between 4 and 10 times the mass of our Solar System’s biggest planet, Jupiter. Above that, you’ve got yourself a Brown Dwarf star. (Brown Dwarfs are also called sub-stellar objects, or failed stars, because they never grew massive enough to become stars.)

“An upper boundary on the masses of planets is one of the most prominent details that was missing.” – Kevin Schlaufman, Johns Hopkins University, Dept. of Physics and Astronomy.

Improvements in observing other solar systems have led to this new definition. Where previously we only had our own Solar System as reference, we now can observe other solar systems with increasing effectiveness. Schlaufman observed 146 solar systems, and that allowed him to fill in some of the blanks in our understanding of brown dwarf and planet formation.

An image of Jupiter showing its storm systems. According to a new definition, Jupiter would be considered a brown dwarf if it had grown to over 10 times its mass when it was formed. Image: Gemini
An image of Jupiter showing its storm systems. According to a new definition, Jupiter would be considered a brown dwarf if it had grown to over 10 times its mass when it was formed. Image: Gemini

“While we think we know how planets form in a big picture sense, there’s still a lot of detail we need to fill in,” Schlaufman said. “An upper boundary on the masses of planets is one of the most prominent details that was missing.”

Let’s back up a bit and look at how Brown Dwarfs and Gas Giants are related.

Solar systems are formed from clouds of gas and dust. In the early days of a solar system, one or more stars are formed out of this cloud by gravitational collapse. They ignite with fusion and become the stars we see everywhere in the Universe. The leftover gas and dust forms into planets, or brown dwarfs. This is a simplified version of solar system formation, but it serves our purposes.

In our own Solar System, only a single star formed: the Sun. The gas giants Jupiter and Saturn gobbled up most of the rest of the material. Jupiter gobbled up the lion’s share, making it the largest planet. But what if conditions had been different and Jupiter had kept growing? According to Schlaufman, if it had kept growing to over 10 times the size it is now, it would have become a brown dwarf. But that’s not where the new definition ends.

Metallicity and Chemical Makeup

Mass is only part of it. What’s really behind his new classification is the way in which the object formed. This involves the concept of metallicity in stars.

Stars have a metallicity content. In astrophysics, this means the fraction of a star’s mass that is not hydrogen or helium. So any element from lithium on down is considered a metal. These metals are what rocky planets form from. The early Universe had only hydrogen and helium, and almost insignificant amounts of the next two elements, lithium and beryllium. So the first stars had no metallicity, or almost none.

This is an image of M80, an ancient globular cluster of stars. Since these stars formed in the early universe, their metallicity content is very low. This means that gas giants like Jupiter would be rare or non-existent here, while brown dwarfs are likely plentiful. Image: By NASA, The Hubble Heritage Team, STScI, AURA - Great Images in NASA Description, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6449278
This is an image of M80, an ancient globular cluster of stars. Since these stars formed in the early universe, their metallicity content is very low. This means that gas giants like Jupiter would be rare or non-existent here, while brown dwarfs are likely plentiful. Image: By NASA, The Hubble Heritage Team, STScI, AURA – Great Images in NASA Description, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6449278

But now, 13.5 billion years after the Big Bang, younger stars like our Sun have more metal in them. That’s because generations of stars have lived and died, and created the metals taken up in subsequent star formation. Our own Sun was formed about 5 billion years ago, and it has the metallicity we expect from a star with its birthdate. It’s still overwhelmingly made of hydrogen and helium, but about 2% of its mass is made of other elements, mostly oxygen, carbon, neon, and iron.

This is where Schlaufman’s study comes in. According to him, we can distinguish between gas giants like Jupiter, and brown dwarfs, by the nature of the star they orbit. The types of planets that form around stars mirror the metallicity of the star itself. Gas giants like Jupiter are usually found orbiting stars with metallicity equal to or greater than our Sun. But brown dwarfs aren’t picky; they form around almost any star. Why?

Brown Dwarfs and Planets Form Differently

Planets like Jupiter are formed by accretion. A rocky core forms, then gas collects around it. Once the process is done, you have a gas giant. For this to happen, you need metals. If metals are present for these rocky cores to form, their presence will be reflected in the metallicity of the host star.

But brown dwarfs aren’t formed by accretion like planets are. They’re formed the same way stars are; by gravitational collapse. They don’t form from an initial rocky core, so metallicity isn’t a factor.

This brings us back to Kevin Schlaufman’s study. He wanted to find out the mass at which point an object doesn’t care about the metallicity of the star they orbit. He concluded that objects above 10 times the mass of Jupiter don’t care if the star has rocky elements, because they don’t form from rocky cores. Hence, they’re not planets akin to Jupiter; they’re brown dwarfs that formed by gravitational collapse.

What Does It Matter What We Call Them?

Let’s look at the Pluto controversy to understand why names are important.

The struggle to accurately classify all the objects we see out there in space is ongoing. Who can forget the plight of poor Pluto? In 2006, the International Astronomical Union (IAU) demoted Pluto, and stripped it of its long-standing status as a planet. Why?

Because the new definition of what a planet is relied on these three criteria:

  • a planet is in orbit around a star.
  • a planet must have sufficient mass to assume a hydrostatic equilibrium (a nearly round shape.)
  • a planet has cleared the neighbourhood around its orbit

The more we looked at Pluto with better telescopes, the more we realized that it did not meet the third criteria, so it was demoted to Dwarf Planet. Sorry Pluto.

Pluto was re-classified as a dwarf planet based on our growing understanding of its nature. Will Schlaufman's new study help us more accurately classify gas giants and brown dwarfs? NASA's New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015. Credit: NASA/JHUAPL/SwRI
Pluto was re-classified as a dwarf planet based on our growing understanding of its nature. Will Schlaufman’s new study help us more accurately classify gas giants and brown dwarfs? NASA’s New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015. Credit: NASA/JHUAPL/SwRI

Our naming conventions for astronomical objects are important, because they help people understand how everything fits together. But sometimes the debate over names can get tiresome. (The Pluto debate is starting to wear out its welcome, which is why some suggest we just call them all “worlds.”)

Though the Pluto debate is getting tiresome, it’s still important. We need some way of understanding what makes objects different, and names that reflect that difference. And the names have to reflect something fundamental about the objects in question. Should Pluto really be considered the same type of object as Jupiter? Are both really planets in the same sense? The IAU says no.

The same principle holds true with brown dwarfs and gas giants. Giving them names based solely on their mass doesn’t really tell us much. Schlaufman aims to change that.

His new definition makes sense because it relies on how and where these objects form, not simply their size. But not everyone will agree, of course.

Let the debate begin.