Warp Drives Could Generate Gravitational Waves

This artist's illustration shows a spacecraft using an Alcubierre Warp Drive to warp space and 'travel' faster than light. Image Credit: NASA

Will future humans use warp drives to explore the cosmos? We’re in no position to eliminate the possibility. But if our distant descendants ever do, it won’t involve dilithium crystals, and Scottish accents will have evaporated into history by then.

Continue reading “Warp Drives Could Generate Gravitational Waves”

An Astronaut Might Need Kidney Dialysis on the Way Home from Mars

Long term space exploration comes with many challenges. Not least is how much toilet paper to take but more worryingly is the impact on human physiology. We have not evolved in a weightless environment, we are not used to floating around for months on end nor are we able to cope with increased levels of radiation. It is likely that organs like the kidneys will become damaged but it make take time for signs to appear. Researchers are developing ways to detect organ issues in the early stages and develop ways to protect them during long duration flights. 

Continue reading “An Astronaut Might Need Kidney Dialysis on the Way Home from Mars”

Moon Lander Detects Technosignatures Coming from Earth

Touch down! A NOVA-C lander named Odysseus and built by the company Intuitive Machines lands on the surface of the moon. (Credit: Intuitive Machines)

The search for life has to be one of the most talked about questions in science. The question is, what do you look for? The Odysseus lunar lander has recently detected signs of a technologically advanced civilisation…on Earth! The lander is equipped with an instrument called ROLSES which has probed the radio emissions from Earth as if it was an exoplanet to se if it could detect signs of life! 

Continue reading “Moon Lander Detects Technosignatures Coming from Earth”

NASA is Considering Other Ways of Getting its Mars Samples Home

Artist's impression of the NASA-ESA Mars Sample Return mission. Credit: NASA

In 2021, NASA’s Perseverance rover landed in the Jezero Crater on Mars. For the next three years, this astrobiology mission collected soil and rock samples from the crater floor for eventual return to Earth. The analysis of these samples is expected to reveal much about Mars’ past and how it transitioned from being a warmer, wetter place to the frigid and desiccated place we know today. Unfortunately, budget cuts have placed the future of the proposed NASA-ESA Mars Sample Return (MSR) mission in doubt.

As a result, NASA recently announced that it was seeking proposals for more cost-effective and rapid methods of bringing the samples home. This will consist of three studies by NASA and the Johns Hopkins University Applied Physics Laboratory (JHUAPL). In addition, NASA has selected seven commercial partners for firm-fixed-price contracts for up to $1.5 million to conduct their own 90-day studies. Once complete, NASA will consider which proposals to integrate into the MSR mission architecture.

Continue reading “NASA is Considering Other Ways of Getting its Mars Samples Home”

Sulphur Makes A Surprise Appearance in this Exoplanet’s Atmosphere

This artist's illustration shows the Neptune-like exoplanet GJ 3470b, which has an atmosphere rich in sulphur. The planet's atmosphere holds clues to how it and other similar planets formed. Image Credit: Department of Astronomy, UW–Madison

At our current level of knowledge, many exoplanet findings take us by surprise. The only atmospheric chemistry we can see with clarity is Earth’s, and we still have many unanswered questions about how our planet and its atmosphere developed. With Earth as our primary reference point, many things about exoplanet atmospheres seem puzzling in comparison and generate excitement and deeper questions.

That’s what’s happened with GJ-3470 b, a Neptune-like exoplanet about 96 light-years away.

Continue reading “Sulphur Makes A Surprise Appearance in this Exoplanet’s Atmosphere”

The Inner and Outer Milky Way Aren’t the Same Thickness, and that’s Surprising

Illustration depicting the Smith Cloud on its journey to the Milky Way Creator: NRAO/AUI/NSF Credit: B. Saxton, NRAO/AUI/NSF

At first glance, the universe and night sky seem largely unchanging. The reality is very different, even now, a gas cloud is charging toward the Milky Way Galaxy and is expected to crash into us in 27 million years. A team of astronomers hoping to locate the exact position of the expected impact site have been unsuccessful but have accidentally measured the thickness of the Milky Way! Analysing radio data, they have been able to deduce the thickness of the inner and outer regions and discovered a dramatic difference between the two. 

Continue reading “The Inner and Outer Milky Way Aren’t the Same Thickness, and that’s Surprising”

Starliner Has Five Leaks

Boeing Starliner

Many space fans have been following the successful launch of the Boeing Starliner, another commercial organisation aiming to make space more accessible. It successfully reached the International Space Station, delivering Butch Wilmore and Suni Williams into orbit but it wasn’t without a hitch. Three of its thrusters experienced problems and there were ‘five small leaks on the service module.’ The crew and ground teams are working through safety checks of power and habitability. To ensure a safe return of the astronauts NASA has extended the mission by four days to 18th June. 

Continue reading “Starliner Has Five Leaks”

Astronomers Find the Slowest-Spinning Neutron Star Ever

This artist's illustration shows CSIRO’s ASKAP radio telescope with two versions of the puzzling, newly-discovered celestial object: neutron star and white dwarf. Image Credit: Carl Knox, OzGrav

Most neutron stars spin rapidly, completing a rotation in seconds or even a fraction of a second. But astronomers have found one that takes its time, completing a rotation in 54 minutes. What compels this odd object to spin so slowly?

Continue reading “Astronomers Find the Slowest-Spinning Neutron Star Ever”

How a Single Atomic Sensor Can Help Track Earth’s Glaciers

Earth observations are one of the most essential functions of our current fleet of satellites. Typically, each satellite specializes in one kind of remote sensing – monitoring ocean levels, for example, or watching clouds develop and move. That is primarily due to the constraints of their sensors – particularly the radar. However, a new kind of sensor undergoing development could change the game in remote Earth sensing, and it recently received a NASA Institute for Advanced Concepts (NIAC) grant to further its development.

Continue reading “How a Single Atomic Sensor Can Help Track Earth’s Glaciers”