STEREO Looks at the Sun; Finds Planets

[/caption]

The primary mission of the twin STEREO probes is to explore the 3-dimensional makeup of our Sun. Each craft carries a variety of instruments. One of them, the Heliospheric Imager (HI), doesn’t look directly at the Sun, but rather, explores a wide field near the Sun in order to explore the physics of coronal mass ejections (CMEs), in particular, ones aimed at the Earth. But while not focusing on solar ejections, the HI is free to make many other observations, including its first detection of an extrasolar planet.

As the Heliospheric Imager stares at the space between the Earth and Sun, it has made many novel observations. The device first opened its shutters in 2006 the instrument has observed the interaction of CMEs with the atmosphere of Venus, the stripping of a tail of a comet by a CME, atomic iron in a comet’s tail, and “the very faint optical emission associated with so-called Corotating Interaction Regions (CIRs) in interplanetary space, where fast-flowing Solar wind catches up with slower wind regions.”

The spacecraft allows for long periods of time to stare at patches of sky as the satellites precede and follow Earth in its orbit. The spacecraft is able to take pictures roughly every 40 minutes for almost 20 days in a row giving excellent coverage. As a result, the images taken have the potential to be used for detailed survey studies. Such information is useful for conducting variable star studies and a recent summary of findings from the mission reported the detection of 263 eclipsing variable stars, 122 of which were not previously classified as such.

Another type of variable star observed by the STEREO HI, was the cataclysmic sort, in particular, V 471 Tau. This red giant/white dwarf binary in the Hyades star cluster is a strong source of interest for stellar astrophysicists because the system is suspected to be a strong candidate for a type Ia supernova as the red giant dumps mass onto its high mass, white dwarf companion. The star system is extremely erratic in its light output and observations could help astronomers understand how such systems evolve.

Although planetary hunting is at the very edge of the capabilities of the HI’s limitations, eclipses caused by planet sized objects are feasible for many of the brighter stars in the field of view as dim as approximately 8th magnitude. Around one star, HD 213597, the STEREO team reported the detection of an object that seems too small to be a star based on the light curve alone. However, follow up studies will be necessary to pin down the object’s mass more accurately.

Jon Voisey

Jon has his Bachelors of Science in Astronomy from the University of Kansas (2008). Since graduation, he has taught high school, worked in antique jewelry, and now works as a data analyst. As a hobby, he does medieval re-creation and studies pre-telescopic astronomy focusing. His research can be found at jonvoisey.net/blog.

Recent Posts

What’s the Best Material for a Lunar Tower?

Physical infrastructure on the Moon will be critical to any long-term human presence there as…

9 hours ago

What Does a Trip to Mars Do to the Brain?

It’s not long before a conversation about space travel is likely to turn to the…

10 hours ago

Could a New Sungrazer Comet Put on a Show at the End of October?

A new sungrazing comet with potential may grace our skies in late October.

14 hours ago

Gravitational Lens Confirms the Hubble Tension

Astronomers want new ways to measure distance in the Universe, working to calculate its rate…

15 hours ago

Jets From Supermassive Black Holes Create New Stars Along Their Trajectory

Since the 1970s, astronomers have observed that supermassive black holes (SMBHs) reside at the centers…

1 day ago

NASA Turns Off One of Voyager 2's Science Instruments

The two Voyager spacecraft have been speeding through space since 1977, powered by decaying chunks…

2 days ago