Warm ‘Perrier’ Ocean Could be Powering Enceladus’ Geysers

Article written: 5 Oct , 2010
Updated: 24 Dec , 2015
by

[/caption]

Bottled water companies take note: an exotic form of warm, bubbly mineral water could be what feeds the mysterious jets spraying from the south polar region of Saturn’s moon Enceladus. A new model of the sub-surface ocean explains how the small moon could be so cryo-volcanically active. The Cassini spacecraft has detected sodium and potassium salts, as well as carbonates in the water vapor plumes spewing from the moon, which indicates a liquid, bubbly subsurface ocean. “There is a plume chamber, where some of the bubbles can pop the cap of the thin ice crust, and through that process is how the plumes get sprayed out,” said Dennis Matson, a NASA planetary scientist from JPL, speaking at a press briefing at the American Astronomical Society’s Division for Planetary Sciences meeting in Pasadena, California.

The schematic image (top) is laid on top of a picture of the Enceladus jets taken by Cassini’s imaging cameras in November 2009. It shows bubbles in subsurface seawater traveling through a passage in the ice crust to feed a geyser. The water flows back down to the subsurface ocean through cracks in the ice.

Matson explained the process:

“What we think is going on is that Enceladus has a subsurface ocean where water, heat and chemicals are stored before they erupt,” he said. There is an ice crust, many tens of kilometers thick. The ocean is gas rich, — and previous researchers dubbed such an ocean as a ‘Perrier’ ocean -– which basically “pops the cap” of the ice crust.

“What is happening is that water comes up and pressure is released,” said Matson. “Gases and water come out and the bubbles come near the surface and supply materials to the plumes. Water also transfers laterally, to a great extent, from the point of the plumes. This transfers heat to the surface, by analogy, like the radiator on your car. You have water coming out, which transfers heat to the thin ice layer, and then the heat is radiated to space. Cooled water goes down through cracks in the ice where it gets ready for another trip to the surface. “

This image compares heat flow at Earth and Saturn’s moon Enceladus. Credit: NASA/JPL

Cassini also found an impressive amount of heat flow over a small area coming from Enceladus’ interior. About four years ago, Cassini’s composite infrared spectrometer instrument detected a heat flow in the south polar region of at least 6 gigawatts, the equivalent of at least a dozen electric power plants. This is at least three times as much heat as an average region of Earth of similar area would produce, despite Enceladus’ small size.

“To put the heat flow in perspective,” said Matson, “the heat flow for the Earth has 87 of these units, but on the south pole of Enceladus, 250 units. At Yellowstone, there are 2500 units, but at one of the tiger stripe hots spots on Enceladus, we find heat flow as big as 13,000 units.”

The heat is, of course, relative to the surrounding environment. The subsurface bubbly water is probably just below freezing, which is 273 degrees Kelvin or 32 degrees Farenheit, whereas the surface is a frigid 80 degrees Kelvin or -316 degrees Farenheit. However, Matson said they have also seen surface temperatures as high as 180 K, when only 70 K was expected at the south pole.

Cassini imaging scientists used views like this one to help them identify the source locations for individual jets spurting ice particles, water vapor and trace organic compounds from the surface of Saturn's moon Enceladus. Credit: NASA

Finding the sodium in the icy grains in the plume is huge piece of evidence pointing to a subsurface ocean. Previously, Earth-based observations did not detect salts in the plume, and so scientists didn’t think a liquid ocean was possible. But infrared observations with an instrument on Cassini found the particles in the plumes include water ice, and substantial amounts of sodium and potassium salts and carbonates, as well as organics.

“The sodium was hiding in the little grains,” Matson said. “In the case of Enceladus, sodium isn’t in the vapor, it’s in the solid particles. This was something entirely new that had not been seen elsewhere.”

Also new is that the heat from Enceladus appears to be originating in the ocean, and also the realization there is a circulation system inside the moon, where there is process of pumping the water to the surface.

“This process we’ve outlined, where getting the water up to the surface, you have the heat, the water, and sodium and potassium all from one source that brings that up to the surface. So you have one process that delivers all those things, whereas before we had separate processes to try and explain each of them.”

Source: DPS press briefing

,



1 Response

  1. GBendt says

    Enceladus is far too small a moon to keep a subsurface ocean nder a layer of ice liquid for billions of years, It too will not keep huge amounts of gas in that ocean until today while this ocean has ben losing that gas in the billions of years that passed. And there is no chance for warm water to flow back into the moon through the cracks in its surface ice, as the moon has no atmosphere, the pressure of which is required to maintain liquid water. The geysers are not fed by gas dissolved in the water, but fed by water that vaporises when reaching the vacuum of space.

Leave a Reply