Categories: James WebbMissions

JWST Built with ‘Unobtainium’

[/caption]

The James Webb Space Telescope (JWST) is the much anticipated, long awaited “next generation” telescope, which we hope will look further back in time, and deeper within dusty star forming regions, using longer wavelengths and more sensitivity than any previous space telescope. In order to take us to this next level, you’d kinda figure that new technologies would have to be developed in order for this ground-breaking, super-huge telescope to be built. You’d be right.

In fact, engineers had to use a little unobtainium to build the one-of-a-kind chassis, the backbone that will hold the spacecraft together.

Unobtainium isn’t just the name of the material mined in James Cameron’s movie “Avatar.” It is a word used in engineering — and sometimes fiction – to describe any extremely rare, costly, or physically impossible material or device needed to fulfill a given design for a given application.

The chassis for JWST – called the the Integrated Science Instrument Module ISIM – is made of a never-before-manufactured composite material which had to withstand the super-cold temperatures it will encounter when the observatory reaches its orbit 1.5-million kilometers (930,000 miles) from Earth.

The ISIM just passed an extremely important test, surviving temperatures that plunged as low as 27 Kelvin (-411 degrees Fahrenheit), colder than the surface of Pluto during a cycle of testing in Goddard’s Space Environment Simulator — a three-story thermal-vacuum chamber that simulates the temperature and vacuum conditions found in space.

The team at Goddard Space Flight Center who were charged with building the chassis needed a material that would assure the various instruments on JWST would maintain a precise cryogenic alignment and stability, yet survive the extreme gravitational forces experienced during launch.

The test was done to find out whether the car-sized structure contracted and distorted as predicted when it cooled from room temperature to the frigid — very important since the science instruments must maintain a specific location on the structure to receive light gathered by the telescope’s 6.5-meter (21.3-feet) primary mirror. If the structure shrunk or distorted in an unpredictable way due to the cold, the instruments no longer would be in position to gather data about everything from the first luminous glows following the Big Bang to the formation of star systems capable of supporting life.

When they first began, there was nothing out there that remotely fit the description of what was needed. So, that left one alternative: developing their own as-yet-to-be manufactured material, which team members jokingly referred to as “unobtainium.” Through mathematical modeling, the team discovered that by combining two composite materials, it could create a carbon fiber/cyanate-ester resin system that would be ideal for fabricating the structure’s square tubes that measure 75-mm (3-inch) in diameter.

During the recent 26-day test, and with repeated cycles of testing, the truss-like assembly designed by Goddard engineers did not crack. The structure shrunk as predicted by only 170 microns — the width of a needle —when it reached 27 Kelvin (-411 degrees Fahrenheit), far exceeding the design requirement of about 500 microns. “We certainly wouldn’t have been able to realign the instruments on orbit if the structure moved too much,” said ISIM Structure Project Manager Eric Johnson. “That’s why we needed to make sure we had designed the right structure.”

This type of structure could serve NASA in the future for the next-generation beyond JWST, and could also be a “spinoff” that manufacturers could find useful in designing structures that demand a high tolerance in conditions.

Source: NASA Goddard

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

23 hours ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

1 day ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

2 days ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

2 days ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

2 days ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

3 days ago