Categories: AstronomySETI

Astronomy Without A Telescope – SETI 2.0

[/caption]

Fifty years of eerie silence in the search for extra-terrestrial intelligence has prompted some rethinking about what we should be looking for.

After all, it’s unlikely that many civilizations would invest a lot of time and resources into broadcasting a Yoo-hoo, over here signal, so maybe we have to look for incidental signs of alien activity – anything from atmospheric pollution on an exoplanet to signs of stellar engineering undertaken by an alien civilization working to keep their aging star from turning into a red giant.

We know a spectroscopic analysis of Earth’s atmosphere will indicate free molecular oxygen – a tell tale sign of life. The presence of chlorofluorocarbons would also be highly suggestive of advanced industrial activity. We also know that atomic bomb tests in the fifties produced perturbations to the Van Allen belts that probably persisted for weeks after each blast.

These are planet level signs of a civilization still below the level of a Kardashev Type 1 civilization. We are at level 0.73 apparently. A civilization that has reached the Type 1 level is capable of harnessing all the power available upon a single planet – and might be one that inadvertently signals its presence after thoughtfully disposing of large quantities of nuclear waste in its star. To find them, we should be scanning A and F type stars for spectral signatures of technetium – or perhaps an overabundance of praseodymium and neodymium.

We might also look for signs of stellar engineering indicative of a civilization approaching the Kardashev Type 2 level, which is a civilization able to harness all the power of a star. Here, we might find an alien civilization in the process of star lifting, where an artificial equatorial ring of electric current creates a magnetic field sufficient to both increase and deflect all the star’s stellar wind into two narrow polar jets.

Left image - A proposed model for 'star lifting'. An artificial equatorial ring of electric current (RC) produces a magnetic field which enhances and directs the star's stellar wind though magnetic nozzles (MN) to produce two polar jets (J). Right image (Credit: SETI institute) - Artists impression of the completed Allen Telescope Array for future SETI observations. The lead image for this article is part of the current Allen Array prototype, comprising 42 of the proposed 350 dishes.

These jets could be used for power generation, but might also represent a way to prolong the life of an aging star. Indeed, this may become a vital strategy for us to prolong the solar system’s habitable zone at Earth’s orbit. In less than a billion years, Earth’s oceans are expected to evaporate due to the Sun’s steadily increasing luminosity, but some carefully managed star lifting to modify the Sun’s mass could extend this time limit significantly.

It’s also likely that Type 2 civilizations will play with Hertzsprung–Russell (H-R) parameters to keep their Sun from evolving onto the red giant branch of the H-R diagram – or otherwise from going supernova. Some well placed and appropriately shielded nuclear bombs might be sufficient to stir up stellar material that would delay a star’s shift to core helium fusion – or otherwise to core collapse.

It’s been hypothesized that mysterious giant blue straggler stars, which have not gone supernova like most stars of their type would, may have been tinkered with in this manner (some stress on the word hypothesized there).

As for detecting Type 3 civilizations… tricky. It’s speculated that they might build Dyson nets around supermassive black holes to harvest energy at a galactic level. But indications are that they then just use all that energy to go around annoying the starship captains of Type I civilizations. So, maybe we need to draw a line about who exactly we want to find out there.

Further reading:

Starry Messages: Searching for Signatures of Interstellar Archaeology http://arxiv.org/abs/1001.5455

Detectability of Extraterrestrial Technological Activities http://www.coseti.org/lemarch1.htm

Steve Nerlich

Steve Nerlich is a very amateur Australian astronomer, publisher of the Cheap Astronomy website and the weekly Cheap Astronomy Podcasts and one of the team of volunteer explainers at Canberra Deep Space Communications Complex - part of NASA's Deep Space Network.

Recent Posts

China Creates a High-Resolution Atlas of the Moon

Multiple space agencies are looking to send crewed missions to the Moon's southern polar region…

14 hours ago

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

2 days ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

2 days ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

2 days ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

3 days ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

3 days ago