Categories: Black Holes

First Black Holes May Have Formed in “Cocoons”

Very likely, the last image that comes to mind when thinking of black holes is that they need to be nurtured, coddled and protected when young. But new research reveals the first large black holes in the universe likely formed and grew deep inside gigantic, starlike cocoons that smothered their powerful x-ray radiation and prevented surrounding gases from being blown away.

“Until recently, the thinking by many has been that supermassive black holes got their start from the merging of numerous, small black holes in the universe,” said Mitchell Begelman, from the University of Colorado-Boulder. “This new model of black hole development indicates a possible alternate route to their formation.”
Ordinary black holes are thought to be remnants of stars slightly larger than our sun that used up their fuel and died.

But the first big black holes likely formed from very large stars that formed early in the Universe, probably within the first few hundred million years after the Big Bang. The unique process of these large stars becoming black holes includes the formation of a protective cocoon, made of gas.

“What’s new here is we think we have found a new mechanism to form these giant supermassive stars, which gives us a new way of understanding how big black holes may have formed relatively fast,” said Begelman.
These early supermassive stars would have grown to a huge size — as much as tens of millions of times the mass of our sun — and would have been short-lived, with its core collapsing in just in few million years.

The main requirement for the formation of supermassive stars is the accumulation of matter at a rate of about one solar mass per year, said Begelman. Because of the tremendous amount of matter consumed by supermassive stars, subsequent seed black holes that formed in their centers may have started out much bigger than ordinary black holes.

Begelman said the hydrogen-burning supermassive stars would had to have been stabilized by their own rotation or some other form of energy like magnetic fields or turbulence in order to facilitate the speedy growth of black holes at their centers.

After the seed black holes formed, the process entered its second stage, which Begelman has dubbed the “quasistar” stage. In this phase, black holes grew rapidly by swallowing matter from the bloated envelope of gas surrounding them, which eventually inflated to a size as large as Earth’s solar system and cooled at the same time, he said.

Once quasistars cooled past a certain point, radiation began escaping at such a high rate that it caused the gas envelope to disperse and left behind black holes up to 10,000 times or more the mass of Earth’s sun. With such a big head start over ordinary black holes, they could have grown into supermassive black holes millions or billions of times the mass of the sun either by gobbling up gas from surrounding galaxies or merging with other black holes in extremely violent galactic collisions.

Begelman said big black holes formed from early supermassive stars could have had a huge impact on the evolution of the universe, including galaxy formation, possibly going on to produce quasars — the very bright, energetic centers of distant galaxies that can be a trillion times brighter than our sun.

Begelman’s paper will be published in Monthly Notices of the Royal Astronomical Society.

Source: EurekAlert

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

23 hours ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

1 day ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

2 days ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

2 days ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

2 days ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

3 days ago