Categories: Astronomy

Found: Theoretical Supernova Actually Exists

[/caption]

Astronomers have identified a type of supernova that appears to be a type predicted in theory but never actually observed before. Two years ago Lars Bildsten from UC Santa Barbara and his colleagues predicted a new type of supernova in distant galaxies which they dubbed the “.Ia” (point one a) mechanism, involving a helium detonation on a white dwarf, ejecting a small envelope of material. This theoretical explosion would be fainter than most other supernovae and its brightness would rise and fall in only a few weeks. Dovi Poznanski from Berkeley went back and looked at seven-year-old observations and found this unusual kind of supernova. Poznanski and colleagues say supernova 2002bj belongs in its own category, as its spectra suggest that it evolved extremely fast and produced an unusual combination of elements.

Supernovae are usually classified based on tell-tale lines in the spectrum of radiation they emit. The two main types are thought to develop from exploding white dwarfs and collapsing massive stars.

However, Bildsten’s theory said that in rare instances, there is a binary star system where helium flows from one white dwarf onto another and accumulates on the more massive white dwarf.

It is this rare occurrence that leads to unique conditions of the explosive thermonuclear ignition and complete ejection of the accumulated helium ocean. The plethora of unusual radioactive elements made in the rapid fusion leads to a bright light show from the freshly synthesized matter that lasts a few weeks.
The “usual” explosions of white dwarfs are referred to as “Type Ia supernova.” They are brighter than a whole galaxy for more than a month and are quite useful in cosmological studies. The predicted “.Ia” supernovae are only one-tenth as bright for one-tenth the time.

Poznanski and his team say 2002bj fits the bill for this never-seen-before type of supernova.

“This is the fastest evolving supernova we have ever seen,” said Poznanski. “It was three to four times faster than a standard supernova, basically disappearing within 20 days. Its brightness just dropped like a rock.”

Poznanski told Universe Today that he was actually looking at Type II supernovae for another purpose when he hit the spectrum of 2002bj. “My first reaction was great confusion,” he said. “My second reaction, after showing it to other experts was greater confusion. After matching it against every object we know of, and finding nothing the confusion was topped with a lot of excitement. This kept rising until the .Ia idea came up and matched pretty well.”

Then Poznanski and his team re-analyzed their data to make sure, and the rest is history.

This explosion was nothing like a regular Type Ia explosion, said team member Alex Filippenko, because the white dwarf survives the detonation of the helium shell. In fact, it has similarities to both a nova and a supernova. Novas occur when matter – primarily hydrogen – falls onto a star and accumulates in a shell that can flare up as brief thermonuclear explosions. SN 2002bj is a “super” nova, generating about 1,000 times the energy of a standard nova, he said.

“As we have talked about our work over the last years, most astronomers in the audience reminded us that they had never seen such an event,” said Bildsten. “We told them to keep looking! With the sky the limit, the observers are usually ahead of theory, so I am really happy that we were able to make a prediction that allowed for a rapid interpretation of a new phenomena. Even though the supernova was observed in 2002, it took the keen eye of Dovi Poznanski to appreciate its import and relevance.”

Source: Science

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

13 hours ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

16 hours ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

17 hours ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

23 hours ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

1 day ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

2 days ago