Moonshadows on Saturn’s Rings Are Harbingers of Spring

[/caption]

Moonshadows on Saturn’s rings are foretelling the planet’s equinox, when the sun will be exactly aligned with the planet’s equator and rings — and then will shift north from the southern hemisphere, kickstarting northern spring. 

NASA’s Cassini spacecraft has captured, for the first time, the tell-tale moonshadows  – sort of like groundhogs on Earth.

Click to play the short movie. Credit: NASA/JPL/Space Science Institute

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The image above is a still from a movie, from Cassini’s hour-long observation of the shadow of the small moon Epimetheus. 

Like Earth and most of the other planets, Saturn’s spin axis is tilted relative to its motion around the sun. So the sun, seen from Saturn, cycles from the southern hemisphere to the north and back again. A full sweep of seasonal changes on Saturn and its rings and moons takes a Saturnian year, equal to 29.5 Earth years. Thus, about every 15 Earth years, or half-Saturn-year, the sun passes through the plane containing the planet’s rings.

During these times, the shadows of the planet’s rings fall in the equatorial region on the planet. And the shadows of Saturn’s moons external to the rings, especially those whose orbits are inclined with respect to the equator, begin to intersect the planet’s rings. When this occurs, the equinox period has essentially begun, and any vertical protuberances within the rings, including small embedded moons and narrow vertical warps in the rings, will also cast shadows on the rings. At exactly the moment of equinox, the shadows of the rings on the planet will be confined to a thin line around Saturn’s equator and the rings themselves will go dark, being illuminated only on their edge. The next equinox on Saturn, when the sun will pass from south to north, is Aug. 11, 2009.

Because of these unique illumination circumstances, Cassini imaging scientists have been eager to observe the planet and its rings around the time of equinox. Cassini’s first extended mission, which began on July 1, 2008, was intended to gather observations during this time. Hence its name: Cassini Equinox Mission.  

More than just pretty pictures, the observations could reveal any deviations across the rings from a perfectly flat wafer-like disk. Saturn’s ring system is wide, spanning hundreds of thousands of miles or kilometers. But the main inner rings (called A, B and C) are perhaps only 10 meters (30 feet) thick, and they are sometimes obscured from view inside thicker outer rings.

“We hope that such images will help us measure any vertical warping in the A and B rings,” said John Weiss, an imaging team associate from the Space Science Institute in Boulder, Colorado. “Because we know how big the moons are, and where they are in their orbits around Saturn when they cast these shadows, we have all the information we need to infer any substantial vertical structure that might be present.”

On Jan. 8, Epimetheus, a small moon 113 kilometers (70 miles) across, was the first moon observed casting a shadow onto the outer edge of the A ring. Next Pan, 30 kilometers (20 miles) across and orbiting within the rings, was caught casting a shadow on the A ring on Feb. 12.  Eventually, more moons will cast shadows on the rings and all shadows will grow longer as exact equinox approaches. 

Source: Cassini Imaging Central Laboratory for Operations (CICLOPS)

Anne Minard

Anne Minard is a freelance science journalist with an academic background in biology and a fascination with outer space. Her first book, Pluto and Beyond, was published in 2007.

Recent Posts

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

6 hours ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

12 hours ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

1 day ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

1 day ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

1 day ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

2 days ago