Categories: galaxies

Galaxy Ramming Through Space Creates Fireballs

[/caption]
During routine observations of the Coma Cluster of galaxies using the Subaru Telescope in Hawaii, astronomers discovered a thread-like structure stretching from one of the galaxies. The astronomers determined this filament was about 260 thousand light years long, and spectral analysis of the filament suggested a younger age toward the outer edge of the filament. The filament also has many young stars surrounded by ionized gas that look like projectiles flying out from the galaxy. So what happened in this chaotic area of space? Astronomers determined a speeding galaxy rammed into the Coma Cluster, stripping gas from the galaxy and creating fireball-like projectiles.

Galaxies evolve over time, and astronomers do not yet understanding how they change in shape, size, and color. Galaxy Clusters, which are dense populations of galaxies, rich with hot intergalactic gas, accompanied by strong gravitational forces are some of the best locations to observe galactic evolution.

A team of researchers from the National Astronomical Observatory of Japan and the University of Tokyo used Suprime-cam on the Subaru Telescope to observe the Coma Cluster of galaxies. The Coma Cluster contains over 1,000 galaxies and is fairly close to Earth at about 300 million light years away.
During observations in 2006 and 2007, the astronomers saw the filament extending from Galaxy RB199 and several of the “fireballs.” Detailed study identified several bright knots connected by blue filamentary structures, and the knots are actually the clusters of young stars weighing 10 million times our Sun, contained in an area about 3000 to 6000 light years across. Because the knots are accompanied by ionized gas, active star formation is going on in the fireballs where usually far less star formation would be expected. The team noted that the size and the mass of the fireballs indicate they could develop into dwarf galaxies.

Closeups of four fireballs. Subaru Telescope, National Astronomical Observatory of Japan (NAOJ)

Because the inside of the cluster is crowded with galaxies, they pass by each other and crash into each other. The team thought that the tidal forces during such encounters could strip gas or stars from the galaxies. They also postulated that as a galaxy falls into the center of the cluster the gravitational forces of the cluster could remove the gas and stars from that galaxy. Both scenarios are possible, however, the research team found that these mechanisms could hardly explain the characteristics of the fireballs. The team then realized that ram pressure stripping occurs when superheated gas (several tens of million Kelvin) in the cluster and the galaxies collide at high speeds. Previous X-ray observation shows the presence of large amounts of hot ionized gas in the middle of the Coma Cluster while RB199 crashes into the center at a speed of 1200 miles per second, causing strong friction with this hot gas. As such, the team concluded that the ram pressure has enough power to strip the gas from the galaxy AND create the fireballs.

While there are several reports indicating ram pressure stripping in nearby galaxy clusters, the identification of fireballs in this study is the first to demonstrate the stripped gas turns into stars while traveling through remote space far away from its source. Similar phenomena have been observed in galaxy clusters much further away at several billions light years, however, those distant cases were interpreted through witnessing the transitional phase of galaxies changing their morphology or colors as they fall into a cluster. The fireballs discovered by this team of Japanese astronomers provide the first sample of such structures in a nearby cluster. Principal investigator, Dr. Michitoshi Yoshida, said “the team is confident that our study of these phenomena leads to a better understanding of the gas stripping processes in galaxy clusters, and the effect of clusters on the evolution of individual galaxies”.

Source: Subaru Press release

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

16 hours ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

19 hours ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

19 hours ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

1 day ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

1 day ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

2 days ago