galaxies

Even Early Galaxies Grew Hand-in-Hand With Their Supermassive Black Holes

Within almost every galaxy there is a supermassive black hole. This by itself implies some kind of formative connection between the two. We have also observed how gas and dust within a galaxy can drive the growth of galactic black holes, and how the dynamics of black holes can both drive star formation or hinder it depending on how active a black hole is. But one area where astronomers still have little information is how galaxies and their black holes interacted in the early Universe. Did black holes drive the formation of galaxies, or did early galaxies fuel the growth of black holes? A recent study suggests the two evolved hand in hand.

It’s difficult to observe the complex dynamics of black holes and galaxies in the early cosmos, but one way to study them is to compare the mass of a galactic black hole with the mass of all the stars in its galaxy. This can be expressed as a ratio MBH / M* to see how it varies over time. This means measuring this ratio at ever-increasing redshifts, since the greater the redshift, the younger the galaxy.

For this study, the team looked at 61 galaxies with active galactic nuclei (AGNs) as identified by X-ray observations. The luminosity of the AGNs gives us an idea of the black hole’s mass. They then added JWST observations of these galaxies from the COSMOS-Web and PRIMER surveys. From these, they could get the infrared luminosity of the galaxies, which let them determine their total stellar mass.

The mass ratios of this study (red dots) compared to earlier studies. Credit: Tanaka, et al

The galaxies they observed have redshifts between z = 0.7 and z = 2.5, meaning that the galaxies are seen as they were 6 billion to 11 billion years ago. What they found is that galaxies and their black holes grow hand in hand. As the galaxy increases in mass, so does the black hole. The relationship is very roughly linear, though the ratio favors the black hole slightly at higher redshifts. For you math geeks, the team found the ratio varies as MBH / M* = (1 + z)0.37. This means the black holes grow at a slightly slower rate than the galaxies.

Unfortunately, the uncertainty of this result is rather large. It will take more observations, particularly at the higher redshift end, to pin down the relation more precisely. But in the coming years, astronomers should be able to gather this data. This study shows that galaxies and their black holes grow at similar rates across billions of years. Future studies will help us understand the more subtle connections between them.

Reference: Tanaka, Takumi S., et al. “The MBH-M* relation up to z = 2 through decomposition of COSMOS-Web NIRCam images.” arXiv preprint arXiv:2401.13742 (2024).

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Another Clue About the Ultra-High Energy Cosmic Rays: Magnetic Turbulence

Space largely seems quite empty! Yet even in the dark voids of the cosmos, ultra-high-energy…

5 hours ago

NASA Thinks it Knows Why Ingenuity Crashed on Mars

NASA’s Ingenuity helicopter sent its final signals to Earth in the earlier part of the…

5 hours ago

New Research may Explain how Supermassive Black Holes in the Early Universe Grew so Fast

Not long ago, the James Webb Space Telescope (JWST) peered into Cosmic Dawn, the cosmological…

10 hours ago

Early Earth's Oceans of Magma Accelerated the Moon's Departure

When the Earth was struck by a Mars-sized planet in its early history, it ejected…

14 hours ago

Could the ESA’s PLATO Mission Find Earth 2.0?

Currently, 5,788 exoplanets have been confirmed in 4,326 star systems, while thousands more candidates await…

1 day ago

Zap! A Black Hole Scores a Direct Hit With its Jet

Most galaxies are thought to play host to black holes. At the center of Centaurus…

1 day ago