White dwarf

JWST Looks at the Debris Disc Around a White Dwarf

Debris disks are quite common in the Universe. Young stars have protoplanetary disks from which planets form. Black holes have accretion disks that are the source of the galactic jets. Supernova remnants can form a disk around neutron stars. So what about white dwarfs?

You would think that white dwarf debris disks are common. After all, neutron stars explode with tremendous force, casting off most of a star’s outer layers, while white dwarfs are the remnants of red giant stars that swell to create planetary nebulae. If neutron stars can hold on to enough material to create a debris disk, surely a white dwarf can as well. And it turns out that some white dwarfs do seem to have debris disk. A few percent of white dwarfs have infrared emissions, which indicates some surrounding material.

Given the surface temperatures and luminosity of white dwarfs, it can be difficult to study their debris disks in detail. So we don’t know much about the composition and formation of these disks. But that is starting to change thanks to new observations of a white dwarf debris disk from the James Webb Space Telescope (JWST).

Spectral observations showing the presence of carbonates. Credit: Swan, et al

The observations are of a star known as WD 0145+234. In 2018 experienced an infrared outburst, which suggested the fragmentation of an asteroid or comet orbiting the star. This is consistent with the idea that white dwarf accretion disks form from the remnants of their stellar systems, such as planets and asteroids. The new JWST observations confirm the presence of the disk and the idea that they form from the collisions of bodies orbiting the star.

Specifically, spectral observations show the presence of silicate grains that are collision remnants. Silicates have been detected around the white dwarf before, but these observations also suggest the presence of carbonates, which is particularly interesting. The result needs to be confirmed by additional observations, but if true it suggests larger body collisions have contributed to the disk. Carbonates form through an interaction with liquid water, so they must have formed within bodies large enough to melt water ice. At the very least, tens of kilometers in diameter. Solar system bodies often contain carbonates, and since the Sun will eventually become a white dwarf, this suggests white dwarf debris disks are the result of similar planetary systems.

The team continues to analyze the data to see what observations might be the most useful in the future.

Reference: Swan, Andrew, et al. “The first white dwarf debris disk observed by JWST.” arXiv preprint arXiv:2310.09355 (2023).

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

3 hours ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

3 hours ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

22 hours ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

1 day ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

1 day ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

2 days ago