Astronomers Discover a Supernova/Gamma Ray Burst Hybrid

[/caption]
Just when we thought we were beginning to understand what supernovae and gamma ray bursts were all about. Astronomers have just uncovered the true nature of what they thought was a regular supernova observed in January. At the time, it looked like a supernova emitting a 5-minute long burst of X-rays. But these X-rays were of a lower energy (known as “soft” X-rays) than expected leading some to believe this was a normal emission from a supernova explosion that was being observed during detonation (astronomers don’t usually get the chance to observe a star as it explodes and usually have to make do with analysing the supernova remnant). However, it is now believed this strange supernova event may have been emissions from a dying star at an intermediate mass, neither producing a supernova nor a gamma ray burst, but a combination of both…

Orbiting above Earth on January 9th 2008, the NASA/STFC/ASI Swift telescope caught a rare glimpse of what seemed to be a “normal” supernova at the precise moment of detonation. This observation was completely by luck, as Swift was already observing a supernova remnant (SN 2007uy) in spiral galaxy NGC 2770 that had exploded the previous year (90 million light-years away near the Lynx constellation). Then, as Swift was retrieving data from the SN 2007uy remnant, SN 2008D blasted a 5-minute long burst of X-rays in the same galaxy making this the first supernova to be directly observed.

However, looks can be deceiving. Researchers from a host of institutions including Italian National Institute for Astrophysics (INAF), the Max-Planck Institute for Astrophysics (MPA) and the European Southern Observatory (ESO) have analysed the supernova data thoroughly and at first agreed with the original assessment that it was indeed “normal.”

What made this event very interesting is that the X-ray signal was very weak and ‘soft’, very different from a gamma-ray burst and more in line with what is expected from a normal supernova.” – Paolo Mazzali, INAF’s Padova Observatory/MPA, research leader.

Artist impression of the twin jets from a GRB. Credit: Dana Berry/SkyWorks Digital

However, astronomers at the Asiago Observatory in Northern Italy had designated the event as a Type 1c supernova, more commonly associated with long-period gamma-ray bursts. Type 1c supernovae are generated by hydrogen-poor progenitor stars with helium-rich outer layers prior to exploding at the end of their lives. But SN 2008D generated soft X-rays more associated with smaller stellar explosions. Therefore SN 2008D was probably produced by a star that was massive at birth (approximately 30 solar masses), rapidly using up its hydrogen fuel in its short life until it was only 8-10 solar masses. At this point it exploded, probably creating a remnant black hole. This chain of thought has led Paolo Mazzali and his team to think SN 2008D was produced by an object of a mass at the boundary of a normal supernova and gamma-ray burst.

Since the masses and energies involved are smaller than in every known gamma-ray burst related supernova, we think that the collapse of the star gave rise to a weak jet, and that the presence of the Helium layer made it even more difficult for the jet to remain collimated, so that when it emerged from the stellar surface the [X-ray] signal was weak.” – Massimo Della Valle, co-investigator.

Researcher and co-author Stefano Valenti points out that this discovery indicates that all black hole-producing supernovae have the potential to be gamma-ray burst progenitors. “The scenario we propose implies that gamma-ray burst-like inner engine activity exists in all supernovae that form a black hole,” he added.

Source: ESO

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

19 hours ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

22 hours ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

22 hours ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

1 day ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

1 day ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

2 days ago